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“The principal difficulty in your case...lay in the fact of there being too
much evidence. What was vital was overlaid and hidden by what was irrel-
evant. Of all the facts which were presented to us we had to pick just those
which we deemed to be essential, and then piece them together in their order,
s0 as to reconstruct this very remarkable chain of events.”

—Sherlock Holmes, “The Adventure of the Naval Treaty”, A. Conan Doyle,
1893.
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ABSTRACT OF THE DISSERTATION

Biomolecular Interactions Using Machine Learning
by

Joel Robert Bock

Doctor of Philosophy in Bioengineering

University of California San Diego, 2003

Professor David A. Gough, Chair

This thesis explores the automatic prediction of biomolecular interactions using
machine learning. The overriding philosophy motivating these investigations is to model
the interactions between biomolecules (proteins and small-molecule ligands) using simple
features to represent characteristics that are hypothesized to contribute to binding.

For these investigations, I use “support vector” learning to build discrimination
functions that separate input features into classes, resulting in a hypothesis as to whether
or not (or how strongly) the biomolecules will interact. These discrimination functions are
based on training data sets of known interactions.

Individual chapters of the thesis center on different investigations which predict
protein-protein interactions in a multi-species database, within a single organism and across
species. A final study focuses on the prediction of binding free energy between a receptor
and ligand.

An important contribution made by this research is the demonstration that no
explicit information about three-dimensional protein structure is necessary to make pre-
dictions of protein interactions. This implies that researchers may proceed directly from
sequence to inference of protein function, as represented by the context of its interaction

with other biomolecules.

X1v
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Introduction

A  Overview

This thesis explores the automatic prediction of biomolecular interactions using
machine learning. The overriding philosophy motivating these investigations is to model
the interactions between biomolecules (proteins and small-molecule ligands) using simple
features to represent characteristics that are hypothesized to contribute to binding.

Two types of biomolecular interactions are studied: protein-protein, and small
molecule-protein. Predicting protein-protein interactions has important implications for as-
sembling networks of interactions within living cells, which is a step toward understanding
biological processes as integrated systems. Protein-small molecule prediction may some-
day provide the means to target pharmaceuticals to inhibit the activity of key proteins within
signalling networks associated with disease states.

For these investigations, I use support vector machine (SVM) learning to build
discrimination functions that separate input features into classes, resulting in a hypothesis
as to whether or not (or how strongly) the biomolecules will interact. These discrimination
functions are based on training data sets of known interactions.

The following learning concepts are posed as classification and regression prob-

lems, respectively:

e Protein-protein interaction. Given features representing amino acid sequences from

each protein, construct a function indicating if they do (do not) interact.

e Protein-small molecule interaction. Given features representing an amino acid se-
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quence for a protein and a connection table for a small molecule, construct a function

indicating their binding affinity.

An important contribution made by this research is the demonstration that no explicit in-
formation about three-dimensional protein structure is necessary to make predictions of

protein interactions.

B Summary and main results

In silico biological function attribution: a survey. In Chapter 2, a survey is presented
of the scientific literature on biological funétion attribution by computer. For each of the
investigations and methodologies reviewed, I try to present a balanced critical evaluation of
its strengths and weaknesses, by referring to comments provided by peer researchers in this
field. A conceptual classification scheme is proposed to compare and contrast the different
methodologies that have been reported. This scheme separates computational methodolo-
gies into those based on biological versus machine learning hypotheses. This grouping
places the current research in context with other prediction methodologies. It is observed
that machine learning-based approaches to function attribution have been used more fre-
quently in recent years, and it is speculated that this trend will continue as in silico protein
functional assignments mature in reliability, and experimental affirmation of biologically
relevant predictions improves our understanding of which techniques work (and which do

not).

Interactions in a broad database. Chapter 3 represents an intellectual entrée into the
machine learning of protein-protein interactions using strictly amino acid-based features.
The material comprising this chapter was originally published in Bock and Gough, “Pre-
dicting protein-protein interactions from primary structure”, Bioinformatics 17(5):455-460
[25]. In this work, I trained a series of SVMs to recognize pairs of interacting proteins
extracted from a heterogeneous database of experimentally verified protein-protein interac-
tions. The performance of each SVM was evaluated using the inductive accuracy on the
previously unseen test examples as the performance metric. I obtained predictive accuracy
rates in excess of 80% in these experiments. In discussing these results, I note that they must
be interpreted with caution; accuracy as a statistic may be misleading, and there are impor-

tant issues introduced regarding the distribution of positive and negative data examples to
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the learning machine. A central problem is that the distribution of positive (interacting)
and negative (non-interacting) examples are highly skewed in Nature; within a given pro-
teome we suspect that most of these are non-interactions. If the SVM is characterized by a
constant false alarm rate, when faced with data containing only very few true “signals” of
interest, we may observe a large increase in the number of false positive interactions. These
points set the tone for subsequent analyses and the presentation of results in later chapters.

It is concluded that future proteomics studies might benefit from applying this
methodology by proceeding directly from the automated identification of a cell’s gene prod-
ucts to prediction of protein interaction pairs. The method described in this publication has
also been submitted as United States Patent Application #20020090631, “Method for pre-

dicting protein binding from primary structure data”.

Interactions in one species. Chapter 4 further develops this idea, however the objective
here is to predict all of the protein-protein interactions within a single organism. The model
organism subject to investigation is the yeast Saccharomyces cerevisiae. Tradeoffs that
arise between the precision and sensitivity of the protein-protein interaction predictions are
explored, based on results obtained from cross validation experiments on a non-redundant
database. In these experiments, we observe that for certain SVM architectures the equilib-
rium binding of proteins was predicted with a high degree of precision (> 90%), but with
low sensitivity (36%). Therefore, where confidence in positive predictions is high, many
actual protein-protein interactions are not detected by the system. Other architectures pro-
duced classifiers characterized by a sensitivity around 64% and a precision of 68%. In this
context we note again that a constant false alarm rate SVM would exhibit a sharp decline
in precision performance when applied to larger, imbalanced data sets. In such cases the
classifier with the highest estimated rate of sensitivity would be preferred, as the sensitivity
metric, being independent of the rate of false positives, would remain unchanged.

Ideas of the costs associated with different types of incorrect predictions in the
context of protein-protein interactions are introduced. Various sets of amino acid descrip-
tors and SVM architectures are explored in a quasi-receiver operating characteristic (ROC)
space, which provides an analysis of groups of classifiers on (false positive, true positive)
rate coordinates. It is observed that a certain set of amino acid descriptors used to represent
the interacting proteins dominates the ROC-space, providing the greatest level of sensitivity

performance at a given false positive rate. Confusion matrices representing binary classifi-
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cation results using this set of descriptors are presented. Several key issues are discussed,
notably the question of how to properly specify the false negative examples. In addition,
it is observed that without eliminating redundant examples, the apparent sensitivity rate, if
obtained by indiscriminate predictions without redundancy elimination processing, may be
significantly overstated.

These methods and the associated discussion represent an approach toward the
engineering of classifiers that may have practical advantages in future proteomics applica-

tions. This chapter has been submitted for publication and is currently in review.

Interactions across species. Chapter 5 addresses the possibility of generalizing the pre-
diction technique across species. The crux of the idea is to train a system on the known pro-
tein interactions in one species, and infer a comprehensive protein-protein interaction map
of a different, related species. This idea is formalized in terms of an algorithm (the phyloge-
netic bootstrap), which suggests traversal of a phenogram, interleaving rounds of compu-
tation and experiment, to develop a knowledge base of protein interactions in genetically-
similar organisms. The efficacy of this algorithm is demonstrated by building a support vec-
tor learning system based on 1,039 experimentally validated protein-protein interactions in
the human gastric bacterium Helicobacter pylori. A complete protein-protein interaction
network is predicted for enteric pathogen Campylobacter jejuni.

An estimate of the generalization performance of the classifier was derived from
10-fold cross-validation, which indicated expected upper bounds on precision of 80% and
sensitivity of 69%. The recurring theme of problems associated with imbalanced data sets is
addressed in more detail. When making predictions on all possible pairwise combinations
in a different organism, if the classifier is characterized by the same false positive rate esti-
mated from the training data set, the number of false positives would increase significantly.
The precision associated with these predictions would be seriously degraded relative to the
training data. The sensitivity, or true positive rate, would be expected to remain the same.
Predictions made for the “minority class” (here, the interacting protein pairs) would tend to
have a much higher error rate than those of the majority class. An interesting observation
made here is that by extrapolating from the false positive rates observed during training, we
would expect to find a significantly larger number (by a factor of 100) of positive decla-
rations made for the predicted interaction network of C. jejuni. This observation suggests

an interesting avenue for future research into the “needle in the haystack” problem of data
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mining as applied to the biological objectives of this research.

It is further observed that the resulting network of interactions shares an average
protein connectivity characteristic in common with previous investigations reported in the
literature, offering strong evidence supporting the biological feasibility of the hypothesized
map. Specific biological examples of two subnetworks of protein-protein interactions in C.
Jjejuni resulting from the application of this approach are presented, including elements of a
two-component signal transduction system for thermoregulation, and a ferritin uptake net-
work. This chapter has been published in Bock and Gough, “Whole-proteome interaction

mining”’, Bioinformatics 19(1):125-134 [28].

A new method to estimate ligand-receptor energetics. Finally, in Chapter 6 a new
method is proposed to estimate the binding free energy between a small-molecule ligand
and a receptor protein. Using support vector regression, a system was trained to learn the
functional mapping between a set of ligand-receptor features and the total free binding
energy of the complex. Ligand features used are based on the two-dimensional connec-
tivity between constituent atoms and atomic properties. This method potentially provides
the capability for large-scale “virtual screening” of receptors against a library of ligands.
In cross validation experiments, it is demonstrated that objective measurements of predic-
tion error rate and rank-ordering statistics are competitive with several other investigations,
most of which depend on three-dimensional structural data. The size of the sample used
(n=2,671) indicates that this approach is robust and may have widespread applicability
beyond restricted families of receptor types. It is conjectured that this method may be espe-
cially valuable in cases where three-dimensional crystal structures of certain receptors are
not easily obtained. This chapter appears in Bock and Gough, “A new method to estimate

ligand-receptor energetics”, Molecular & Cellular Proteomics 1:904-910 [27].
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II

In silico biological function

attribution: a survey

A Introduction

Protein function is multifarious. Within the cell, proteins assemble into complex
and dynamic macromolecular structures, provide structural support, recognize and degrade
foreign molecules, regulate metabolic pathways, control DNA replication and progression
through the cell cycle, synthesize other chemical species [2], mediate molecular recogni-
tion, organize other proteins within signal transduction cascades [149], and participate in
other important functions. An essential characteristic of protein function is context; most
cellular processes are carried out by multiprotein complexes [72]. Accordingly, an under-
standing of the semantics of protein interaction networks and cellular signalling pathways,
and their correlation with normal and pathological phenotypes has profound implications
for human health. One example of this great potential is in the targeted therapeutic disrup-

tion of disease-related signal transduction cascades [55].

B Assigning function by computer: motivation

Biological function itself is an abstract, complex idea. A reasonable attempt at
defining biological function appears in [102], where it is argued that multiple levels of con-
text are required to adequately express biological function. These levels include intramolec-

ular interactions within the cell, cell-cell, and tissue-organ interactions [102]. Certainly this

6
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concept might also be extrapolated to encompass interactions between any of the sublevels
and the entire organism. “Function” also has a dynamic component, varying both spatially

and over time [3].

We concentrate here on methods of hypothesizing protein biological function in
terms of intracellular protein-protein interactions. A variety of other approaches to func-
tional inference are conceivable (gene-gene, gene-DNA/RNA, gene-protein, protein-small

molecule, protein-epitope), but are not relevant to the present discussion.

Protein function within sequenced genomes can be obtained using experimen-
tal or computational means. Once the expressed protein complement of a genome (the
proteome [199]) is specified, functional assignment may be developed by first elucidating
individual protein-protein interactions, then constructing intracellular signalling pathways

or networks of these interactions.

Experimentally, the identification of protein-protein interactions has been ap-
proached in two ways: (1) genetically, using large-scale systems representing variants of
the two-hybrid assay [65, 188, 91, 161] or (2) biochemically, via, e.g., (a) microarrays
[122, 213, 118], (b) proteomics technologies combined with molecular biological or im-
munochemical techniques to identify protein complexes [127, 210], or (c) in vitro combi-
natorial biology [154]. The cited approaches are by no means exhaustive. The two-hybrid
screen is currently the most viable technique for large-scale characterization of protein in-
teractions in complete genomes [119], but it is well-recognized that it is prone to generate
both false positive and false negative results [172, 196]. In addition, false negative results
might be realized due to protein misfoldings, or to insufficient screening depth [91]. Pro-
tein microarrays face serious technical problems (denaturing, substrate biocompatibility,
uniformity of environment) that must be overcome to scale-up for high-throughput analysis
[118]. Exclusive of microarrays, many of the biochemical methods (affinity chromatogra-
phy, immunoprecipitation) are time-consuming and do not lend themselves to highly par-
allel experimentation. Other, pragmatic concerns with such techniques are the inability to
precisely define constituents of individual protein-protein interactions within a complex of
size > 2, and the detection rates associated with interaction partners present at relatively

low concentrations [196].
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C C(lassification of computational approaches

There is a place for computational analysis to augment nascent experimental
methods in the evolving disciplines of functional genomics and proteomics.

Here, we first provide a synopsis of several classification frameworks previously
advanced to compare and contrast methodologies. This includes discrimination of com-
putational techniques on the bases of (1) homology detection (or its absence), (2) aspects
of genomic context and (3) classical versus reverse proteomics. Next, a new perspective
is proposed, classifying functional assignment methodologies according to the source of
the underlying hypothesis—those generated from biological/evolutionary assumptions and
arguments, or those generated numerically, using machine learning techniques. This point
of view integrates recent investigations published since the appearance of several excellent

reviews on the topic of assigning gene/protein function by computer ([128], [90]).

C.1 Homology vs. Nonhomology

Historically, the most common computational approach has been to compare the
amino acid sequence of an uncharacterized protein to databases comprising (in large part)
proteins whose function has been previously established. If a statistically significant sim-
ilarity is detected, the functional role of the characterized protein may be transferred with
confidence to the new protein. In this approach, sequence similarity is used to infer the
presence of homology, implying “the relationship of two characters that have descended,
usually with divergence, from a common ancestral character” [69]. Fitch [67] proposed
subclasses of homologs (“paralogs”, and “orthologs”) to differentiate between homology
arising from gene duplication events within an organism (e.g., & versus 3 hemoglobin),
and that due to speciation events (¢t hemoglobin in man versus mouse), respectively. The
establishment of orthology between proteins offers a high degree of confidence in at least
approximate functional assignment in this approach.

Homology methods for functional inference nevertheless have limitations. They
fail when an uncharacterized query protein has no homologs in existing databases, or in
cases where significant “hits” are made only to uncharacterized proteins in other organisms
[71]. Also, proteins that are distant evolutionary relatives of the query sequence may be
missed, where only the top-scoring similarity matches are assumed orthologous. More-

over, in [73] the authors observed that homologous enzymes often do not catalyze the same
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reaction owing to divergent evolution, and recommend caution when attempting to assign
function from sequence information alone.

In a previous review [128], Marcotte has classified computational functional as-
signment approaches along the lines of “homology-" and “-nonhomology”-based . In that
work, it was noted that functional information manifested as gene fusion patterns, con-
servation of gene location and other evolutionary information was inherent to sequenced
genomes, and that such higher-order information could be understood through cross-genomic
comparisons, allowing for inference of entire networks of functionally-related proteins. Im-
portantly, is was further argued that these so-called “nonhomology” methods might allow
functional assignment, without the strict requirement for the establishment of homology

with a characterized protein.

C.2 Genomic context

Huynen et al. advanced a delineation of methods based on the notion of the
“genomic context” of the genes for which a functional assignment is sought [90]. Genomic
context methods in the literature were categorized into three distinct types, and compared
against one another in terms of their coverage (i.e., how much of the genome could be
predicted by each type), the relationship between context type and functional interaction
type, and the amount of overlap with homology-based prediction methods.

The three types of genomic context methods reviewed included function predic-
tion using gene fusion events, conservation of local gene context and co-occurrence of
genes across genomes (“phylogenetic profiling”). The authors concluded that detection of
local gene order provided the highest degree of proteomic coverage, and further that by
combining all three methods, reliable functional assignment was possible for 50% of the
genes in the gram-positive bacterium Mycoplasma genetalium. A further finding was that
spatial proximity of two candidate genes was positively correlated with their functional
coupling. Finally, when combining the analysis of genomic context with homology search,

novel functional assignments for 10% of the M. genetalium genome were generated [90].

C.3 Classical vs. Reverse Proteomics

Walhout proposes a taxonomy of proteomics strategies with two main subdivi-

sions: “classical” and “reverse proteomics” [196]. Classical proteomics is analogous to for-
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ward genetics, in that research begins with a genetic screen of the organism (protein extract)
to identify phenotypes (proteins) of interest. Classical proteomics approaches include com-
plex purification, co-immunoprecipitation and others. On the other hand, reverse genetics
(proteomics) starts with the complete set of genomic (proteomic) sequence(s) and proceeds
to design experiments from that position. Reverse proteomics is further partitioned into ex-
perimental and in silico components. The in silico techniques in this scheme (gene fusions,
phylogenetic profiles and “interologs™) will be discussed further in the present survey.

It is argued that the reverse proteomics approach is preferred, since complete sets
of open reading frames (ORFs) can be predicted and cloned into expression vectors (in
the experimental methods), facilitating systematic protein-protein interaction tests, and the

ability to study those proteins expressed at low concentrations [196].

C.4 Biological vs. Machine Hypothesis

We propose a different classification of in silico protein function assignment
methodologies, based on the genesis of the underlying hypothesis facilitating numerical
prediction. The scientific method prescribes three sequential steps: (1) assembling data and
observations on phenomena in a physical system, (2) formation of an hypothesis to explain
the genesis of the observations, and (3) testing the hypothesis. If the hypothesis is valid, i.e.,
if it is consistent with the observations, it has predictive utility regarding future outcomes,
given additional raw data contributing to the observed phenomena. Invalid hypotheses must
be revisited and modified to explain non-corroborating data, or else replaced with a better
model.

In machine learning, computer algorithms are used to seek an unknown concept
or function f that converts data into observations. The objective is to find an hypothesis
h that is similar to this function, based on learning from available data. This is the central
distinction between machine learning and the previously reviewed functional assignment
techniques ([128], [90]); in the latter, hypotheses are formed based on theories regarding
biological evolution, whereas in machine learning approaches, hypotheses are constructed
automatically in computer memory from data examples.

An increasing number of recent investigations adopt the machine learning ap-
proach to predict the functional roles of genes and proteins. In the ensuing survey of the lit-

erature, the various methodologies are grossly classified as representing either “biological-"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

or “machine-generated” hypotheses. This discrimination provides a foundation for exami-
nation of the advantages and disadvantages of these methodologies, and further, emphasizes
the continuing requirement to reexamine hypotheses fundamental to any scientific investi-
gation.

A summary list of the investigations surveyed here is presented in Table II.1.

Hypothesis Method Year | Reference
basis identifier
Biological | Clusters of orthologous groups 97 [184]
Biological Differential genome analysis 98 [89]
Biological mRNA expression clustering 98 [60]
Biological Phylogenomics 98 [58]
Biological Gene proximity 98,99 | [50, 146]
Biological Gene/Domain fusion events 99 [129, 63]
Biological Phylogenetic profile 99 [153]
Biological Hybrid 99 [130]
Biological Interologs 00 [195]
Biological Phylogenetic tree similarity 01 [151]
Machine Text mining 99 [24]
Machine Map topology 00 [172]
Machine Rules mining 00 [105]
Machine SVM mRNA expression 00 [38]
Machine SVM interactions 01,02 | [25, 26]
Machine Correlated sequence signatures 01 [181]
Machine Interacting domain profile pairs 01 [207]
Machine Probabilistic map inference 02 [80]
Machine | Probabilistic domain interactions | 02 [52]
Machine Orthogonal experiments 02 [186]
Machine SVM map inference 03 [28]

Table II.1: Listing of the methodologies covered in this review. In silico functional assign-
ment methodologies are classified according to the source of the underlying hypothesis,
being generated from biological/evolutionary arguments (Biological), or numerically using
machine learning techniques (Machine).

D Survey of methodologies

In this section, we offer a brief summary of each investigation selected for review.

While pure experiments to render large-scale protein interaction networks (e.g., [188, 91,
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161]) are not covered, their vital importance to advancing all in silico techniques, through
the provision of training data and ultimate validation of predictions, is recognized.

In broad terms, each functional assignment methodology class can be criticized
on fundamental grounds. For example, the Biological Hypothesis-based methods may be
biased due to the underlying hypothesis [207], and methods predicting functional linkage
maps often require additional information to interpret the biological nature of an interaction
[166]. On the positive side, the scientific line of reasoning behind the hypothesis is clearly
explicated. Contrast this situation with that of the Machine Hypothesis-based methods,
many of which do not explain how or why they arrive at a hypothesis or particular result
[14]1. This perceived lack of comprehensibility may, however, be associated with a reduced
bias, provided that the training data sets are sampled randomly enough, and the learning task
is properly formulated.

It should be emphasized that success of any computational approach that lever-
ages data from experiment or from existing sequence databases is contingent upon the qual-
ity of that data. This is true irrespective of the source of the hypothesis. For example, as
noted above, two-hybrid experimental approaches tend to create false-positives [172]. Er-
rors in data input to a computer program also produce incorrect or misleading results. Erro-
neous or incomplete functional annotations are still present in existing sequence databases
[33], and will continue to continue to propagate if in silico methods are applied without
further curation of the source data.

For each investigation presently under review, we summarize the underlying con-
cept, its advantages and disadvantages, and the potential scope of the functional predictions.
Related methods are noted, based on conceptual or technical association to the particular
investigation.

The discussion within each hypothesis class proceeds in approximate chronolog-

ical order of year of publication.

D.1 Biological Hypothesis-based Methods

The Biological Hypothesis-based Methods are founded upon observations of pat-
terns observed in genomic or proteomic sequences, and some theoretical statement relating

these observations to evolutionary biology. Included here are computational techniques ex-

Exceptions include rule-based systems, such as [105], which generate readily intelligible rules composed
of the independent variables in a decision task.
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ploiting gene fusion events, gene proximity, similarity of phylogenetic patterns or trees,

orthologous groups, mRNA expression patterns, and others.

Clusters of orthologous groups [184]

Concept: The authors introduced the idea of clusters of orthologs groups (COGS),
which are cross-species gene groups encoding protein families related by vertical
evolutionary descent. The basic concept here is the observation that orthologs in
different species often have the same function, allowing transfer of functional infor-

mation from one member to an entire COG.

Advantage: Orthology between genes provides strong clues for functional assign-

ment.

Critique: (a) Cross-lineage orthology is not necessarily a one-to-one relationship,
since a single gene in species A may correspond to a family of paralogs (similar
by gene duplication) in species B [71]. (b) Even where true orthologous genes are
present, only approximate functional assignment is possible [67]. (c) Coverage is
limited by the detection of orthology, which relies on detection of sequence similarity.
Distantly-related genes may be missed as only the top-scoring matches are assumed

orthologous.
Predictive scope: Single gene or protein.

Related methods: Phylogenetic profile [153].

Differential genome analysis [89]

Concept: A specific phenotype of interest is identified. Genomic data representing
two species (one displaying this phenotype, the other in which it is absent) are com-
pared to one another, and common, homologous genes are systematically removed
from consideration as potential species-specific genes. The result is a disjoint subset
of genes within the organism expressing the phenotype for which functional assign-

ment is made.

Advantage: It is claimed that this technique is “automated and rapidly yields a small
subset of the genome” containing genes responsible for species-specific phenotypes
[89].
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Critique: This technique makes a strong assumption by directly linking a subset of
species-specific genes to an observed phenotype. This ignores the reality that many

functions may be associated with a single gene.
Predictive scope: Groups of genes or proteins.

Related methods: Phylogenetic profile [153]

Messenger RNA expression clustering [60]

Concept: Using data from DNA microarray hybridization, genes with similar expres-
sion patterns are clustered hierarchically. The ”co-expression” hypothesis maintains

that genes of similar function will cluster together.

Advantage: Highly parallel, allowing for large-scale production of mRNA transcrip-

tion and fast numerical analysis.

Critique: (a) Static views of mRNA expression are only useful for quantifying which
genes are upregulated/downregulated at one instant in time. It has been argued on the-
oretical grounds that simultaneous mRNA expression and protein concentration data
are required to enable a complete understanding of the dynamics between genomic
sequence and observed phenotype [83]. This has been borne out experimentally in at

least two different investigations:

i. Anderson et al. [6] found poor correlation between mRNA expression and pro-
tein abundances in human liver tissue, using two-dimensional electrophoresis
to analyze protein levels and transcript image methodology to measure mRNA,

and

ii. Gygi and co-workers [81] showed that correlation between mRNA and protein
levels was insufficient to predict protein expression levels from mRNA tran-

script data in Saccharomyces cerevisiae.

(b) It was recently shown that in Drosophila melanogaster, co-expression occurs
along 10-30 gene blocks of chromosomally proximal genes, accounting for 20% of
the fly genome. These genes are not functionally linked. Therefore, co-expression
does not imply functional similarity [180]. (c) Clustering may work well for strongly

coexpressed genes, but is not necessarily good for other gene groups [128].
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Predictive scope: Genomic scale.

Related methods: SVM mRNA expression [38].

Phylogenomics [58]

Concept: This method postulates that since gene functions change in evolution, a
reconstruction of the evolutionary history of a gene and its orthologs, including in-
formation regarding events such as gene duplications, lateral transfer and gene loss
can be used to infer the function of uncharacterized gene products. This is accom-
plished by overlaying previously determined functions of the orthologous genes onto
the tree, and attempting inference on the function of uncharacterized genes according
to their subfamily location within this phylogenetic tree. “Phylogenomics” combines

genome sequence information and phylogenetic analysis

Advantage: This method extends beyond the analysis of similarities or differences
between genomes, adding information represented by explanations for discrete events

in an organisms’ evolution.

Critique: (a) As with all methods relying on the detection of homology, distant or-
thology may remain unrecognized in the initial alignment used to reconstruct the
phylogenetic tree. (b) Success of phylogenetic methods requires that protein func-
tions change over time with only slight modifications to the corresponding amino
acid sequences [58]. (c) See critiques (a,b) under the heading Clusters of ortholo-

gous groups above.
Predictive scope: Gene family.

Related methods: Clusters of orthologous groups [184], Phylogenetic profile [153].

Gene proximity [50, 146]

Concept: These methods are based upon the assumption that conserved, physically
proximal gene pairs comprise functional linkage between the constituent genes, and
therefore are useful to predict functional coupling between the prokaryotic gene prod-

ucts.
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Advantage: Each of these methods is amenable to semi-automatic processing for

comparison of groups of prokaryotic genomes.

Critique: (a) Indiscriminate application may lead to false predictions: the constraint
of proximity is not strong, and cannot predict interactions between distantly located
genes [63]. (b) Gene proximity is not applicable to eukaryotes, as gene coregulation
is not imposed at genome structure level [63]. (c) Composition of operons is evo-
lutionarily variable, and one cannot count on a particular set of functionally related
genes to always comprise an operon [71]. (d) The method may not extend to eukary-
otes, who lack operons [128]. (e) The genomic coverage under this method is low;
there is a dual requirement to identify orthologs in another genome, and to find those
orthologs collocated along the genome of interest [128]. () See critique (b) under the

heading Messenger RNA expression clustering above.

Predictive scope: Subset of genome for which proximal genes are functionally cou-

pled.

Gene/Domain fusion events [129, 63]

Concept: These methods advance the hypothesis that distinct proteins which func-
tionally interact in one organism may appear as fused together within another, multi-
domain protein (the “Rosetta Stone” protein [129]) that is expressed in a different
organism. Recognition of such fused proteins is used to infer the functional coupling

between the two distinct proteins represented within the observed domain fusion.

Advantage: The methods are capable of predicting functionally linked proteins as

well as physical protein-protein interactions.

Critique: (a) The methods are prone to false negatives; mechanisms other than Rosetta
Stone may be involved in protein-protein interactions, such as gradual accumulation
of mutations to evolve a binding site [129]. Also, the artifact of the fused protein may
have disappeared during evolution so none exists to point to a potential interaction
between other proteins. (b) False positives may be realized in cases where domains
are fused but not interacting, or due to the inability to discriminate between bind-
ing/nonbinding homologs [129]. (¢) “Promiscuous domains” tend to combine with

variety of other domains, creating false positives. It must be shown that stand-alone
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counterparts of Rosetta stone protein’s components are indeed orthologs (versus par-
alogs), or else false positives increase significantly. Non-orthologous gene displace-
ment (NOGD) events are common [71]. (d) The method reported in [63] has been
criticized for lack of coverage, as only 64 interactions in 3 bacterial genomes were
presented [151]. A similar criticism was made regarding the Rosetta Stone method.
For Escherichia coli K-12, a proteome containing (at that time) more than 4,200
proteins, only 749 interactions were found after removal of suspected false positives

[151].

Predictive scope: Subset of proteome for which fusion events are observed.

Phylogenetic profiles [153]

Concept: The “phylogenetic profile” of a given protein describes the presence or
absence of homologous proteins appearing across organisms. The hypothesis is that
functionally linked proteins evolve in a coordinated manner. Therefore, functional
associations may be inferred between a pair of proteins observed to frequently co-
exist (across genomes) within a structural complex or metabolic pathway. If function
annotation for one of the proteins is at hand, then strong clues as to the function of
the second protein are provided. The profile for a protein sequence consists of a bit
string indicating its homologs across organisms (here, 16 genomes were used, and

predictions were made for protein functions in E. coli).

Advantage: Information contained within the profiles will increase as more genome
sequences are obtained. Presumably this will increase the method’s expressive power

and applicability to organisms beyond the prokaryotes.

Critique: (a) Like the Gene/domain fusion techniques, the utility of this methodology
may be confounded by partial redundancy in gene functions, non-orthologous gene
displacement, horizontal gene transfer and lineage-specific gene loss [71]. (b) See

critique (c¢) under the heading Clusters of orthologous groups above.
Predictive scope: Proteome-wide.

Related methods: Differential genome analysis [89], Clusters of orthologous groups
[184]
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Hybrid [130]

Concept: In this investigation, the authors report a hybrid analytical method that
combines phylogenetic profiles [153], mRNA co-expression [60] and domain fusion
events [129] to predict a large-scale “functional linkage” map in S. cerevisiae. This
map was augmented with experimental and functional annotation data from several
protein interaction and mRNA expression databases. The connections within this
map enable inference on uncharacterized proteins when linked to proteins of known
function. Varying degrees of confidence in these inferences are assigned based on the
methods used to generate the pairwise protein interactions comprising the character-

ized nodes.

Advantage: Combining different methods can reduce bias, and improve the reliability

of predictions made in this hybrid methodology.

Critique: (a) The presence of connections in the map derived from this method may
not necessarily be equated with functional prediction. It is noted that only 15% “high
confidence” functional links found. Even these are ambiguous; spurious interactions
may reflect a high degree of conservation of some proteins, perhaps resulting in sim-
ilar phylogenetic profiles [71]. (b) Overlap of predictions with a functional linkage
map developed in an independent study on S. cerevisiae [172] is constrained to the

15% “’high quality” predictions.
Predictive scope: Proteome-wide.

Related methods: Map topology [172).

Interologs [195]

Concept: This method proposes an extension of the idea of searching across species
for orthologous proteins to orthologous interactions. “Interologs” are inferred as
follows: two proteins, say A and B, are observed or known to physically interact in
species S;. It is postulated that their respective orthologs (A’,B') in another species
S, also interact, due to conserved co-evolution. Then (A/ — B') and (A — B) are said to

be the interologs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



19

Advantage: Interologs present a powerful and expressive technique for functional

inference across organisms on a proteome-wide scale.

Critique: The same criticisms applied to other orthology based methods (above) are

relevant here.
Predictive scope: Proteome-wide.

Related methods: Clusters of orthologous groups [184], Phylogenetic profiles [153],
Phylogenetic tree similarity {151]

Phylogenetic tree similarity [151]

Concept: This investigation measures the similarity (distance) between phylogenetic
trees, taken to indicate degree of correlation between the distance matrices used to
build the trees. This in turn is used to predict interactions between sequences of
associated protein families. The hypothesis is that phylogenetic trees of interact-
ing proteins reflect their coordinated evolution, in particular the similar evolutionary
pressures applied to all elements of a given molecular complex. A near proteome-
scale set of protein-protein interaction predictions in E. coli was carried out, resulting
in 2,700 putative interactions. It is asserted that pairs of interacting proteins can be
correctly predicted at a true positive rate > 66%, where the numerical value of this

correlation index exceeds a certain threshold.

Advantage: Potentially, this method is capable of proteome-wide predictions. It is
not predicated on the presence of fully-sequenced genomes, rather only requires data

regarding protein families.

Critique: (a) Coverage using phylogenetic tree similarity is limited, as only 2,700
interactions were inferred from an initial alignment of 4,300 proteins representing the
E. coli proteome. (b) Predictive success is very susceptible to quality of the multiple
sequence alignments used to infer tree similarities. In particular, poor alignments

adversely impact the false positive rate of the predictions [151].
Predictive scope: Proteome-wide.

Related methods: Clusters of orthologous groups [184], Phylogenomics [58], Phylo-
genetic profiles {153]. '
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D.2 Machine-Hypothesis Based Methods

Machine-generated hypotheses implicitly model biological function by learning
patterns inherent in data. Applications may be formulated as machine learning tasks using
a variety of techniques, including decision trees, neural networks, support vector machines,

Bayesian inference, statistical estimation, and clustering algorithms.

Text mining [24]

Concept: The text mining system described in this report automatically detects protein-
protein interaction information from textual abstracts found in the literature. Sen-
tences culled from sets of abstracts relating to a subsystem of interest are used to
analyze patterns of frequently-occurring keywords relating to proteins and their mu-
tual interaction. The trained system infers functional interactions and may be used to
reconstruct the topology of interaction networks. An example reconstruction of the

Toll and Pelle system in D. melanogaster identified 8 of 9 interactions correctly.

Advantage: Several different applications are proposed for this methodology, includ-
ing functional annotation of genomes, automated database curation and prediction of

macromolecular interaction networks.

Critique: (a) The success of the text mining system is dependent on the frequency of
words and their linguistic context, and therefore may miss interactions that are novel
or sparsely reported in the literature. (b) The heterogeneity of language comprising
published scientific discourse is a significant challenge to the widespread applicabil-
ity of such techniques. (c) Coverage for complex interaction networks is insufficient;
for the D. melanogaster cell cycle control system, only 33 of 91 available proteins
were identified as “significant” by the system [24]. (d) The authors note a tendency
for the system to insufficiently discriminate between biologically significant interac-

tions and other, insignificant results mentioned in the source text.

Predictive scope: Pathway or network.

Map topology [172]

Concept: The approach used in this investigation is to construct a graph of experi-

mentally confirmed protein-protein interactions, in this case the baker’s yeast S. cere-
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visiae. Noting that proteins of like function and subcellular location tend to co-locate
within this network, one can postulate novel functions for proteins based upon their
linkages to characterized proteins. The reliability of the network was evaluated by
testing its ability to correctly predict the functions of characterized proteins. The
authors observed correct function predictions at rate of 72% for 1,393 proteins, com-

pared to a rate of 12% correct for randomized links.

Advantage: This method has the ability to infer new functional interactions, from
local subnetworks up to proteome-wide scale. This is accomplished using only in-
complete knowledge of protein-protein interactions within the organism under con-

sideration.

Critique: (a) It is difficult to evaluate the plausibility of predicted interactions among
proteins of different functional classes. There could be false-positives, crosstalk inter-
actions, or interactions with related pathways. Further, an “implausible” interaction
may in fact represent a false negative decision in a related pathway [187]. (b) The
quality of the input data determines an upper bound on the quality of the functional

prediction. See the discussion in Section D.
Predictive scope: Proteome-wide.

Related methods: Hybrid [130].

Rules mining [105]

Concept: The idea behind this investigation is that a properly constructed discrim-
ination function might be able to directly convert amino acid sequence to protein
function. The authors describe a hybrid machine-learning architecture integrating
clustering and a decision tree algorithm (C4.5; [160]). They construct a database
of genes labelled using known functional assignments for the bacterium Mycobac-
terium tuberculosis. For each record in this database, a set of descriptors were de-
veloped, being computed from the encoded amino acid sequence alone. These de-
scriptors included singlet and doublet residue runs, organism phylogeny, annotation
keywords, amino acid sequence length and gene molecular weight. The descriptor-
supplemented database was then “mined” by randomly splitting its records into three

parts; 2/3 were used to generate prediction rules, and the 1/3 partition was held aside
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to test the predictive accuracy of these generated rules. In addition, the rules were ap-
plied to genes of unknown function for novel inference. New functions are assigned

to 65% of test genes comprising “‘unknown” or “hypothetical” classes.

Advantage: Relying only on protein sequence based features to construct the dis-
crimination rules, such systems may provide a means for function prediction on a
proteome-wide scale in the face of negligible sequence homology, and without the
requirement for information regarding three-dimensional conformation. The gen-
erated rules are comprehensible by humans, a decided benefit to experts using the

output of the system to design experiments or annotate databases.

Critique: There is insufficient information in the presented results to fully evaluate
the predictive acuity of the method. Accuracy results presented indicate 76% average
correctness on test data, however this rate apparently applies to only 1% of the data.
Lower rates (62-65%) were reported for larger numbers of predictions. The most
voluminous group also shows that simply selecting the most populous class would be

correct 48% of the time.
Predictive scope: Proteome-wide.

Related methods: SVM interactions [25, 26].

SVM Messenger RNA expression [38]

Concept: This work reports an application of supervised learning which maps DNA
microarray gene expression patterns to a functional classification. A support vector
machine (SVM) is trained to discriminate between sets of genes comprising disjoint
functional classes, and this machine is subsequently used to predict the functions
of uncharacterized genes. To demonstrate, expression data from 2,467 S. cerevisiae
genes, representing 79 different hybridization experiments are used to train the sys-
tem to recognize patterns associated with five different functional classes. Five of
the six classes were chosen because of their similar expression profiles, and the sixth
(helix-turn-helix proteins) was selected as a control group, as it was believed that
proteins within this class are not similarly regulated. For each of the five learnable
classes, an SVM was trained to recognize members/non-members of that class, and

predictions were made for a total of 3,754 genes. Three-fold cross-validation was

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

used to evaluate functional prediction performance. Functional prediction for 15

yeast ORFs of unknown function are presented.

Advantage: The advantages of SVM accrue to this investigation: sparse representa-
tion of large data sets, implicit nonlinear mapping from mRNA expression to high
dimensional feature space representing protein function, noise rejection characteris-

tics, and relatively rapid numerical convergence.

Critique: A systematic error in correct identification of certain protein functional
classes was observed [38]. False positives may have occurred due because database
annotation identifies protein complex members via biochemical co-purification, but
the expression experiments highlight functional relation without the protein necessar-
ily being physically connected. False negatives were negatives were attributed to (i)
differences in database classification (by structure) versus the SVM learning, based
on cell genetic response; (ii) differences in regulation context between DNA mi-
croarray (transcriptional) and genes that may be regulated by posttranslational mech-

anisms; (iii) genes corresponding to corrupt microarray data.
Predictive scope: Genome-wide.

Related methods: Messenger RNA expression clustering [60].

SVM interactions [25, 26]

Concept: In these investigations, the authors formulate the mapping from amino acid
sequence to function (as represented by protein-protein interactions) as a classifica-
tion problem. This problem is solved using a support vector machine that learns to
discriminate features within interacting protein pairs. Significantly, these features
are computed only from physicochemical properties of the amino acid sequences.
The labelling of these feature vectors is a binary, according to the interaction class
membership (interacting, or non-interacting) of the constituent proteins. In [25],
positive examples from a multiple-species database of protein-protein interactions
([209]) were combined with negative examples generated by randomizing sequences
from the database at large to generate “native-like” features. Partitioning the data sets
into roughly equally sized sets of 2200 training and 2200 testing examples, several

SVMs were trained and tested. The inductive accuracy (no. of correct predictions as
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a percentage of total predictions) averaged > 80%. In [26], the focus is on a single
organism, S. cerevisiae, and here negative example data are constructed by randomly
sampling the balance of the yeast proteome. In 10-fold cross-validation testing, pro-
tein binding was predicted with a precision of 90% and inductive accuracy of > 70%,

at the expense of low sensitivity (about 36%).

Advantage: These investigations detail a methodology that allows for the direct pre-
diction of protein function, strictly using features computed from the amino acid se-
quence. All that is required to implement this approach is a set of confirmed protein-

protein interactions and the proteomic sequences for the organism of interest.

Critiqgue: This method is data-driven, and confidence in the resulting predictions
depends on the quality of the experiments and associated annotations forming the

foundation for the machine hypothesis.
Predictive scope: Proteome-wide.

Related methods: Rules mining [105].

Correlated sequence signatures [181]

Concept: The method analyzes the mutual information between amino acid sequences
comprising paired interacting proteins. Frequently occurring sequence-signatures,
called “correlated sequence-signatures”, are taken as characteristic motifs that are
learned and used to detect interactions between other proteins of uncharacterized
functional activity. Using a database of 1,274 experimentally determined interact-
ing protein pairs in S. cerevisiae, signatures were constructed from regular expres-
sions, profiles, fingerprints and hidden Markov models of the InterPro database [10].
The database proteins were characterized by 434 sequence-signatures. Leave-one-
out cross validation testing on an small subset (40 proteins) indicated a sensitivity of
94%, however this subset was selected because of its favorable mutual information

characteristics, introducing bias into this test.

Advantage: This method is easy to implement numerically, and lends itself to au-

tomation.
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Critique: Based on the sparsity of presented results, it is unclear whether that pro-
teomic coverage may be inherently limited using this methodology. This may be the
result of insufficient training data, as the authors state that only 50% of interacting

yeast protein signatures had corresponding classifications within the source database

Predictive scope: Proteome-wide.

Interacting domain profile pairs [207, 206]

Concept: This work presents a method for transferring information contained in a
complete protein-protein interaction map from a source species Ss to a target species
St. This facilitates predictions of a complete set of interactions in Sy. The central
method combines experimental protein interaction, interaction domain and sequence
data with homology search and clustering techniques. The key step is to construct
an intermediate map of domain-protein interactions, expanding the inference space
to include clusters of multiple interactions with a given conserved domain. After a
correspondence between this interaction map and the target proteome, novel inter-
actions are inferred. The method was demonstrated by developing a correspondence
between a source organism, Helicobacter pylori, and a target organism, E. coli. 1,524
known interactions in H. pylori were used to construct a domain interaction map with
1,568 vertices and 1,810 edges. Finally, 881 interactions were predicted for E. coli,

connecting about 10% of the proteome.

Advantage: Interaction domain profiles appear to provide interaction predictions at
low levels of sequence similarity, such that they may be missed altogether by se-
quence similarity techniques. Further, it is argued that including domain information

reduces false positives due to multi-domain proteins using other methods.

Critique: The method is very strongly reliant on a complete, accurate and detailed

reference data set [207].
Predictive scope: Proteome-wide.

Related methods: SVM map inference [28], Probabilistic map inference [80]
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Probabilistic map inference [80]

Concept: This report proposes assembling a statistical model of a network of in-
teracting proteins, based upon experimentally verified interactions and estimates of
interaction map topology. In this approach, a posterior probability can be assigned
to novel predicted interactions. The map model is constructed as a graph where ver-
tices represent proteins and edges denote physical binding between the intersecting
nodes. Edge probabilities are assigned by analysis of the binding propensities of the
constituent domains located on the two proteins linked by the edge. The probability
of binding between domains on two edge-linked proteins is estimated by frequency
analysis of experimental protein-protein interactions and their constituent domains.
Network topology is also assigned a probability, depending on the distribution of
edges into and out of each vertex. Biologically realistic topologies are given a higher
probability of occurrence. Yeast (S. cerevisiae) and Homo sapiens protein interaction
data were aggregated from various online databases into a single training data set.
For yeast, 708 interactions were represented, and the human component comprised
778 interactions. Novel predictions were attempted on a set of 40 human proteins

from a known network involving apoptosis, not part of the training data.

Advantage: Probabilities are assigned to edges, subnetwork and full network topolo-
gies. The Bayesian framework integrates all types of data into the predictions. The
general approach is not limited to protein-protein interaction networks; nucleic acids

and small molecules may in principle be analyzed in a similar way.

Critique: While theoretically well-grounded, the predictive accuracy of the system
as demonstrated is unacceptable. (a) Out of 97 edges (interactions) declared by the
system, 8 of 44 true interactions present in the test data were correctly predicted with
probabilities exceeding pure chance (> 0.5). This means that the false negative rate
exhibited within the predictions is quite high. (b) At the same time, there are appar-
ently 53 false positives. Some of the difficulty may be due to the lack of adequate
domain data associated with the interactions in the training set; for yeast, 40% of the

interactions lacked domain annotation.
Predictive scope: Proteome-wide.

Related methods: SVM map inference [28], Interacting domain profile pairs [207]
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Probabilistic domain interactions [52]

Concept: A maximum likelihood approach is used to predict domain-domain interac-
tions based on data sets of protein-protein interactions and the analysis of their sub-
domains. The authors consider the prevalence of erroneous experimental data points
in forming individual domain-domain interaction probabilities. The accuracy of this
method is evaluated by predictions of protein-protein interactions in S. cerevisiae,
combining interaction data collected in two independent, large-scale two-hybrid ex-
periments [91, 188]. Reported results achieved were 39% specificity and 80% sensi-

tivity. Novel protein-protein interactions are generated by the model.

Advantage: (a) The highest confidence predictions under this method can be ranked
according to their expected probability of occurrence. (b) The false positive and false
negative rates of experimental two-hybrid protein interaction assays are incorporated
in a principled way. This provides a means to estimate the confidence individual

predictions given error rates characteristic of an experimental protocol.

Critique: (a) The model assumes that domain-domain interactions are independent.
Interaction between protein domains may depend on the presence of other domains
in the same protein, or on environmental factors [52]. (b) No dynamics are present in
this model. Domains present on two proteins are assumed to interact, without regard
to time differences in their respective expression that may be present biologically
[52].

Predictive scope: Proteome-wide.
Related methods: Interacting domain profile pairs [207], Probabilistic map inference
[80]

SVM map inference [28]

Concept: In this investigation, the authors expand upon the SVM interactions method
[25, 26], proposing a combined computational-experimental framework for proteome-
scale protein-protein interaction prediction. This framework is distilled into an algo-
rithm the “phylogenetic bootstrap”), which suggests traversal of a phenogram, in-

terleaving rounds of computation and experiment, to develop a knowledge base of
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protein interactions in genetically-similar organisms. The approach uses analogy
between the proteomes of two closely related organisms to predict protein-protein
interactions. A “template” or design organism provides a network of experimentally
derived interactions, and this pattern is used to infer the structure of an interaction
network in a related organism. The approach is demonstrated by training a series
of SVMs on interaction pairs representing H. pylori, and a complete, novel protein-
protein network is inferred for a related bacterial organism, Campylobacter jejuni.
10-fold cross-validation testing during the training indicated expected upper bounds
on precision of 80% and sensitivity of 69% when applied to related organisms. Spe-
cific biological examples of two predicted subnetworks of protein-protein are pre-

sented and discussed.

Advantage: See advantages under the heading SVM interactions above.
Critique: See critique under the heading Interacting domain profile pairs above.
Predictive scope: Proteome-wide.

Related methods: Interacting domain profile pairs [207], SVM interactions [25, 26].

Orthogonal experiments [186]

Concept: The research reported here combines two different experimental approaches
with computational prediction to study protein-protein interactions. Their are four
steps described in this investigation. (1) Libraries of peptides are randomly screened
using phage display, identifying consensus sequences for cognate ligands to each pep-
tide recognition module (here, SH3 domains) in yeast. (2) Search the yeast proteome
with the consensus sequences as the query sequence. Find potential native ligands
to the peptide recognition modules. Create an in silico interaction network connect-
ing these SH3 domains to other proteins in the organism of interest which contain
cognate ligands. (3) Using yeast two-hybrid screens, derive an experimental protein
interaction network, testing 18 different SH3 domain proteins against the proteome
represented computationally in the previous step. (4) Find the overlap between the in

silico and experimental networks.

Advantage: (a) Both phage-display and two-hybrid analysis use full genomic infor-

mation [186]. (b) The experimental approaches are orthogonal; phage-display uses in
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vitro binding and short synthetic peptides, while two-hybrid uses in vivo binding and
native proteins. This orthogonality removes systematic errors unique to each method
[75]. (c) Integrating data from orthogonal sources can identify new relationships, e.g.

between gene expression and subcellular localization [75].

Predictive scope: Genome-wide.

E Conclusions

This survey has covered techniques for the prediction of protein function by com-
puter that are wide-ranging in their assumptions, hypotheses, reliability and scope. Our
classification of methodologies into two conceptual groupings, “Biological Hypothesis-
based” and ‘“Machine Hypothesis-based”, reflects fundamental differences between the two
approaches. A quick review of the publication dates listed in Table II.1 indicates an increas-
ing preponderance of machine learning approaches in recent years. This trend is expected
to continue, as in silico protein functional assignments mature in reliability, and experimen-
tal affirmation of biologically relevant predictions improves our understanding of which
techniques work (and which do not). |

As these methods mature, they will continue to concentrate and drive experimen-
tal proteomics technologies. We anticipate the appearance of integrated technology plat-
forms which synthesize machine learning prediction techniques with protein microarrays
[122, 213, 118]. Under robotic control, such a system could be used to automate predic-
tion, experimental validation, and subsequent refinement of key parameters of the machine
learning hypothesis generators. Perhaps the vision of machine learning enabling “partial
automation of every element of scientific method, from hypothesis generation to model
construction to decisive experimentation” [135] is not distant in the future.

The long-term scientific objective of describing and understanding intracellular
protein function remains a substantial challenge. Complete understanding reaches beyond
the plateau of protein interaction networks, to include knowledge of “transcriptional, trans-
lational and posttranslational regulation, binding constants, structures, protein interactions
and cellular networking” [187]. Moreover, protein interaction networks have a spatiotem-
poral aspect that must be explained. Details are needed regarding which proteins interact

within dynamic complexes, and at what concentrations they interact, given a certain cellular
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Interactions in a broad database

A Introduction

The interaction between proteins is fundamental to a broad spectrum of biologi-
cal functions, including regulation of metabolic pathways, immunologic recognition, DNA
replication, progression through the cell cycle, and protein synthesis [2]. Whether or not
two proteins will bind to form a stable complex that is prerequisite to biological function
is dependent on the three-dimensional conformations of the proteins [97]. For a given con-
formation, the chemical reactivity of an individual protein is defined by the type and spatial
orientation of surface-accessible amino acid side chains. Conformation therefore deter-
mines protein-ligand binding. In biology, it is virtually axiomatic that “sequence specifies
conformation” [8], suggesting a provocative postulate: knowledge of the amino acid se-
quence alone might be sufficient to estimate the propensity for two proteins to interact and
effect useful biological function.

The science of proteomics endeavors to elucidate the structures, interactions and
functions of all of a cell’s or organism’s proteins [9], with the objective of understanding
cellular processes and networks and, ultimately, disease processes at the protein level [23].
Current technology for cataloging the proteins contained within a cell involves (1) separa-
tion via 2-D gel electrophoresis or liquid phase chromatography, followed by (2) identifi-
cation using tandem mass spectrometry [54, 175]. Experimental techniques such as two-
hybrid screens [65] are often employed to study dynamic interactions between the identified
cellular proteins [17, 188]. As such techniques are “tedious, labor-intensive and potentially

inaccurate” [63], investigators have recently been prompted to seek computational methods
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to predict whether or not two proteins will interact. Previous research groups have presented
predictive methodologies based various principles, including correlated changes in amino
acid sequence between interacting protein domains [150]; using genomic context to infer
functional protein interactions between the gene products [90]; or inference from genome
sequences, given observed homologies in other organisms, where interacting proteins have
fused into a single protein chain [129, 63]'.

Earlier prediction techniques were focused on estimating the site of interaction,
without reference to specific binding partners. These methods utilized features and proper-
ties related to interface topology, solvent accessible surface area (ASA) and hydrophobicity
[98], or the recognition of specific residue or geometric motifs [106, 144]. Antigenic deter-
minant sites in proteins were predicted using hydrophilicity profiling methods presented in
[87, 204].

In contrast to the cited investigations, the methodology reported herein takes an
entirely different approach to computational prediction of protein interactions. Given a
database of known protein-protein interaction pairs, a machine learning system is trained to
recognize interactions based solely on primary structure and associated physicochemical
properties. Generalization of results obtained by the system upon introduction of unseen
testing sequences is encouraging, given the volume of the data set. Future proteomics stud-
ies may benefit from this research by proceeding directly from the automated identification
of a cell’s gene products to prediction of the protein interaction pairs.

The success of the new methodology is based on the automatic recognition of
correlated patterns of sequence and substructure in the interacting pairs. These patterns
typically comprise a small number of functional residues in each protein [43].

Complete proteomic functional assignment requires the identification and quan-
titation of all contributors to dynamic multi-protein complexes. Many molecular signal
transduction processes are regulated by the intermediary characteristics of discrete protein
recognition “domains”, evolutionarily-conserved modules of amino acid sequence found
in catalytic proteins, as well as on scaffold, anchoring or adaptor proteins [149]. Protein
interactions are frequently mediated by these domains, each of which bind to specific pep-
tides. Such interactions form the basis for structural and functional organization within cells

[148].

LA number of other approaches taken by investigators to predict protein interactions are summarized in
Chapter II of this thesis.
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Protein domains are often observed across genomes of multiple species [18].
While certain discrete enzymatic signaling domain families are common to all three di-
visions of cellular life, many non-enzymatic eukaryotic signaling domains with prokaryotic
homologues have been identified [158]. Important examples include the SH3 (50 a.a) and
PDZ (90 a.a) domains [64, 149]. Other domains organize into larger structural domains
or families, subsequently facilitating the assembly and interaction of other proteins. For
example: the tetratricopeptide repeat domain (TPR; 34 a.a.) forms a superhelical structure
with an amphipathic groove for binding protein targets, and mediates protein-protein inter-
actions [51]. B-propeller superstructures are a common motif, comprising, e.g., NHL repeat
domains (45 a.a) found on proteins involved in mediating activity of lentiviral Tat proteins
in vivo [70], and WD40 repeat domains (40 a.a.) on G-proteins, important regulators of a

host of cellular functions [142].

B System and Methods

The protein-protein interaction prediction method is described in this section.

B.1 Database of interacting proteins

Protein interaction data were obtained from the Database of Interacting Proteins
(DIP; http://dip.doe-mbi.ucla.edu/). At the time of the original investigation
as reported in [25], DIP contained 2,664 records; it currently comprises 18,059 entries
representing pairs of proteins known to mutually bind, giving rise to a specific biological
function. Each interaction pair contains fields representing accession codes linking to other
public protein databases, protein name identification and references to experimental liter-
ature underlying the interactions. Alternative fields include protein interaction domains,
superfamily identification, interacting residue ranges, and protein-protein complex dissoci-
ation constants.

The representation of the various biological superkingdoms in the DIP database is
heavily biased towards the Eukaryotes. Table III.1 lists the top 95% most-frequently occur-
ring organisms and their kingdom membership. Note that the budding yeast Saccharomyces
cerevisiae accounts for 64% of the interactions, which are readily accessible online [188].

The bacterium Escherichia coli constitutes the most frequent non-eukaryote proteome, yet
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accounts for only 1.3% of the proteins found in the database.

On the molecular level, the protein interaction substructural domain coverage
within DIP is diverse. Submitting the protein sequences to the Protein Families Database
[18] of protein domains and profile hidden Markov models (Pfam v. 5.5; URL: http://
pfam.wustl.edu/), we estimated that at least 1,394 distinct domains are represented.
Table B.1 lists the most frequent protein domains found in DIP, using a sequence E-value
cutoff level of 1.0. A histogram portraying the distribution of all protein sequence lengths
within the database is presented in Figure IH.1. The mean and standard deviation of amino

acid chain lengths are 481 and 386 residues, respectively.

| Organism | Superkingdom [ Frequency |
S. cerevisiae Eukaryota 0.639
H. sapiens Eukaryota 0.184
Mus musculus Eukaryota 0.049
D. melanogaster Eukaryota 0.033
R. norvegicus Eukaryota 0.020
E. coli Bacteria 0.013
Bos taurus Eukaryota 0.012

Table I1II.1: Organism representation by proteins found in the DIP database, circa January
2001. Frequency expressed as fraction of total number of occurrences of each organism.
The top 95% most frequent organisms are listed. Number of interactions n = 2, 664.

B.2 Support vector machine learning

The new protein-protein interaction estimator utilizes the technique of *“‘support
vector” learning, an area of statistical learning theory subject to extensive recent research
([191, 169]). A selection of recent bioinformatic investigations utilizing Support Vector
Machine (SVM) learning includes [39, 92] and [214]2. Useful for function approximation,
signal processing and regression, SVM has several advantages as applied in the present

context:

1. SVM generates a representation of the nonlinear mapping from residue sequence to
high-dimensional protein feature space [14] using relatively few adjustable model

parameters.

2Additional  references may be found online at http://www.support-vector.net/
bioinformatics.html.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



35

[ No. ] Domain | Frequency |
1 WD40 0.056
2 pkinase 0.030
3 TPR 0.028
4 zf-C2H2 0.018
5 Armadillo_seg 0.016
6 EGF 0.016
7 HLH 0.013
8 spectrin 0.013
9 bZIP 0.011
10 ank 0.011
11 rrm 0.009
12 SH2 0.008
13 SH3 0.008
14 Sm 0.007
15 ras 0.007
16 fn3 0.007
17 PHD 0.006
18 efhand 0.006
19 | myb_DNA-binding 0.006
20 arf 0.006

Table II1.2: Most frequent protein domains in the interaction dataset. Frequency expressed
as fraction of total occurrences of each domain. Prediction using the Protein Families
Database (Pfam v. 5.5 [18]).

2. Based on the principle of structural risk minimization, SVM provides a principled
means to estimate generalization performance via an analytic upper bound on the
generalization error. This means that a confidence level may be assigned to the pre-
diction, and alleviates problems with overfitting inherent in neural network function

approximation [85].

3. SVM is readily adaptable to new data, allowing for continuous model updates in

parallel with the continuing growth of biological databases.

4. An additional benefit is the fact that SVM is a deterministic algorithm—for a given
training data set and SVM configuration, the same test data classification is derived
from the solution to the quadratic optimization problem. This provides a means to
systematically compare different SVM architectural parameters and protein features.

In contrast, stochastic classification algorithms by their nature will not necessarily
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Figure II.1: Distribution of protein sequence lengths in database. At least 1,394 distinct
interacting domains are represented. u = 481 £ 386 residues.

produce the same answer on successive processing runs.

In the present research, we train an SVM to recognize pairs of interacting pro-
teins culled from the DIP database. The decision rules developed by the system are then
used to generate a discrete, binary decision (“+”=> proteins interact; “—"= no
interaction) upon the introduction of a new feature set based on primary structure of
the putative protein interaction pair.

Appendix B contains a description of the main ideas behind the support vector
machine, including a graphical view that may enhance the reader’s intuition of SVM. This
appendix also provides a summary of the equations which represent the optimization prob-

lem that is solved during SVM training.

Computational complexity of SVM

There are costs and benefts associated with any given machine learning algo-
rithm [53], and SVM is no exception to this rule. It is known that solving the quadratic
programming problem arising during SVM training involves a matrix of dimension equal
to the square of the number of training examples / [95, 103, 157]. For large classi£cation

problems, storing this matrix in memory may be prohibitive.
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For the protein-protein and protein-ligand interaction problems as posed in this
thesis, at most several thousand positive examples are available for any given organism.
The number of negative examples is expected to be significantly larger. To make the present
SVM approach feasible in terms of computing time, all of the potential negative examples
should not be used in training; only a small sample of the negative interaction pairs are used
in training a system>. The SVM training time for most of the experiments was on the order
of tens of minutes on a Pentium IV class personal computer.

As positive protein interaction data accumulate in the experimental literature, or
the entire set of (assumed) negative interaction pairs are to be included in the training set,
online SVM training algorithms [44] or alternative machine learning techniques might be
considered.

It is the mapping onto a high-dimensional feature space that allows SVM to learn
patterns of amino acid sequence that are correlated with the potential for interaction between
two proteins. Extremely complex interactions between attributes are represented. Here,
input vector dimensions were on the order of 300 numbers. Using SVM kernel polynomials
of orders 2—5, the SVM decision function is constructed in a huge dimensional feature
space, at the cost of dot products in the input space dimensions. Although the number
of data points may cause a training time bottleneck, the feature space dimension can be
effectively infinite [170]. Therefore a trade between time complexity and profundity of

representation exists.

B.3 Feature representation

The problem of feature selection is to find a set of salient attributes to represent
the concept that is to be learned [96]. There are literally hundreds of different metrics of
residue properties available in the literature that may have been selected to represent amino
acid features to the learning algorithm. One listing of the possibilities can be found online
at http://www.genome.ad.jp/dbget/AAindex/list_of_indices. Due to
the myriad possibilities, it is infeasible to search for an “optimal” set of numerical features
that will produce the best classifier of protein interactions. Even if such a set of features

existed, and was identified after exhaustive search, it is arguable whether or not the marginal

3Cauwenberghs and Poggio [44] describe an online version of the SVM algorithm that in principle could be
trained on a comprehensive set of negative interaction pairs. Their algorithm is incremental, retraining on all
previous data as each new data point is introduced.
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improvement in predictive performance accrued would be worth the significant cost of time
and computing resources.

Here, attributes representing residue charge, hydrophobicity, and surface tension
were selected. For each amino acid sequence of a protein-protein complex, feature vec-
tors were assembled from encoded representations of tabulated residue properties including
charge, hydrophobicity, and surface tension for each residue in sequence. This set of fea-
tures was motivated by the previous demonstration of sequential hydrophilicity profiles as
sensitive descriptors of local interaction sites [87]. This concept was extended presently to
integrate sequential charge and surface tension, as water molecules influence atomic pack-
ing for shape complementarity, and mediate polar interactions at protein-protein recognition
sites [121]. Our postulate is that since sequentially-proximal protein secondary structure el-
ements are often co-located in three-dimensional conformation [120], the sequential profile
of these additional features (charge, surface tension) must similarly “‘co-locate” upon fold-
ing.

We found that the numbers used to represent residue properties needed some con-
nection with physical characteristics that would differentiate between similar and dissimilar
residues. Before arriving at this set of features, a classification experiment was carried out
using only numbers (say, 1—20) to represent each amino acid. The SVM classifiers con-
structed using these features did not perform any better than a coin-flip, when tested on
unseen data points. In retrospect, this behavior can be easily explained by the lack of corre-
lation between features (the integers) and the physicochemical properties of the amino acid
sequences they represented. Consider that within amino acid substitution matrices used
for sequence alignment, residues of similar biological characteristics have similar numer-
ical values, because in evolution their mutual substitution is more likely to be observed
than would a mutation involving biochemically disparate residues [86]. Two examples of
conservative (similar) substitutions are isoleucine—valine (small, hydrophobic) and serine—
threonine (polar). The same principle applies to the selection of amino acid features for
the numerical experiments of this thesis; random assignment of numerical values without
regard to physicochemical characteristics is ineffectual.

The reader should be aware that the manner in which protein sequences are rep-
resented to the learning machine is not limited to the scheme used in these experiments.
Other representations are certainly possible. For example, Hunter and Subramaniam have

recently proposed a parsimonious one-dimensional structural description which uses only
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a single continuous variable per amino acid to represent the Cy backbone [88]. It would
be an interesting experiment to study the use of such structural descriptors in protein in-
teraction predictions, and to compare and contrast their predictive success with that of the

physicochemical descriptors used in this thesis.

Hydrophobicity index

Accepting the observation that physicochemical attributes of one form or another
are required to carry out predictions discussed here, the selection of specific indices of the
features identified for protein representation must be justified.

Hydrophobicity indices measure the relative tendency of a particular residue to
interact with water, or the affinity for hydrophobic over hydrophilic phases in a physiolog-
ical environment. The speculation is that such a metric may provide implicit information
to a learning algorithm regarding paired protein conformation, and the propensity for mu-
tual interaction. As an index of amino acid hydrophobicity, we chose to use the consensus
normalized hydrophobicity scale of Eisenberg [61]. In that review, the authors identified
a number of deficiencies with other contemporary scales found in the literature. Those
deficiencies included: (1) a lack of account for side chain interactions, including covalent
links to the rest of the protein; (2) a lack of account for all amino acid residues; (3) biased
values for certain residues; and (4) the ad hoc, subjective adjustment of certain numerical
values. Noting that no generally accepted method existed to calculate hydrophobicities, and
arguing that it was unrealistic to hope to adequately express “all aspects of the interaction
of a residue with water...in a single number”, Eisenberg’s resolution of the difficulties with
the different existing scales was to suppress outlying values by producing a combined scale
representing the numerical average of four different published indices. Eisenberg’s consen-
sus scale continues to be cited in the literature. For these reasons, this scale was chosen for

the present numerical experiments.

Surface tension index

The surface tension scale used for residue features in this research is described
in Bull and Breese [40]. In that investigation, the authors used a differential capillary rise
experimental technique to accurately measure the surface tension of solutions of each of

the amino acids. The surface tension index is actually the slope of a linear surface tension—
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concentration relationship, and expresses the reduction in surface tension of the solution as
additional amino acid solute is introduced.

Bull and Breese noted the inverse relationship between surface tension and hy-
drophobicity of the amino acids. In this sense their index may be considered to be an
indirect measurement of hydrophobicity; as surface tension is reduced, the hydrophobic-
ity is seen to increase accordingly. Therefore the hydrophobicity and surface tension are
not physically orthogonal features. Receiver operating characteristic (ROC) analysis with
a yeast data set in Chapter IV appear to suggest that using all three features, charge C, hy-
drophobicity H and surface tension T, produces a slightly lower performing classifier than
simply using charge and surface tension alone.

The rationale used when conceiving the feature sets was that the surface tension
index, along with electrical charge, would express properties of the protein surface, while
the hydrophobicity scale would represent the protein’s hydrophobic core in a volumetric
sense. It is apparent in retrospect that the features H and 7 may present conflicting or
partially redundant information, at least for the results presented for yeast in Chapter IV.
When using these features together on other data sets, different results may or may not be

observed.

B.4 Feature vector construction

This section provides a mathematical description of the construction of the feature
vectors used to represent interacting proteins in the numerical experiments. Let the vector of
numbers {v}, i € 1,...,M in L-dimensional real space R” denote feature i for a given amino
acid sequence of length L residues, where M different features are considered. Lengths of
the individual feature vectors v were normalized by mapping onto a fixed-length interval K,
via {yr}' =f ({v}}), where the function f is f: RF — RX.

We implemented the mapping f using simple linear interpolation [110]. An out-

line of one strategy for doing this is as follows:

1. Discretize the input and output domains:
En=(1/L)*{1,...L}, 0<§&,<1
Eour = (1/K)*{1,....,K}, 0<E&u <1

2. For each element of the output domain &, , find the indices (j, j+ 1) of the input

domain whose corresponding values &;, ;,&n j+1 “bracket” it:
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E.>in,j < éout,k < éin,j+17 jE 17-~-7L; ke 17-~-7K

3. Estimate the local slope m:

M (Vin,j+1 = Vin,j)/ (Gin,j+1 — Gin,j)

4. Estimate the value of y,u x at &y, ¢ by linear interpolation:

Yout k = Yout k—1 1 {m * (&out,k - E.»out,k—l)}

Note that this procedure as summarized assumes that K < L, and should be appropriately
modified for the case K > L. A detailed Java source code listing used to carry out this
procedure in the numerical experiments is provided in Appendix B.

In this transformed space, the arc length coordinate &,,, along the peptide se-
quence now varies as &,,, € [0,1], and each vector y,,, € RX. This is an essential step for
representing proteins of widely varying native length (Figure IIL1). The full feature vector
for a particular protein A is constructed by concatenation of each feature sequence y. This
is written as {@1 } = {y«}' ® {y+}*® - ® {yx }™, where a ® b indicates simple concate-
nation of vectors a and b. Finally, a representation of an interaction pair, {¢3,} is formed
by concatenating the feature vectors for proteins A and B, i.e. {@i5} = {01} ® {0} }. The
vector {(ij} becomes a positive training example for the SVM.

Negative examples (putative non-interacting protein pairs) must also be presented
to the SVM. In this context, it may be insufficient to merely randomize the residues, a prac-
tice commonly carried out to estimate the statistical significance of biological sequence
alignments as contrasted against a random control [141, 68]. Since a database of non-
interacting proteins was not readily available, we chose to create negative controls by ran-
domizing amino acids sequences sampled from DIP, while preserving both (1) amino acid
composition and (2) di- and tri-peptide “k-let” frequencies [48, 100]. Presumably, where
k> 1, this procedure provides more native-like artificial proteins by conserving higher-
order biases. Without performing exhaustive wet experiments to prove the biological in-
ertness of proteins encoded by negative exemplars {@_,}, thereby proving that in fact
proteins C and D do not interact, this must suffice to design and implement the numer-
ical experiments. Randomized amino acid sequences were generated using Shufflet
(URL: http://www.genetique.uvsq.fr/eivind/shufflet.html) [48]. A
schematic diagram of the process used to create feature vectors for the protein interaction

experiments is presented in Figure II1.2.
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Note: In subsequent investigations, our thinking on the creation of negative ex-
amples for protein-protein interaction prediction evolved. We no longer advocate the gener-
ation of “random” proteins as performed in this chapter. In fact, it is reasonable to assume
that all combinations of proteins for an organism that are not represented within an ex-
perimental set are indeed negative examples. To illustrate, imagine a bacterial organism,
Bacillus X, with a proteome of size n= 1000 containing potentially 499, 500 unique pair-
wise interactions. Let us assume that there are 5 interactions per protein, a reasonable num-
ber based on several published studies of protein interaction networks in different species
(see Table V.7 in Chapter V, and the associated discussion). Then we would expect roughly

5,000 positive interactions, and 494, 500 negatives for this organism.

B.5 Data partitioning

In the experiments reported here, the DIP database entries were sampled at ran-
dom, and data were partitioned into training and testing sets, at approximately a 1:1 ratio.
Feature vectors constructed as described in Section B.4 were used as examples for training
and testing the prediction system. Testing examples were not exposed to the system during
SVM learning. The database is robust in the sense that it represents a compendium of pro-
tein interaction data collected from diverse experiments. As noted above, 2,664 different
protein domains are represented. There is a negligible probability that the learning system
will “learn its own input” (see [15]) on a narrow, highly self-similar set of data examples.

This enhances the generalization potential of the trained Support Vector Machine.

C Implementation

Software methods for parsing the DIP database, control of randomization and
sampling of records and sequences, and feature vector creation were developed in Java. A
new database was constructed by augmenting the original DIP records. Additional fields
added included amino acid sequence data and associated residue features, generated as
described in Sections B.3 and B.4.

Support Vector Machine learning was implemented using SVM"8”! [95], available
for non-commercial use on the World Wide Web at http://svmlight. joachims.

org/. This numerical implementation was selected because of the large SVM“&" user
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community online, and as many publications based upon studies using this code can be
found the literature. The code provides analytically-motivated estimates of precision, sen-
sitivity and leave-one-out error [94]. Most importantly, the author of the code was respon-
sive and helpful in clarification of several technical points early in my experience with
using SVM'8" | Alternative implementations of support vector learning are listed online at
http://www.kernel-machines.org/.

Training and testing exemplar data files were developed using a prescribed k-let
frequency (k € [1,2,3]) and ensemble sampling size as input parameters to the data prepara-
tion software. Each member of the statistical ensemble involved a random sampling of the
DIP interacting proteins and newly-created “shuffled” amino acid sequences. A different
SVM was trained for each k-let correlation frequency and experimental trial. The results of
these trials were averaged to eliminate potential biases due to chance sampling of the data

set.

The performance of each SVM was evaluated using the inductive accuracy on the
previously unseen test examples as the performance metric. “Inductive accuracy” is defined
here as the percentage of correct protein interaction predictions on the test set, consisting

of nearly equal numbers of positive and negative interaction examples.

The main results of the protein-protein interaction predictions are summarized in
Table II1.3. Each row in the table corresponds to a constant k-let frequency used to generate
the negative training and testing examples. Data in the column headed # Examples indicate
the average total number of each type of examples for each case. These data have been
averaged over an ensemble of 10 statistical trials, a sufficient sample as indicated by the

low variance shown in Column 3.

k-let | # Examples Inductive
Freq. | (Train,Test) Accuracy

1 (2190,2189) | 80.96+-1.42 %
2 (2192,2192) | 80.194+0.86 %
3 (2203,2195) | 80.13+0.89 %

Table III.3: System generalization accuracy summary. “Inductive accuracy” is the percent-
age of correct protein interaction predictions on test data not previously seen by the system.
N=10 trials.
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D Discussion

The inductive accuracy of the learning machines as summarized in Table II1.3 is
encouraging, given the depth of the DIP database. For each statistical background com-
prising k-let orders 1—3, about four out of five protein interactions are correctly estimated
by the system. It bears reiteration here that only primary structure data have been used to
train the SVM. We submit that some implicit information regarding structural, chernical and
biological affinity has been learned by virtue of the feature representation and affirmative
labelling of protein interaction pairs. The implications of the results shown in Table II1.3
for future proteomics research are intriguing.

However, these results must be interpreted with caution. An important objective
is to ascertain the extent to which the present machine learning approach may provide util-
ity to the proteomics community. To make this methodology genuinely useful, we need
to generalize from a training set of protein interactions with some degree of confidence.

Therefore several important issues must be considered.

Problem with accuracy statistic

The purpose of this study was to demonstrate feasibility of predicting protein-
protein binding, by posing interactions in terms of a classification problem. To apply this
prediction methodology in more realistic proteomics experiments, additional statistics of
classification performance should be computed. Prediction accuracy is tightly linked to the
natural frequencies of occurrence of each data class. Provost has noted that the use of accu-
racy alone may misrepresent the generalization potential of a classifier, in particular when
comparing different classification architectures against one another [159]. Accuracy as a
statistic assumes (1) equal misclassification costs (for false positives and false negatives),
and (2) a known class distribution in the “target environment”. If one of the classes in a
two-class problem is “rare” relative to the other one, it is trivial to produce a highly ac-
curate classifier by simply predicting the majority class. Recall the hypothetical organism
Bacillus X from the discussion near the end of Section B.4. If 5,000 out of the possi-
ble 499,500 pairwise (+4) interactions are genuinely found in Nature, a classifier always
predicting the negative class (—) has 99% accuracy!

Therefore, presentation of results only in terms of the prediction accuracy may not

provide sufficient information to critically evaluate one classifier over another on a given
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data set. In subsequent chapters of this thesis, additional statistics are used to explore the

prediction performance of SVM classifiers as applied different data sets.

Problem with imbalanced data

Recall that in this investigation, the training and testing data sets were balanced—
comprising nearly equal numbers of positive and negative examples. The true state of Na-
ture is most likely highly imbalanced with respect to the distribution of classes. One strat-
egy for training a binary classifier is to present training examples from both data classes
in relative amounts not reflecting their natural frequencies of occurrence. An artificial dis-
tribution is concocted for training, because the system must learn to recognize each class
independently of its prior probability. If one class is rare compared to the other, the im-
portance of balancing the data is even more pronounced, as the examples representing the

majority natural class will dominate and bias the learning process [183].

Balancing the training data solves one problem of statistical bias, while introduc-
ing another. Once trained, the classifier is used to make predictions about new data points.
Since the training data were not distributed according to their expected natural rates of oc-
currence, generalization success on data sampled from the true probability distribution may
be materially different than that realized during training experiments. For protein-protein
interaction network predictions, a huge number of different combinations of proteins are

possible; we suspect that most of these are non-interactions.

Essentially, this represents a problem of signal detection in noise. We may make
a direct analogy to radar signal detection systems, which are designed to (1) detect objects
of interest and (2) extract information from the signal representing this object [174]. Each
putative protein interaction pair declared by the present classifier is a “signal detection”,
and the information extraction component is represented by our belief (or disbelief) of the
correctness of this decision. The problem is this: if the classification system is characterized
by a constant false alarm rate (CFAR), when faced with data that has only very few true
signals of interest, we may observe a large increase in the sheer number of false alarms (false
positive interactions). This is the so-called “needle in a haystack” issue in data mining, and

will be addressed further in subsequent discussions of this thesis (Section E.1).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



46

Species diversity

While the methodology presented here is generally applicable, the proteins in the
interaction database predominantly represent eukaryotes, as summarized in Table HI.1. This
bias may also be manifested in the trained SVM, which may not immediately generalize to
bacterial or archaeal organisms, although prokaryotic homologs of many non-enzymatic
eukaryotic signaling domains associated with protein-protein interactions have been iden-
tified [158]. To identify conserved interactions across species, additional training based on

more kingdom-diverse proteomes may be required.

Effect of k-let order

With reference to the first row of Table IIL.3, we observe that good predictive
accuracy is achieved when amino acid composition alone is preserved during randomization
(k=1). System performance is not degraded relative to cases k=2,3. If the results indicated
a predictive performance surplus where k=1 (more random), one might have conjectured
that the SVM had merely learned to discriminate native interactions from random, non-
native proteins here. It is unclear whether this observation is an artifact of the particular
bias toward S. cerevisiae in the database. A distinct possibility is that the randomized
“proteins” were in fact substantially different from the native examples, and this difference
was reflected in the high accuracy of the predictions. These questions should be addressed

in future research.

E Conclusion

In conclusion, the prediction methodology reported in this chapter generates a bi-
nary decision about potential protein-protein interactions, based only on primary structure
and associated physicochemical properties. This suggests the possibility of proceeding di-
rectly from the automated identification of a cell’s gene products to inference of the protein
interaction pairs, facilitating protein function and cellular signaling pathway identification.

This research represents only an initial step in the automated prediction of pro-
tein interactions. The discovery of patterns within respective primary structures of known
protein interaction pairs may be subsequently enhanced by using other features (secondary

and tertiary structure, binding affinities, etc.) in the learning machine.
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With experimental validation, further development along these lines may produce
a robust computational screening technique that narrows the range of putative candidate

proteins to those exceeding a prescribed threshold probability of interaction.
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Figure I11.2: Steps in the feature vector construction process. For each protein in an inter-
action pair, residues are encoded as features representing charge (C), hydrophobicity (H)
and surface tension (T'). These numbers are concatenated in the same order as their appear-
ance in the primary structure of the protein. Next, the length of this array of numbers is
normalized to a £xed length. Finally, arrays of features for two proteins are joined to form
a feature vector for classifcation processing.
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Interactions in one species

A Introduction

In most cases, proteins perform their biological functions through specific binding
with other proteins [1]. Understanding the complex roles of proteins requires experimental
identification of interacting protein partners [149], which may necessitate an all-against-all
screen of the proteins within a given organism. Even with large-scale automation [127],
this represents a monumental undertaking. We describe here a computational method based
on machine learning for prediction of equilibrium binding between proteins that may help
mitigate this task.

The method makes use of a support vector machine (SVM) [191, 42], a trainable
pattern recognition device that learns to classify protein-protein interactions. The present
machine learning approach has two procedural steps. First, in the “training” process, exper-
imentally derived examples from a set of proteins of known interaction are introduced to the
machine. The machine learns to recognize patterns exemplifying protein interactions within
the training set. Second, in “testing” mode, the trained machine is systematically applied
to paired proteins of unknown interaction, producing a statistical inference as to their inter-
action state. In contrast to methods based upon ab initio calculations of protein structure,
the machine learning approach requires only examples of known interacting proteins and
certain biophysical properties of their constituent amino acids. No information about pro-
tein conformation is necessary. The method is validated here by 10-fold cross-validation
experiments using a large empirical protein interaction data set from the yeast Saccha-

romyces cerevisiae (strain S288C). The results suggest that machine learning prediction of

49
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protein-protein interactions may be an efficient complement to experimental techniques for

studying functional proteomics [127].

B Methods

B.1 Interaction data set

S. cerevisiae was chosen as the test organism for several reasons: its genome
was the first to be completely sequenced [77]; it shares a core set of conserved proteins
for metabolic processes, protein folding, trafficking and degradation with many higher eu-
karyotes [46]; and it is an excellent experimental platform for genetic engineering [139]
and targeted drug-discovery [140]!. The machine learning experiments reported here were
based on protein-protein interaction data extracted from a data set of 4,549 interactions
determined empirically using a comprehensive two-hybrid (Y2H) assay [91]. The Y2H as-
say detects the interaction of two candidate proteins (say, A and B), coupled respectively to
distinct functional subunits of a transcriptional activator (GAL4) in yeast. These subunits
include a DNA-binding domain and a transcription activation domain. If A and B physically
interact, the resulting complex activates expression of a readily detectable yeast phenotype
[65].

The data set used in this investigation was collected by Ito and co-workers [91].
These investigators used a large-scale variation of the two-hybrid technique, known as in-
teraction mating, which exploits the fact that haploid yeast cells of opposite mating type
(MATa, or MATQ) fuse to form diploids when brought into contact with each other. “Bait”
protein A (fused to the DNA-binding domain) and “prey” protein B (fused to activation
domain) are expressed in different haploid strains, each of opposite mating type. The com-
binatorial mating of these strains and consequent fusion of haploids indicates interaction of
the corresponding fused proteins [16].

The originators of the data set used here assert that approximately 95% of the
open reading frames (ORFs) in the yeast genome are represented in all possible combina-

tions of DNA-binding and activation domain proteins [91]%. The interaction mating pro-

IPerhaps the most important reason for this choice is the fact that comprehensive protein interaction data
for S. cerevisiae are readily available for machine learning studies.

2The yeast interaction data set is available from Ito and coworkers at http://genome.c.
kanazawa-u.ac.jp/Y2H/.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



51

cedure resulted in a set of 4,549 independent interactions among 3,278 distinct protein
interactions after redundancy minimization. The amino acid sequences of these 4,549 pos-
itive interacting pairs were compiled from online sequence databases using their respective

OREF designations.

B.2 Redundancy minimization

There was concern that redundant interactions in the database might bias the nu-
merical experiments. To address this concern, redundant or similar interacting pairs in the
data set were identified using the Smith-Waterman dynamic programming algorithm [176]
and removed prior to the study. This algorithm is based on the extreme value distribution
for comparison of pairwise local sequence alignments, and includes commonly used penalty
values for gap opening (12) or gap extension (2) in the alignment process®. To estimate pa-
rameters of the extreme value distribution function representative of the yeast amino acid
sequences, tabulated statistics for the probabilities of amino acid substitutions were used
that are consistent with an empirical affine insertion/deletion model [4]*. Sequences iden-
tified as redundant at the 99% significance level (p < 0.01) in an all-against-all pairwise
similarity analysis were removed. Although it is not known explicitly if the extreme value
distribution applies to these data, it has been shown (empirically) that gapped local align-
ment scores tend to follow an extreme value distribution [4, 177]. Note that our objectives
differ fundamentally from sequence database searches where the highest-scoring similari-
ties are desired. Such searches typically use p-values many orders of magnitude smaller
than those used here. The present stringent level of significance was chosen to reduce the
sensitivity on the assumed distribution, and minimize the probability that remote similari-
ties between proteins might bias the prediction results.

The details of the method of redundancy minimization are as follows. Let §

denote the set of all amino acid sequences s that are candidates for participation in protein

3The authors showed that gaps of any length can be included in an alignment and still provide a distance
metric for the alignment score, provided that the gap penalty increases as a function of the gap length. Assuming
that a single mutational event involving a single gap of n residues is more likely than n single gaps, to increase
the likelihood of such gaps of length > n being found, the penalty for a gap of length » is made smaller than the
score for n individual gaps. An associated affine gap penalty w(x) is a linear function of gap length consisting
of a larger gap opening penalty (g) and a smaller gap extension penalty (r) for each extra position in the gap,
or wx = g+ rx, where x is the length of the gap.

4Pointwise amino acid mutation probabilities were modelled using the BLOSUM62 substitution matrix [86].
This matrix assigns a probability score to each position in an alignment based on the frequency with which a
given amino acid substitution is known to occur among related proteins.
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interactions. We use the notation A and B to represent two proteins which come into contact,
and may biologically interact (they may be identical, in case of homodimers). Sequence
pairs (sa4,sp) were first grouped together where multiple sequences {sp} were identified
as interaction partners with a given sequence s4. Let this group be represented as G =
{(sa,{sB}i)|i € 1,...,m}. Each element of the set G represents a potential protein-protein
interaction. There are n* such “clusters” in S, each corresponding to an unique sequence
sa- These clusters constitute a set G* = {Gylk € 1,...,n7}>.

For each element Gy, the associated sets {sp}; were subjected to all-against-all
pairwise similarity analysis, and redundant sequences found significant at the 99% level
(p < 0.01) were removed from further consideration. For each s4 and all combinations
of interacting sequence pairs ({sz}i,{ss};),i,j € 1,...,m,i # j within its cluster, we per-
formed Monte Carlo simulations (n = 100 trials) to estimate the probability that a random
rearrangement of amino acids would achieve a score Z (from sequences ({sg }i, Srandom })

exceeding the score in question x (from native proteins ({sg};, {sp} ;) using the equation [4]
p(Z>x)=1—exp {—Kmlnl exp(—M)}

where S;andom is obtained by randomly permuting the amino acids in sequence {sg};. p-
values less than the probability threshold 0.01 were taken as statistically significant, and
one sequence from the pair ({sp};,{sp};) was eliminated; i.e., the interaction (sa,{sg};)
was excluded from the set Gi.

After comprehensive forward redundancy elimination, this entire analysis was re-
peated by a second pass, this time clustering and filtering groups of similar sequences in
reverse order, from the set G = {({sa},s8)|i € 1,...,m}. In this round, there are n~ dis-
tinct groups to consider (one for each sequence sp), comprising another set G~ = {Gilk €
1,...,n"}

In this manner, similar interacting sequence pairs detected within the original set
of 4,549 ORFs (p < 0.01) were removed, leaving a positive example set of 3,011 protein
interactions, roughly two-thirds the size of the original data set. Negative examples were
derived from the balance of the proteome of S. cerevisiae. From a nominal total of 6,408
ORFs, we found 6,360 protein sequences in online databases®, which were sampled ran-

domly to construct non-interacting pairs, and designated as ’non-interacting” by virtue of

3The “+” superscript refers to the forward pass of this analysis.
%The online portal for sequence search was the Saccharomyces Genome Database (http://
genome-www.stanford. edu/Saccharomyces). Each ORF in the yeast genome was used to download
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not belonging to the positive set derived from the all-against-all Y2H screen [91]. Positive
and negative amino acid interaction sequence sets were validated to ensure mutual disjoint-
ness and assembled into separate database files, keyed by corresponding ORF pairs’. The

final sample contained 3,011 positive and 6,360 negative protein interaction pairs.

B.3 Protein interaction descriptors

Next, a parsimonious set of features characterizing the design sample was de-
veloped, using only amino acid sequence descriptors. Previous investigators established
the utility of amino acid sequence hydrophobicity profiles for discriminating local inter-
action sites on a protein [87]. Other characteristics of protein-protein interfaces have also
been studied, including size and shape, electrostatic and surface shape complementarity,
and hydrophobicity [97]. Guided by these and other investigations, we used a set of fea-
tures described previously [25], wherein residue sequences of the proteins in a given in-
teraction pair were encoded with numbers quantifying characteristics of electrical charge
C, hydrophobicity H and solute surface tension reduction T for each residue in sequence,
preserving the order of the amino acids in each protein. Charge was represented as one of
{+1,0,—1} according to individual residue positive, neutral or negative charge. “Surface
tension” constituted an average measure of the reduction in surface tension of an aqueous
solution of the amino acid [40]. Hydrophobicity values expressed a “‘consensus” energy
required per mole of amino acid to change phase from hydrophobic to hydrophilic [61].
Taken together, these attributes relate to physical quantities important for intermolecular
recognition, namely, three-dimensional conformation in the physiological environment and
distribution of surface charge.

Each protein feature vector encoded in this manner was normalized to a fixed
length, concatenated with features representing its (positive or negative) interaction partner,
and labelled with a binary-valued classification (either +1 or -1) denoting the composite
interaction status. Sequence length normalization is imperative to accommodate the wide

diversity of protein lengths in S. cerevisiae, which range from 25 to 4,910 amino acid

its corresponding amino acid sequence from online databases Swiss-Prot/TrTEMBL (http: //www.expasy .
ch/sprot/), The Protein Information Resource (http://pir.georgetown.edu/pirwww/) and
NCBI Entrez Protein (http: //www.ncbi.nlm.nih.gov/entrez).

"The non-redundant positive interactions and negative interaction database files are available on request
from the authors. The positive interaction data are based on the original database described in [91]. The current
database includes annotations of those interactions excluded from our experiments on the basis of sequence
similarity [86].
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residues®.

The features used to represent the proteins were based purely on characteris-
tics of individual residues constituting the amino acid sequence. This is a clear departure
from approaches in recent scientific literature, which have concentrated on secondary or
tertiary structural information and physicochemical characteristics of the interacting sur-
faces [97, 121] to attempt inference of binding propensity. We were inspired by Anfinsen’s
thermodynamic hypothesis:

The native conformation [of a protein] is determined by the totality of inter-
atomic interactions and hence by the amino acid sequence [8],

and questioned whether these residue-based features could be used directly to infer equilib-
rium binding, in the absence of explicit secondary and tertiary structural information.
Different combinations of features associated with the amino acids were studied.
We repeatedly trained and evaluated a collection of predictive systems, using different sets
of features %; comprising all combinations of one, two and three physicochemical attributes

in concert:

Fi C {{Ch{H}:{1}}
f < {{cH}:{CT) {HT}}
F = {CHT}

where {x} denotes a particular set of features.

The results reported here are based on numerical predictions obtained using fea-
tures from the seven distinct sets #;, #; and 3 described above. Objective evaluation of the
output of the trained machine was performed to determine the rates of correct and incorrect
predictions, and to estimate the generalization error rate upon application of the trained sys-
tem to inference on other species. The following definitions are essential in interpretation

of our results:

1. A “data point” means a pair of protein feature vectors combined with its correspond-

ing truth label (interacting, or not).

2. As only one of two classifications are possible for a data point, we define the “posi-

tive” class as denoting a protein-protein interaction in a given example, and the “neg-

8Source: EBI Proteome Analysis Database (http://www.ebi.ac.uk/proteome/).
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ative” class as meaning a non-interacting protein pair. These definitions apply to both

observed and predicted data points.

3. A prediction made on data point assumes one of two states: correct or incorrect. If
the computer decision state matches the true state of nature, the prediction is correct;

it is false otherwise.

B.4 Prediction objectives and metrics

Several practical objectives for computational inference of protein-protein inter-
actions are conceivable. Three cases are noteworthy, each corresponding to different goals,

and each suggesting a distinct means by which prediction success should be quantified.

a. If the objective is to detect all of the possible protein-protein interactions in a given
proteome, minimizing the occurrence of false negative predictions (misses) would be

important.

b. If maximizing the correct positive prediction rate (hits) is important (for instance
when scrutinizing a large set of potential drug targets to enhance the efficiency of drug
discovery), confidence in the affirmative decision that a protein-protein interaction

has been detected takes precedence.

c. In general, it may be preferred to use an overall estimate of the accuracy of the system

classification rate, including both positive and negative predictions.

To address each of these cases, we calculated machine learning performance
statistics known as “sensitivity”, “precision”, “specificity” and “accuracy”, respectively
[109]. For Case (a), the relevant metric is the sensitivity, which measures how many actual
protein-interactions present in the data are found by the system. Sensitivity is calculated as

_ TP
"~ TP+FN

where TP is the number of true positive interaction decisions, and FN is number of false

S av.y)

negative decisions (“misses”). This is alternatively referred to as the “true positive rate” of
a classifier. Case (b) calls for the use of the precision, which describes the rate at which a
positive interaction decision is correct. Precision is computed as

TP

P=—— .
TP+FP (IV:2)
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where F P is the number of false positives declared by the system.

For the general Case (c), the prediction accufacy might be considered. Accuracy
expresses the general error of the system, computed as A= (TP+TN)/(TP+TN+FP+
FN). Here, TN represents the number of true negative classifications. Note that while
accuracy provides a broad indication of the prediction performance of a classifier, its use
presupposes equal costs of misclassifications (i.e., false positives and false negatives have
equivalent negative utility), and that the actual class distributions are known [159]. Each of
these assumptions restricts the robustness with which different classifiers may be compared

in practice.

A better alternative in Case (c) is to construct a receiver operating characteristic
(ROC) curve, a locus of points expressing tradeoffs between the sensitivity and the (1 mi-
nus) the specificity, as a function of variation in a detection parameter {156]. Specificity
conveys the rate at which negative examples in the data are correctly classified, and is equal

to 1 —FP/(FP+TN).

ROC curves are informative because they are based on multiple performance
statistics. Baldi [15] stresses that when measuring the performance of classification sys-
tems, and using these measurements to infer the ability to generalization to new data, it
may be important to present at least two statistics built from at least three elements of the
set of numbers {TP, FP, TN, FN} . In his example, imaging that generalization perfor-
mance statistical results are presented using only, say TP and FP (as in the precision, Eq.
IV.2). Suppose that we are interested in comparing two different classifiers, C; and C,, and
that each classifier’s performance is characterized by different sets of prediction numbers
r,say,ry = {TP, FP, TN, FN'} and r, = {TP, FP, TN, FN}, respectively. In this case,
although the computed rates of precision are identical, the portrayal of relative general-
ization capability between the two classifiers is misleading and virtually non-informative.
Consider the situation where the observed false negative count for C; (F N')is significantly
larger than that of C, (FN), while the true negative count are the same; the sensitivity (Eq.
IV.1) of C; could be much be less than that of C,. Without considering two statistics to-
gether (like sensitivity and precision), this important distinction is oblivious and the value

of a classification architecture in specific applications may be seriously misrepresented.
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B.5 Experimental protocol

Using the interacting protein-encoded features (see Section B.3) as input, a series
of polynomial-kernel support vector machines [191] were trained to differentiate between
pairs of proteins that did (and did not) interact within a biological context. SVMs are op-
timal hyperplane classifiers that map input data onto a high-dimensional “feature” space.
A decision surface is constructed in this feature space, where the classes become linearly
separable. This surface is subsequently interrogated to classify new data points, according
to their geometric location relative to the surface. During numerical optimization to con-
struct the hyperplane, an implicit mapping of input n-dimensional data vectors x; and x;
onto a potentially infinite-dimensional feature space is carried out using kernel functions
K(x;,x;), which compute the similarity between x; and x;. Here, we used polynomial ker-
nels of the form K (x;,x;) = [(x; e x;) + 1]%, where d is the polynomial order, and the “‘e”
operator denotes the vector inner product. Other kernel functions are possible, subject to

certain mathematical conditions [42].

We divided a random subsample (2,729 of 3,011 positive, 3,560 of 6,360 neg-
ative) of the encoded protein interactions into 10 distinct subsets, allocating positive and
negative examples to each subset in approximate proportion to their frequency in the aggre-
gate experimental sample (2,729:3,560, or a21:1.3). This sample was used to serially train
and test different SVM classifiers, and to estimate their expected generalization error rates,

precision and sensitivity by the statistical technique of 10-fold cross-validation [182].

In k-fold cross-validation, the sample is randomly separated into k disjoint subsets
of nearly equal size. A total of k different classifiers are generated, one for each subset,
with training data comprising 100 (k — 1)/k% of the subsets. For each data fold k, the
remaining subset is used to test the system. In this manner, all the available data is used
to make predictions. The average classifier error rate over the k-testing subsets is used to
estimate the expected generalization performance. Averaging reduces the variance of this
estimate [155]. 10-fold cross-validation has been shown to have low bias, with precision
approximating that of leave-one-out error estimation [131].

The experimental cross-validation statistics enable inference regarding how well
the trained system will predict novel protein-protein interactions, using amino acid se-
quences taken from genetically-similar species. The notion of “genetic similarity” may

be quantified in a number of ways. One such method relevant here incorporates genomic
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content, addition or subtraction of genes, and global similarities between two genomes

[185].

C Discussion

C.1 Interaction prediction design curves

Figure IV.1 shows the observed 10-fold cross-validation prediction performance
as a function of SVM polynomial order d, for three different feature sets {C,H,T}, {C,T}
and {H,T}. In this graph, colors indicate a particular set of features encoding the protein
pairs, and symbols represent certain performance statistics. Precision, accuracy and sensi-
tivity values are displayed. All data points shown are aggregate average results computed
from 10-fold cross-validation estimates of the various statistics, collected on the entire sam-
ple of 2,729 positive, 3,560 negative interactions in S. cerevisiae.

The results summarized in Figure IV.1 show that precision varies directly with the
order d of the SVM kernel, while sensitivity is inversely proportional to the value of this
parameter. Precision of the system (marked P) is greater than 90% for all feature sets used
with this highest dimensioned polynomial kernel (where d =5). This high precision im-
plies an extremely low incidence of false positive decisions. Recalling Case (b) of Section
B.4, precision maximization is appropriate when it is important to assign a high degree of
confidence in positive predictions. For example, this may have significant benefit as a nu-
merical screening device to select the best subset of a large group of proteins participating
in pathways of therapeutic interest.

We were surprised by this result, but the reader is advised to interpret high pre-
cision predictions with caution. A central objective of this research is to attempt apply this
method to the discovery of protein-protein interactions in other organisms. Estimating gen-
eralization performance on the basis of precision results may be ill advised. Reprising the
discussion of the “needle in a haystack” problem in the previous chapter, Section D, upon
generalization to new species, we may observe a dramatic increase in the rate of false posi-
tives if the SVM generalization is characterized by a constant false alarm rate. This theme
will be revisited in the discussions of Chapter V.

High precision comes at a cost-namely, a high rate of “false negatives” as rep-

resented by the sensitivity curve (S), which suggests that only about 36% of the available
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true protein-proteins interactions have been detected where d =5. Figure IV.1 highlights
the stark tradeoff between these two metrics, accentuated at the higher values of d. The low
polynomial order (d =2) SVMs are the most sensitive ones, characterized by sensitivities in
the 55 — 64% range. The sensitivity is the true positive rate of a classification system. Case
(a) under the various application scenarios noted in Section B.4 relates to the objective of
pure discovery of novel protein-protein interactions within proteomes. With no data other
than a set of amino acid sequences and a trained support vector machine, suppose that it is
desired to detect as many interactions as possible, as opposed to establishing confidence in
the correctness of a positive system decision. The appropriate performance metric in this
instance would be the sensitivity, and SVM architectures correlated with the most sensitive
predictions would be implied.

A profound and completely unexpected result is that when using only a single
attribute to encode the amino acid sequence (hydrophobicity), the precision of the system
decision still exceeds 90% (blue triangle, d =5). The sample standard deviation of this data
point over the 10 data partitions was 0.0199 ({H}: P =0.9466 £ 0.0199), fell within the
error obtained from more complex residue feature sets ({C,H,T}: P=0.9563 1+0.0124;
{C,T}: P=0.9652+0.0093). The simplest description of the paired amino acid sequence
attributes considered, i.e., their hydrophobicity profiles, is found sufficient to produce an
extremely precise forecast of the potential for biological interaction.

It is evident that the overall system predictive accuracy rate (A) is at least 70%
where d > 2. Accuracy describes how often the system is correct in declaring either a
positive or negative protein-protein interaction, as a percentage of the total number of pre-
dictions made. While the utility of the accuracy estimate has been largely discounted in
discussions of the current and preceding chapters, in the context of other statistics as shown
it still conveys some indication of the fact that the desired concept is being learned by the

system. Accuracy is seen to exhibit only a very weak dependence on the model order d.

C.2 Receiver operating characteristic (ROC) analysis

Receiver operating characteristic (ROC) curves, introduced by Peterson and Bird-
sall [156], elucidate the relationship between true and false positive rates (T PR, FPR) char-
acterizing a collection of detection systems, offering insight into the cost (in terms of false

alarm probability) of a given rate of sensitivity. Different classifiers may be compared in
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Figure IV.1: Prediction performance of S. cerevisiae protein-protein interactions as a func-
tion of polynomial kernel order d for several feature sets. Colors represent different attribute
sets used to encode the amino acid sequences of the constituent proteins comprising a bio-
logical interaction. Blue=hydrophobicity only, Green=hydrophobicity and surface tension,
Red=hydrophobicity, surface tension and electric charge. Symbols correspond to perfor-
mance metrics: Circles=accuracy (4), Triangles=precision (P), and Boxes=sensitivity (S).
Each data point was obtained from 10-fold cross-validation estimates of SVM performance.
Total example count: nt =2,729, n~ =3, 560.

ROC space, where each classifer’s ROC curve is typically parameterized by a constant
value of the detection threshold. The threshold is selected to reject the noise background of
varying levels, and its effect is to regulate the trade between precision and sensitivity, as in-
dicated in the discussion surrounding Figure IV.1. Higher detection thresholds decrease the
rate of false alarms (increase precision), but cause an increase in the rate of false negatives
(decrease sensitivity). Lowering the detection threshold produces converse effects (more
detections, more false positives).

We explored a “quasi-ROC” space containing the SVM classifers of this inves-
tigation. This space is related to the ROC curves of signal detection theory in the sense

that it provides an analysis of groups of classifers in (F PR, TPR) coordinates. However,
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quasi-ROC curves here are actually loci of discrete points, each corresponding to a given
SVM polynomial kernel order d. Whereas each separate curve in classical ROC space rep-
resents a different classifier, with the ratio FPR/T PR varying continuously, progressing in
quantum steps along the present “curves” corresponds to changing SVM architectures. In
further contrast to conventional ROC analysis, the “curves” connecting the d-values denote

different feature sets used to represent proteins.

The results of this analysis are presented in Figure IV.2. Each curve plotted in the
figure corresponds to a different feature set, color-coded to facilitate visual interpretation.
These features are indicated in the figure legend. Points along the curves are mapped by
varying the SVM polynomial order d, and recording the (F PR, TPR) values from 10-fold
cross-validation®. The area under a particular ROC curve at a given value of the abscissa
is an indicator of the accuracy of the associated classifier, now decoupled from a priori
assumptions about relative distributions of the positive/negative interaction classes or mis-

classification costs [159].

Several interesting points arise on consideration of the family of ROC curves in
Figure IV.2. The underlying trend is that sensitivity and specificity are reciprocally related.
One may achieve a sensitive prediction at the risk of introducing false positives, at the rate
indicated. As we have seen, such behavior is a fundamental aspect of all signal detection

systems.

In this perspective on the different SVM predictors and feature sets subject to
numerical experimentation, lower model kernel orders d produce more sensitive predic-
tion results. This is consistent with results shown in Figure IV.1. The highest values of
sensitivity are coupled with false positive rates between 21% ({C,H,T}; d =2) and 33%
{cC}; d=2).

Notice that the curve corresponding to the features {C,T} (green curve) domi-
nates the ROC space, that is, produces the most sensitive protein interaction predictions at
any assumed F PR value. This suggests that use of parsimonious features in this methodol-
ogy may be sufficient; more features per amino acid residue are not necessarily correlated
with greater acuity of inference. In fact, adding one feature to the descriptor set (red curve;
{C,H,T}) degrades the prediction performance by a small degree. The observation that

features {C, T} are apparently more salient than are {C,H, T} is undoubtedly also due in

9Polynomial order assumes integer values, resulting in piecewise-linear segments for these ROC “curves”.
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part to the fact that the hydrophobicity and surface tension are not physically orthogonal
features, as foreshadowed in the discussion of Section B.3.

The ROC curves can be seen to coalesce at d =35, indicating that predictive per-
formance where precision is high (and sensitivity low) is relatively invariant to details of

the amino acid characteristics used to represent the interacting proteins.
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Figure IV.2: Quasi-ROC curves for predictions of protein-protein interactions in S. cere-
visiae. Colors represent different attribute sets used to encode the amino acid sequences of
the constituent proteins comprising a biological interaction. Each data point was obtained
from 10-fold cross-validation estimates of SVM performance. The arrow indicates the di-
rection of increasing SVM polynomial kernel order d € {2,3,4,5}, which corresponds to
increasing precision (decreasing sensitivity) as shown in Figure IV.1.

C.3 Confusion matrices

Figure IV.3 presents a complete accounting of the experimental results obtained
using sequence attributes based only on residue charge (C) and surface tension (7). This

corresponds to the best set of features as determined from the ROC analysis of Section C.2.
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The data matrices found in this figure, commonly known as “‘confusion matrices”, may be
used to compute other statistics of machine learning performance [109]. Additionally, pre-
sentation of data in this manner facilitates the independent reproduction of results, or the
comparison of performance with different machine learning techniques. Each confusion
matrix in Figure IV.3 represents the 10-fold cross-validation performance for a given SVM
polynomial kernel order d. The columns represent predictions made by the computer, be-
longing to one of the possible classifications (“4’=> proteins interact; “~"= no
interaction). The rows represent the true state of nature. Along the main diagonal,
the predictions agree with the true class, while off-diagonal elements record the number of
examples for which the particular SVM made an incorrect prediction. This error may be
either a false positive, or a false negative decision. Note again the concurrent increase of
false negatives (reduced sensitivity) and decrease of false positives (increase precision) as
SVM model order increases from d =2 (matrix number (i)) to d =5 (matrix number (iv)).
Various performance statistics computed for the two extreme SVM polynomial
orders studied are summarized in Table IV.1. These data correspond to the feature set
{C,T}) found to dominate the ROC space as visualized in Figure IV.2. TNR is the true
negative rate, and FNR is the false negative rate. Other statistics listed in the table are
defined in Sections B.4 and C.2. It is seen that for the SVM with d = 2, the sensitivity is
around 64% and the precision 68%. In this context we note again that a constant false alarm
rate SVM would exhibit a sharp decline in precision performance when applied to larger,
imbalanced data sets. In such cases the classifier with the highest rate of sensitivity would
be preferred, as the sensitivity metric, being independent of the rate of false positives, would

remain unchanged.

C.4 Comparison with previous investigations

The machine learning approach, while using amino acid sequence descriptors,
does not predict function based on homology to proteins of known functional class. There-
fore it complements so-called “non-homology” based methods of functional attribution.
Examples of different non-homology based methods for predicting protein-protein interac-
tions can be found in the literature [207, 50, 153, 151, 172, 129]. Objective comparisons
between the present methodology and some of these alternative prediction schemes are

problematic. Many investigations offer novel interaction predictions involving hypothetical
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Figure IV.3: Confusion matrices for protein-protein interaction predictions in S. cerevisiae.
Features based on residue charge and surface tension (corresponding to the green data points
in Figure IV.2). Each matrix represents 10-fold cross-validation performance for a given
SVM polynomial kernel order d. Columns and rows marked “+ or *” indicate interaction
or non-interaction, respectively. Off-diagonal elements record the number of examples for
which the SVM classifier made an incorrect prediction (a false positive, or a false negative
decision). (i): d=2 (ii): d=3; (iii): d=4; (iv): d =5. Total example count: n* =
2,729, n~ =3,560.

Statistic Equation Value | Value
d=2|d=5
TNR | TN/(TN+FP)|0.778 | 0.990
S(TPR) | TP/(TP+FN) | 0.638 | 0.363
FNR | FN/(FN+TP) | 0.362 | 0.636
FPR | FP/(FP+TN) | 0.222 | 0.010
P TP/(TP+FP) | 0.687 | 0.965

Table IV.1: Prediction performance statistics for two different SVM classifiers. Data again
correspond to the feature set {C, T }) dominating the ROC space of Figure IV.2. TNR is the
true negative rate, and FNR is the false negative rate. Other statistics are defined in Sections
B.4 and C.2. Total example count: n*=2,729, n~ =3,560.

or putative proteins of unknown function. By definition, such predictions await experi-

mental validation to determine their correctness. Accordingly, sensitivity, precision and
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accuracy estimates of the various methodologies are not presented. Other results concen-
trate on a few key interactions of biological relevance, and estimates of system performance
are less specific or absent completely from the discussion.

Even so, some quantitative results are available, permitting limited, direct com-
parisons with the prediction performance observed in the present study. These are sum-
marized in Table IV.2. In [172], Schwikowski and co-workers describe a means to predict
protein function based on relative position within a map of interactions. For proteome-wide
predictions within S. cerevisiae, they present an estimated “reliability” of 72%, defined as
a correct prediction of function for connected proteins, based on a list of its functionally-
categorized partners. This is apparently equivalent to an accuracy measurement.

Pazos and Valencia [151] computed interaction predictions based upon the sim-
ilarity of phylogenetic trees between interacting proteins, taken to indicate the degree of
their “coordinated evolution”. In large-scale predictions for Escherichia coli, they assert
that the tree-similarity approach can be used to “detect true positives at a rate > 66%”,
using a particular numerical threshold value representing correlations between proteins in
multiple sequence alignments [151]. No further data or equations are available to identify
whether this reported detection rate corresponds to the sensitivity statistic (Eq. IV.1.

A hybrid algorithm reported by Marcotte and colleagues [130], again focused on
S. cerevisiae, cites an overall false positive rate of 33%. When combining predictions from 2
or more different techniques, an F PR of 16% was reported. In compiling these statistics, the
reliability of an individual “link™ between two putative interacting proteins was evaluated by
concordance between known functional categories for each protein. Unclassified proteins
were exempt from the estimate of reliability. In the present study, false positive rates ranged
between 1.0% (d=2) and 22% (d =5).

C.5 Key issues

We find it interesting that protein-protein interactions in S. cerevisiae may be reli-
ably inferred using only a minimal description of their sequential amino acid characteristics.
This technique is exciting in its simplicity and compelling predictive performance, and may
prove useful in programs of targeted pharmaceutical discovery, for example where small
effector molecules are to be directed at protein interaction networks [77], or in therapeutic

disruption of disease-related signal transduction cascades [55].
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Ref. Organism Statistic Value(s) | Current
value(s)
1 | S. cerevisiae | “accuracy” 72% 70%

E. coli “sensitivity” 66% 36—64%
3 S. cerevisiae FPR 16—-33% | 1-22%

Table IV.2: Comparison of prediction performance measures between the present investiga-
tion (“Current value(s)”) and previous investigations found in the literature. References: 1.
[172]; 2. [151]; 3. [130]. Notes: “accuracy” and “sensitivity” are not explicitly described in
{172] or [151], respectively. Correspondence with statistics of this investigation is inferred
from narrative descriptions in the respective investigations.

There are, however, several important caveats associated with this computational
screening approach. The experimental results indicate a high precision, in excess of 90%,
may obtained at the cost of low sensitivity (approximately 36%). This means that while
confidence in positive predictions is high, many actual protein-protein interactions are not
detected by the system. This may not be acceptable if the objective is to uncover all in-
teractions in a proteome under investigation. The most sensitive predictions were observed
for certain architectures, with true positive rates near 64%. This rate of sensitivity may be
expected when generalizing results to other, related organisms of interest.

An important question is how to properly specify the “negative” (non-interacting)
examples used to train the system. Any predictive scheme for protein-protein interaction
inference will be faced with this fundamental question. Public-domain databases of protein
interactions comprise only positive examples [91, 209, 12, 161], creating the requirement to
define negative examples to train a machine learning system. One possibility is to manufac-
ture proteins in silico that mimic native protein characteristics (amino acid composition, and
perhaps short segments of contiguous residues) [25]. Another strategy is to assume that an
experimental data set is comprehensive in the sense that all protein interactions detectable
by the experimental system used in its derivation are represented; all protein pairs not con-
tained within this experimental set are declared as negatives. This approach, taken here, is
admittedly naive; for example, the genomic two-hybrid screening technique for physically
interacting proteins [65] has a number of limitations, most significantly a high false posi-
tive rate {172]. Further, false negatives due to protein misfoldings or insufficient screening
depth were identified as particular difficulties with the comprehensive yeast interaction data

subject to the current investigation [91].
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Absent definitive information, the naive approach is, on average, a reasonable
approximation as a starting point. The 6,408 ORFs in S. cerevisiae translate into more than
20.5 million possible distinct protein-protein interactions, assuming (conservatively) that
only one protein is produced per ORF (for a proteome of size N proteins, there are at least
(N?+4N)/2 distinct interaction pairs.)!°

The positive interaction data set used here consisted of 4,459 interactions, or
about 2% of those possible based on the one gene-one protein scenario. Accordingly, even if
the positive interaction set underrepresented the true biological state by as much as a factor
of 10, the error rate expected by randomly mislabelling uncharacterized protein interactions
as “negative” would be only 11%.

Our approach to minimizing redundant protein interaction pairs (described in Sec-
tion B.2) was carried out to eliminate bias in the predictor due to similar training and test-
ing examples. To study the effect on predictive acuity without any such filtering, cross-
validation experiments were conducted on the complete design sample from [91], inten-
tionally using all available interactions in cross-validation experiments. Here, each of the
feature sets F; were scrutinized. As anticipated, prediction success as quantified by the
objective measures discussed in Section B.4 was enhanced relative to the nonredundant
data set results summarized in Figures IV.1 and IV.2. While both precision and accuracy
were characterized by modest improvements (3.9%, 5.2%, respectively), the observed sen-
sitivity rate increased by 20.6%, averaged over all feature sets. This result suggests that
an apparent sensitivity rate, if obtained by indiscriminate predictions without redundancy
elimination processing, may be significantly overstated.

Our method implicitly assumes a static intracellular state. If proteins A and B
interact in a design species, say Sz, the proteome of which is sampled to obtain training
data, it is assumed that the same (or a similar) protein pair will also interact when gener-
alizing to a novel species S,. This assumption may be invalid if the physiological milieu
in S, is different than that of S;. The method and results are only pertinent for simple,
binary interactions between physically proximal proteins; dynamically assembling multi-
protein complexes cannot be resolved [72]. Post-translational modifications to a protein A

prerequisite to its recognition by protein B are not identified.

19Dye to alternative RNA splicing, the actual number of proteins produced by a gene is likely to be much
higher. Genes with dozen or more transcripts are commonly observed [22]. In one dramatic example, over
38,000 different isoforms of Down syndrome cell adhesion molecule (DSCAM) were observed in Drosophila
melanogaster [168].
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The Y2H in vivo assay is predisposed to both false positive and false negative in-
teraction detections [196]. False positives occur from self-transcriptional activation events,
or from chance contacts devoid of biological relevance. Two putative interacting proteins
may be linked via a third protein located with the yeast nucleus, initiating the transcriptional
machinery or the reporter gene. Mutations in bait or prey plasmids may also contribute to
false positive results. False negatives might be encountered because of transient or low-
affinity binding, insufficient localization to or conditions within the nucleus, or misfoldings
of the fusion proteins. One estimate of false negatives for a Y2H system was as high as
45% [195].

Therefore, it is quite possible that the data used to train the system in this in-
vestigation may contain incorrect labellings. This fact does not diminish the efficacy of the
present approach as demonstrated. As the quality of experimental interaction data improves
with technological advances, correctness probabilities of the machine learning predictions

will improve in parallel.

D Conclusions

We conclude that protein-protein interactions can be predicted with computation-
ally efficient machine learning without requiring information about protein conformation.
Cross validation experiments on protein interactions within S. cerevisiae showed that these
predictions can be made at a high rate of precision. However, precision is only obtained the
expense of an incréase in the rate of false negatives, or reduced sensitivity. This dichotomy
must be weighed against the objectives and expectations underlying the application of this
system for protein-protein interaction prediction. Certain SVM architectures predicted test
data with rates of sensitivity in the 55— 64% range. This rate of sensitivity may be expected
when generalizing to other, related organisms of interest. The precision estimates may not
necessarily be applicable, and in fact may be seriously degraded if the observed false posi-
tive rate of the trained machine is maintained when generalizing to all possible protein pairs
in an organism.

Our results demonstrate that only amino acid sequence and residue properties are

required as training information, suggesting some practical advantages of this approach.
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Interactions across species

A Introduction

The recent publication of the Human Genome Working Draft Sequence [115,
192] is an unequivocal landmark in the advancement of biological knowledge. However,
even a completely-sequenced genome presents only a coarse specification for an organ-
ism’s proteomic complement, and cannot provide understanding of biological function. A
major post-genomic scientific and technological pursuit is to describe the exceedingly di-
verse functions performed by the proteins encoded by the genome. Within the cell, proteins
assemble into complex and dynamic macromolecular structures, recognize and degrade for-
eign molecules, regulate metabolic pathways, control DNA replication and progression
through the cell cycle, synthesize other chemical species [2], facilitate molecular recog-
nition, localize and “scaffold” other proteins within signal transduction cascades [149], and
participate in other important functions.

To appreciate the role of protein function, a description of protein-protein inter-
actions is a necessary first step. After identifying the proteomic constituents, a rational
research strategy should then proceed in the direction of information flow represented by
[101]

Interaction — Network — Function

The combinatorial expansion of information advancing along this pathway is enormous.
Given the volume of proteomic data generated by high-throughput technologies [189], de-

scription of protein function must rely on the integration of empirical data with bioinfor-
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matic comparative and predictive analyses.

The workhorse of experimental proteomics has been the two-hybrid screen [65].
Although criticized based on the accuracy of results and its labor-intensive nature [63, 91],
it presently stands as the most viable technique for large-scale characterization of protein
interactions in complete genomes [119]. Protein chips may eventually provide large-scale
simultaneous protein-protein interaction data [122], but technical problems (denaturing,
substrate biocompatibility) must be overcome to scale-up for high-throughput analysis.
Other approaches will undoubtedly become prominent as proteomics technology continues
to evolve. A review of technological advances on this front can be found in [127, 175, 210].

In the meantime, bioinformatics approaches may help bridge the information gap

required for inference of protein function.

A.1 Bioinformatic approaches to protein-protein interactions

As discussed in Chapter II, a number of different strategies have been proposed,
including network inference based on a reference map of interacting domain profile pairs
[207, 206}, conserved gene-pairs and correlated prokaryotic interacting gene products [50],
clusters of orthologous proteins [184], phylogenetic profile {152] or tree similarity [151],
gene fusion events [129], location within a functional cluster map [172], and others. Be-
cause investigators concentrate on different organisms, or reporting is confined to partial
hypothesized interaction results, it is difficult to compare the predictive power of these var-
ious computational methods on an objective basis.

We previously reported a data mining technique [25] wherein a Support Vec-
tor Machine (SVM) learning system was trained on a limited, heterogeneous data set to
recognize and predict protein interactions based solely on primary structure and associated
physicochemical properties. Testing against previously unseen test samples, the system pre-
dictive accuracy exceeded 80% over the ensemble of statistical experiments. It was argued
that such a system might be used as a screening method to focus experimental assessment
of protein interactions. The remarkable success of the methodology reported in [25] has
provided motivation for the present work, which is more ambitious in scope. Our present
objective is to expand the range of prediction to whole-proteome “interaction mining” using
computational statistical learning theory.

Interaction mining uses analogy between the proteomes of two closely related or-
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ganisms to predict protein-protein interactions. A “template” or design organism provides a
network of experimentally derived interactions, and this pattern is used to infer the structure
of an interaction network in a related organism.! Given a list of experimental interactions,
all that is required to infer the proteome-wide interaction map are the amino acid sequences
of the target organism. We refer to this approach as “interaction mining”, in association with
the concept of data mining, which concentrates on the application of specific algorithms for

extracting structure from data [35].

To demonstrate the approach, we trained a learning system to recognize corre-
lated patterns of primary structure within protein interaction pairs taken from the human
gastric bacterium Helicobacter pylori, associated with peptic ulcers. A compendium of
over 1,200 H. pylori interactions were recently reported [161]. This publication is thought
to represent the first collective protein interaction map for a human pathogen. The H. pylori
data are publicly available online at http://pim.hybrigenics.com. The provision
of this data set for academic research is an important scientific contribution, since few rep-

resentatives from the Prokaryotes have been widely available to date. 2

Helicobacter pylori interaction data are used to train the system, and to estimate
the standard error of its generalization capability. Primary structure data from a close phylo-
genetic neighbor within the Bacteria Kingdom, Campylobacter jejuni, comprise the predic-
tion data set. C. jejuni is an enteric pathogen causing common symptoms of food poisoning.
Its infection is a precursor to a form of neuromuscular paralysis known as Guillain-Barre
syndrome [147]. Both H. pylori and C. jejuni are microaerophilic, gram-negative, flag-
ellate, spiral bacteria. Analysis of their major constituent protein domains shows a high
degree of similarity (see Table V.1). These orthologous bacteria represent model systems

for demonstration of the proteome-wide interaction mining approach.

L After the original submission of this manuscript, the authors were made aware of conceptually similar
work reported in [207]. In that investigation, a reference map of interacting protein domains was combined
with sequence similarity and clustering analysis to predict a new interaction map in another organism.

2In the Database of Interacting Proteins (DIP; [209]) circa November 2002, the most frequent non-
eukaryotic proteome (outside of H. pylori ) is E. coli, accounting for only about 1.6% of all interactions found
in the database. The current release of DIP has been significantly expanded, now containing over 18,000
protein-protein interactions. See Table V.3.
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IPR0O00345 IPR001450
IPR001450 IPR001789
IPR001789 IPR005225
IPR005225 IPR001650
IPR003594 IPR002942
IPR0O01064 IPR003009
IPR003009 IPR003594
IPR000205 IPR0O00055
IPR000531 IPR000205
IPR002942 IPR0O00713
IPR004359 1PR001230
IPR001230 IPR002545
IPR002912 IPR0O04087
IPR004161 IPR004161
IPR0O00063 IPR000531
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Table V.1: Comparison of 15 most-frequently observed protein domains in C. jejuni and
H. pylori strain 26695, indexed by InterPro accession number. Comparisons of each or-
ganism are made relative to the InterPro database [99]. Frequent domains common to both
proteomes are shown highlighted in boldface.

B System and methods

The Support Vector Machine [191, 42] can be trained to classify labelled empir-
ical data points by constructing an optimal high-dimensional decision surface that simul-
taneously maximizes the separation between data classes, and minimizes the “structural

risk”
R(cr) = /Z 0(z,)dF (), 0. € A V1) |

with respect to parameters o using an independent, identically distributed (i.i.d.) sample
Z={z,z2,.-.,21} generated by an (unknown) underlying probability distribution F, where
Q is an indicator function, and A is a set of parameters.

The sample points z; = (x;,y;) comprise protein features x; € R" and their clas-
sifications y; € {—1,+1}. In practice, the learning task converges rapidly as a constrained
quadratic programming is solved. The resultant decision function % represents an hypoth-
esis generator for inference on novel data points, mapping them onto the discrete set y, or

h:x—y. This is a binary decision (+1= interaction,—1=no interaction).
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B.1 Phylogenetic bootstrap

In previous work [25], we trained an SVM to recognize pairs of interacting pro-
teins found in the publicly-accessible Database of Interacting Proteins (DIP) [209]. The
system learned to predict interactions of previously-unseen protein pairs. Results presented
therein indicated that inference made on a protein-protein interaction data set might facili-
tate the functional annotation of uncharacterized proteins (where significant homologies to
other proteins of known function do not exist). While heterogeneous in terms of the num-
ber of different conserved protein domains represented, the distribution of organisms found
in the database at the time of the cited investigation was overwhelmingly biased towards
Eukaryotes, in particular the yeast Saccharomyces cerevisiae.

Building on previous work [25], we propose that the support vector machine-
learning approach may be used to extrapolate from a protein interaction map in one organ-
ism to a complete map in a related organism, for which only the proteomic sequences have
been identified.

Let us establish a framework for prediction of whole-proteome interaction maps.
The assumption in Eq. V.1 of a fixed generative probability distribution F(Z) is a key issue
in the design of this data mining application. A direct consequence of this assumption
is that a decision function 4, developed from a training sample Z, taken from species S,
may be used to predict protein-protein interactions on a sample Z, from another species Sp,

provided that features of their respective proteomes are not too dissimilar in some sense, or
P(F(Za),F(Zp)) < (V.2)

where p is a measure of distance between its arguments, and 0§ is a constant. The statis-
tic p is general, and may be taken to signify cross-species similarity based on genome-level
“edit distance” [165], whole-proteomic content [185], or proximity within phylogenies con-
structed from multi-domain orthologous protein sequences [37], to cite only three of many
possibilities. For this discussion, it is assumed that § varies as 0 < 8 < oo, where § = 0
is a proteome’s self-distance, and extreme mutual divergence between two organisms is
expressed in the limit as § — oo,

We introduce here the phylogenetic bootstrap algorithm. Bootstrap methods in
applied statistical inference are numerical techniques for estimating the standard error of ar-

bitrary test statistics [57]. The phylogenetic bootstrap for protein-protein interaction mining
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does not compute a statistic per se, but suggests a method for incrementally “walking” lat-
erally across a phenogram, interleaving rounds of computation and experiment, to develop
a knowledge base of protein-protein interactions in genetically related organisms. Using
the hypothesis 4 : x —y (based on an assumed common probability distribution F(Z)), we
infer the interactions within a sample taken from a distinct, evolutionarily similar proteome.
These predictions are a function of the generalization confidence level derived from 10-fold
cross-validation error estimation [182]. The probability of correctness of a novel prediction

may be estimated by
Pr{y =y | h} =g(8)(1 —¢) (V:3)

where ¥ is the predicted interaction for a putative interacting protein pair, y is the true
state of nature, €, is the cross-validation error rate, and g(0) is a decreasing function of
the interproteomic distance (Eq. V.2). A simple plausible (and conservative) form for the

function g is an exponential
g(d) = e M (V.4)

where A is the rate of decay. Substituting this function in Eq. V.3, the prediction confidence
becomes

Pr{§=y|h}=eM(1-¢,), A>0,8¢€]0,00) (V.5)

Note that this representation is schematic. The value of the decay parameter A and calibra-
tion of the distance in Eq. V.2 can only be determined after experimental validation of the
numerical predictions.

Upon completion of this process, predicted protein-protein interactions in the
novel organism may be used to design successive genetic or biochemical experiments. The
results of these selected experiments are fed-back to refine the current model, and flesh out
empirical protein interactions within the new proteome. This iterative process may con-
tinue as long as certain criteria on acceptable estimated prediction error rate and proteome
similarity remain satisfied. The steps comprising the phylogenetic bootstrap as proposed in
this investigation may be distilled into an algorithm, described. This algorithm is described

in greater mathematical detail in Section C.

B.2 Generalization potential

We estimate the expected value of the error rate of the classifier A{ct,x) using

k-fold cross-validation on the training sample Z,. Here, we take k= 10, producing a 10-
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fold cross-validation prediction error estimate. The expected generalization error is taken
as the average of the classification error observed on each of the k data folds. Averaging
reduces the variance of this estimate [155]. The prediction error derived from 10-fold cross-
validation is known to have low bias, and precision approximating that of leave-one-out
error estimation, at lower computational cost [131].

In this procedure, an SVM decision rule A(a., x) is constructed k times, each time
training on a different set of example data points {Z,, | Zn C Z;,m € 1,...,(k—1)}, and
testing prediction accuracy on the omitted set {Z, | Z, C Z,,n # m}, where Z,,|JZ, =
Z,. The number of prediction errors for each model is accumulated, and the k-averaged
expected value of the individual data sets’ inferred classifiers is taken as the system error
rate estimate £.,. Note that the statistic €., is an estimate of the expected prediction error
rate, and is itself a random function of population, the sample taken from that populatton,
and the inference method. [131].

“Prediction accuracy” as used here means that a correct declaration is made by
the decision rule, or y =y | h. This can represent either a positive or a negative predicted
protein interaction. If the cross-validation error rate is expressed as a fraction assuming val-
ues 0 < g, < 1.0, the confidence level expected for predictions of putative protein-protein

interactions is given by the probability expression of Egs. V.3-V.5.

C Algorithm
The phylogenetic bootstrap algorithm is summarized in this section.

1. Input. First, it is necessary to specify the species S,, S, subject to investigation. In
general, some existing protein interaction data may be at hand for each proteome,
although their relative cardinality may be quite skewed. Our line of thought as-
sumes that no interaction data are available for Sj; we have only a set of labels {Y,}
corresponding to experimentally verified interactions sampled from the proteome of
species S,. These labels, along with the amino acid sequence sets {s,} and {s; } com-
prising the species respective proteomes, are inputs to the algorithm. Other inputs
required are the inter-proteome distance & (Eq. V.2), and the maximum acceptable

rate of generalization error, €7%, where 0 < €™ < 0.5.
g (147 cv

2. Construct features from training sample, based on attributes of the primary structure
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sequences s, from the training data set. Encoded attributes X, for entire proteomes
may be derived from tabulated residue properties including charge, hydrophobicity,
and surface tension as described previously [25]. At this stage, data preprocessing in-
cluding normalization and filtering should be performed to produce a useful sampled
attribute set {x|x € R",x C X}. A total of / data points z are constructed by adding
labels y to the accepted feature vectors {x}, or z; = (x,yi),i = 1,...1. The union of

positively- and negatively-labelled examples constitutes the training sample {Z, }.

3. Compute decision rule. Design an optimal support vector machine to classify data
points in the sample {Z,}. After learning, the system builds a decision rule 4 that
maps input data vectors x; onto the classification space y; € [+1,—1]. The numerical
sign of y; is interpreted as the likelihood that the two proteins represented by x; will

interact.

4. Estimate CV error. Perform k-fold cross-validation experiments on the training set.
Segregate the observations {z*} within each data fold k, and train a different SVM
using data {z™} from each of the k—1 disjoint data folds {z"|?" € Z,,m # k}. Pre-
dict the class membership of the omitted points {z*}. Accumulate the total number
of misclassifications observed in this process. Take the final k-fold average cross-
validation error as the estimated expectation of generalization error rate €., of the
learner &. The magnitude of this error estimate in practice will be extended by some

function of inter-proteomic distance, say g(9).

5. Construct features from novel sample. Construct features {X,} from sequences {s}
for the unlabelled proteome Sj,. All-vs-all pairwise interactions may be represented
in the prediction set. The same data preparation process should be applied as carried

out in Step 1.

6. Predict novel interaction network. Predict a new network of protein-protein interac-
tions {I}} via the trained system h(0.) : x, — Y3, where o are parameters of the model.
To the extent that the assumption of proteomic similarity p (F(Z,),F(Zp)) < 6 is sat-

isfied, each point estimate is expected to be accurate with a probability g(8)(1 —&,),
orPr{i=y | h} =g(d)(1—¢y).

7. Validate sample experimentally. Take a random sample from the protein interaction

prediction set Z, = {(x,¥)|x C Xp,9 C Yb} and verify the predicted protein interac-
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tions (both positive and negative) using experimental proteomics techniques. Com-
pare the experimentally observed and calculated estimated prediction error rates. As-
sert that the following statement holds true: €}, < &, < €%, where the superscript v

cy

denotes validation by biological experiment.

8. Input. Select sequences {s.} from a new, related organism {S.} . The similarity
assumption

p(F(Z,),F(Z)) < & must still be maintained.

9. Update training sample. Add sequences from the validated prediction set to the
training set, and consider this expanded set as the training set for the next itera-
tion: {s,} = {s.} + {s»}. Update the class labels by adding the prediction label set

{Y,} = {¥,} + {¥5}. Protein interactions for organism {S.} can now be computed.

10. Iterate. Return to Step 1 and repeat the process. The stopping condition for this
iteration is violation at any time of the assertions regarding the generalization error
rate, i.e. when the error rate from cross-validation, €., exceeds the specified limit
en?*, or when the experimental observations contain more frequent errors than the

calculated rate, or €}, > €.

D Implementation

D.1 Generalization potential

A fundamental premise of our methodology for whole-proteome interaction min-
ing is that a leaming system trained on a finite set of attributes from species S, may be
used to predict protein interactions in a different species Sp (see discussion in Section B).
If experimental protein-protein interaction data are only available for S,, how can we as-
sign confidence in the predictions made for S;,? The “No Free Lunch” theorems introduced
in [208] state that any learning algorithm can be expected to perform “only as well as the
knowledge concerning the cost function put into the cost algorithm”. In the notation used
here (Eq. V.1), the cost function is the risk R(ct) used to derive the soft-margin classifier &
in terms of the distribution F based on the salient features Z, and the cost algorithm is the

SVM optimization procedure.
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INPUT Proteome sequences S,, Sp, labels Y,
INPUT Parameters 6, A, €%

ASSUME Similarity p (F(Z,),F(Zy)) < 8 (Eq. V.2)
COMPUTE feature set X,, sample Z,

X, < getFeatures(s,)

ZF <={(x,y) | xC Xa,y C Yo,y =+1}

Zy <= {(x,y) | xC Xs,y C Yo,y =1}
Z,=Z7UZ;

COMPUTE decision rule on sample

h(o,x) <= SVM(Z,)

COMPUTE C.V. generalization error estimate
€y = CV({h})

Pr{=y|h}=g(8)(1 —¢,) ASSERT ¢, < n™?
COMPUTE feature set X

Xp < getFeatures(s,)

COMPUTE predicted interactions

¥ <= h(0, Xp)

ASSERT validate sample experimentally

Zp <= {(x,9) | x C Xp,$ C T}

ASSERT €}, <¢g.,?

INPUT new proteome sequences s,

UPDATE s,, 53, labels Y,

Sa = Sa+ Y, <= Yo+ Yyssp < s

GOTO Step 1; iterate while ], < €., <el¥

Figure V.1: Phylogenetic bootstrap algorithm.
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No Free Lunch implies that in order to make meaningful generalizations, it is
essential that all priors or assumptions about the data and classifier be applicable to the
prediction data set. In other words, a generic “black-box” generalization machine cannot
perform any better than a random guess on other priors. In terms of the present research,
the strongest assumption advanced is that of proteomic similarity, p (F(Z,),F (Zp)) < 8 (Eq.

V.2). Other underlying assumptions are stated explicitly in Section D.4 below.

D.2 Primary structure features

Our objective is to gain insight into protein interactions, if possible using strictly
amino acid sequence information. To teach a learning machine, it is necessary to portray
salient aspects of the data (the “features™) that intuition or hypotheses suggest will con-
tribute to effective learning of the concept. The problem of feature selection is to define
descriptors which discriminate between two classes of data, while inhibiting the irrelevant
and redundant features [124]. Here, we sought to find the interacting protein pairs within
a complete proteome, for which experimental data representing a negligible percentage of
the total possible pairwise interactions are available. We built feature vectors for S‘VM
training as described previously [25], using native proteins directly sampled from the pro-
teome of Helicobacter pylori. The protein interaction data were obtained from the online
resource as described in Section B. Construction of the negative examples was carried out
following Assumption 2 (see Section D.4), which maintains that any pair of proteins not
labelled as mutually interacting in the design sample Z are assumed to not interact. This
represents another strong assumption: we assume that the H. pylori design sample reported
in [161] is complete in the sense that all possible protein-protein interactions comprising
the proteome were discovered. Non-interacting protein pairs are designated as negative in-
teractions. In the absence of further information, we must make this assumption, cognizant
that by labelling the sample in this manner we may inadvertently commit a logical fallacy

of argumentum ad ignorantiam (argument from ignorance).

D.3 Proteome data quality control

Protein interaction examples are filtered to ensure high-quality representation in
the learning machine. In Step 1 of the phylogenetic bootstrap algorithm (cf. Section C),

data preprocessing is performed. This preprocessing typically includes (1) scaling the fea-
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ture vectors to equalize relative numerical magnitudes of the disparate features, and may
be followed by (2) curation based on predefined criteria or prior knowledge impacting con-
fidence in the data set. Scaling techniques are well-documented in the machine learning
literature, and will not be further discussed here (a succinct summary for applications can

be found in [183].)

With regard to the second cited aspect of preprocessing, we selected only positive
samples for H. pylori interactions where the estimated probability that the observed inter-
action was found purely by chance (as a two-hybrid artifact) was at most 1.0E—6. In this
case the originators of the data set assigned degrees of confidence to the various interactions
comprising the sample, according to a model of competition for bait-binding between prey

fragments [161].

Commonly, a large percentage of the open reading frames (ORFs) in a given
genome remain experimentally unobserved, and if sequential homology to a protein of

known function is not discovered, these proteins are labelled as “hypothetical”.

FFurther complications include the lack of solubility and/or native conformational
stability of newly-expressed proteins. In a wide-ranging study of current structure-determination
technologies [47], investigators began with 1,871 ORFs from the thermophilic archaeon
Methanobacterium thermoautotropicum. After exclusion of membrane-bound proteins and
others with clear structural homologs, 424 ORFs were chosen for cloning, expression and
structural analysis. Experimental observations indicated that over 50% of the proteins stud-
ied were either insoluble or misfolded. It has been suggested that using such proteins in

biochemical assays will contribute to false positive or false negative results [56].

In light of these facts, the machine learning investigator might be tempted to
consider excluding such sequences from the design sample. An overriding argument against
such action is the recognition of the fundamental objective of assigning functional roles to
the so-called “hypothetical” protein sequences. Consequently, a concession must be made
to incorporate possible numerical artifacts, learned from experimental data which may be
fraught with false positive and false negative interaction data. As structural proteomics
continues to fill in the gaps in our knowledge in the future, these hypothetical proteins will

eventually be confirmed or invalidated experimentally.
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D.4 Assumptions

Interaction mining analysis makes certain assumptions about the distributions of
proteomic data in the design sample Z (recall discussions in the context of Eq. V.2). Other
assumptions inherent in this approach include [26]:

1. Static intracellular state. If proteins A and B interact in the design species Sy,
they will also interact if co-occurring in a novel species S,. This assumption may not be
generally valid for where physiological conditions present in S, differ relative to Sy.

2. Coverage of design sample. Any pair of proteins (A, B) not labelled as interac-
tors in the design sample Z are assumed to not interact. This is a subtle but significant point
that must be held in mind when interpreting prediction results.

3. Physical proximity. The all-vs.-all interacting mining technique selects inter-
action pairs based on correlated patterns of primary structure, and does not discriminate
protein subcellular location. In particular cases, additional information regarding subcellu-
lar location might offer insight regarding prediction practicability. Such analysis could be
done in a separate post-mining filtering step.

4. Simple interactions. Only binary interactions are represented; complexes of
proteins with more than two components are only inferred indirectly in post-mining anal-
ysis. Dynamic multiprotein complexes [72] are not directly resolved (but, may be inferred
after the fact, with details of each component protein’s interaction surface characteristics
[66]). Also, pairwise interactions predicated upon modifications to protein A (e.g., phos-
phorylation, glycosylation, proteolytic cleavage) prerequisite to its recognition by B are

excluded from the prediction space.

E Discussion

For the design organism Helicobacter pylori strain 26695, a total of 1,039 pro-
tein interactions were selected for analysis. Interactions were identified from the database
provided online at http://pim.hybrigenics.com. From the nominal H. pylori
proteomic complement of N =1,555 sequences, a sample of 1,039 non-interacting se-
quences was selected according to the various data filtering procedures described in Section
D, and following the assumption of comprehensive coverage in the positive design sam-

ple (Section D.4 ). This created a balanced representation of each data class to train the
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learning system, the total sample length being [ =2,078 observations. Each sample point
zi=(x;,yi), i=1,...,1 was constructed from primary structure features x; € R” and their

interaction class labels y; € {—1,+1} (see Section B).

E.1 Cross validation estimates from H. pylori

The learning machine generates an interaction hypothesis y for each data point x
via the computed decision surface & : x—y. Define the null Hy and alternative hypotheses

Hy as:

Hp: ylx=-1, (no interaction),

Hsy: y|x=+1, (interaction present)

There are two types of statistical errors that may occur on each decision y. (1) If Hy is true
and is rejected (§=+1,y=—1), the machine commits a Type I error, or “false positive”
decision. (2) If Hy is false (interaction present) and is not rejected (§=—1,y=+1), a Type
I1, or “false negative” error, is made.

The 10-fold cross-validation prediction error estimates obtained on the design
sample are presented in Table V.2. Results are shown for three conventional statistical
instruments used to evaluate the performance of classifiers in machine learning applica-
tions>. These include the sensitivity, precision and accuracy [109]. Sensitivity is calcu-
lated as S=TP/(TP+FN), where T P=number of true positive interaction decisions, and
FN=number of Type II errors. Precision is computed as P=TP/(TP+FP), where FP is
the number of Type I errors made by the system. Accuracy expresses an overall correctness
rate of the system, and is computed as A= (TP+TN)/(TP+TN+FP+FN). Here, TN

represents the number of true negative classifications.

The cross-validation measurements summarized in Table V.2 are comparable to
previously published predictive results [25]. On average, three of four SVM predictions
were correct when applied to the unseen data partition. The precision was 80%, a result
which seems to suggest a strong level of confidence in positive interactions detected by

the system. Precision indicates the rate of Type I error suppression. Sensitivity observed

3 As Baldi has pointed out [15], it is important to present multiple statistics of predictive performance. If the
performance statistics are constructed from elements of the set {TP,TN,FP,FN}, a high bias is possible if a
single statistic is presented using only two of the statistics comprising this set.
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| Precision | Sensitivity | Accuracy ]
| 80.2 | 68.6 | 75.8 i

Table V.2: 10-fold cross-validation performance estimate derived from classifiers trained on
examples from the design organism H. pylori. High precision indicates the suppression of
Type I (false positive) errors. High sensitivity means that Type II errors are suppressed by
the decision function (i.e., low false negative rate). Numbers are expressed as percentages.
Data sample size n=2,078.

in cross-validation was 69%, indicating the true positive rate expected for inference about
a different organism. The sensitivity measures the rate of Type II (false negative) error
suppression in a classifier. We cannot necessarily directly apply the precision statistic to es-
timate the generalization performance on novel organisms; the reasons for this are discussed
in Section E.1.

We found, as elsewhere [26], that precision and sensitivity can be interchanged
by suitable tuning of the parameters of the learning machine. By analogy to digital signal
processing, this effect corresponds to a noise filter threshold (reduced false positives) at the
expense of lost detection of weak signals (increased false negatives). For whole-proteome
interaction mining, false positive (Type I) error minimization may the preferred mode of
operation. In this case, the interactions in the generated map must be associated with a high
degree of confidence to warrant closer scrutiny and the expenditure of resources associated
with biological or biochemical validation experiments. On the other hand, if the detection
of all potential protein interactions is given high priority, then the sensitivity metric is most
informative.

Recalling Eqs. V.3- V.5, the expected precision of the classifier’s performance in
the novel organism will be less that 80%, and the sensitivity will be less than 69%. The
actual performance decrement cannot be evaluated until biological experiments validate or
invalidate the testable hypotheses comprising the network of interactions. At present we

can only estimate upper bounds on performance for this set of generated hypotheses.

Needle in the Haystack

An important complication concerns the distribution of actual positive and neg-
ative examples in Nature. It is expected that the number of “non-interactions” greatly out-

weighs the number of actual interactions when considering all pairwise combinations of
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proteins for a given proteome. The majority class in this context is the set of non-interacting
protein pairs; actual interactions are in the minority.

When data classes are highly imbalanced, replicating the naturally-occurring pro-
portions of each class within the training set produces classifiers that perform poorly on
minority-class examples [203]. This observation may be attributed to the influence of noisy
or unreliable examples present within the majority data class [112], or to the overlapping
of data classes in feature space, a situation that may increase the likelihood of misclassified
positive class examples by nearest-neighbor classification methods [111]. The latter may be
encountered using support vector learning methods when a large percentage of the training
examples lie very close to the decision surface.

There are several ways to deal with unbalanced data classes in machine learning
applications. One can present both positive and negative examples in a nearly-balanced
proportion, so that new data points are recognized as members of the correct class in gen-
eralization [183]. This should be done without regard to the prior probabilities associated
with positive and negative data points in the biological sample. However, in designing a
balanced sampling within the artificial (machine learning) environment, a variance with
respect to the distribution of data classes in the real, biological world is generated.

As our ultimate objective is to make useful predictions in biology, we are forced
to deal with this dilemma, which is sometimes referred to as a “needle in a haystack™ prob-
lem in data mining. When making predictions on all possible pairwise combinations in
a different organism, if the classifier is characterized by the same false positive rate esti-
mated from the training data set, the number of false positives would increase significantly.
The precision associated with these predictions would be seriously degraded relative to the

- training data. The sensitivity, or true positive rate, would be expected to remain the same.
Predictions made for the “minority class” (interacting protein pairs) would tend to have a
much higher error rate than those of the majority class.

The “cost” of making a false positive decision is generally different than the cost
of a false negative one. In whole-proteome interaction mining, it may be argued that false
negatives are inherently more costly than false positives, due to their relative scarcity. A
commercial drug discovery entity might take the opposite position, as false positive leads
used to initiate expensive lead validation wet chemistry experiments carry potentially sig-
nificant economic costs. Therefore, it may be appropriate to take prediction probabilities

into account, since we envision that the predictions should be subjected to some degree
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of manual curation by human experts. SVM classifiers produce a binary decision®, so do-
ing this would require transforming the outputs to produce continuous-valued, a posteriori
probabilities (e.g., see [157, 114]).

One way to account for cost-sensitivity in learning is to analyze a group of clas-
sifiers using lift charts, recall-precision charts or receiver operating characteristic (ROC)
curves [205]. ROC analysis (see Section C.2 of Chapter IV) makes no assumptions about
relative distributions of the data classes, or about misclassification costs [159]. Unfortu-
nately, ROC curves for protein-protein interactions are not likely to be as widely applicable
as in the fields of radar [174] or sonar signal processing [190], where the signal and noise
backgrounds have been thoroughly characterized. The protein interaction ROC space will
appear differently, in terms of curve shape and absolute magnitudes, under different relative
distributions of data used in their creation. Moreover, this effect might be encountered for
each different organism under investigation.

Another possibility when data classes are expected to be largely imbalanced is to
equalize the cost basis for the associated disproportionate misclassification costs. Practi-
cal strategies to accomplish this are presented by Elkan [62], who proposes (1) changing
the proportion of examples of the majority class (here, the non-interacting protein-protein
pairs), then retraining the classifier using estimated costs; or (2) applying a classification
rule involving the cost-weighted posterior probabilities of class membership for each train-
ing pattern. In the second case the (artificial) even class distribution is maintained.

Alternatively, nonsymmetric costs for false positive and false negative errors dur-
ing training may be explicitly embedded within the learning algorithm itself. This approach
was taken by Morik and co-workers, who extended the SVM algorithm to incorporate dif-
ferent cost penalties for each error type independently [137].

Results of the investigations presented here were obtained by taking the numerical
sign of the SVM output to indicate class membership (see Section E.1). Clearly, there are
a large number of alternative strategies to deal with the imbalanced data set problem as it
relates to predicting protein-protein interactions. The issues and methodologies mentioned
here should be kept mind when considering statistics of cross validation performance, and

their association with the expected performance on extrapolation to new organisms.

4That is, after thresholding of a continuous-valued output; see Eq. A-6. In principle the thresholding
operation could be foregone and the real-valued magnitude of the SVM output, geometrically representing the
distance of a data point from the decision surface, would then be correlated with a confidence measure: the
larger the absolute value of the output, the greater the confidence in the decision.
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E.2 (. jejuni interaction hypotheses

The estimated generalization performance from leave-one-out experiments on the
H. pylori proteome (Table V.2) supports confidence in the prediction of protein-protein in-
teractions in Campylobacter jejuni. C. jejuni and H. pylori are close phylogenetic relatives
(see, e.g., Figure 1 in [59]), displaying highly-similar constituent protein domains’ (Table
V.1) and genomic content ([185], Figure 2). The C. jejuni proteome contains 1,613 pro-
teins, of which all possible unique pairwise protein-protein interactions (1,300,078 pairs)
were encoded as features and added to the sample X, for interaction mining. Using one of
the 10 classifiers h(a, x) developed during cross-validation analysis on the design organism,
an interaction hypothesis was generated for each data point in this sample. A total of 5,367
distinct protein-protein interactions were declared by the decision function. Each protein
comprising the C. jejuni interaction map was predicted to have, on average, biological con-
nections with 3.33 other proteins.

By way of examination of the predicted C. jejuni protein interaction network, we
first investigate the possibility of alternative automatic map inference using conserved inter-
actions, or interologs. Secondly, we will look at some of the gross physical characteristics
of the predicted interactions. After this the discussion covers general scaling properties of
the map, comparing these to investigations appearing in the literature. Finally, some spe-
cific biological examples produced by the interaction mining procedure will be examined

in greater detail.

E.3 Interologs: prediction using sequence similarity

In Section C.1 of this thesis, some of the advantages and limitations of the homol-
ogy approach to protein functional assignment were discussed. Despite serious limitations,
the identification of protein sequence similarity remains an effective means by which func-
tion may be transferred to a query sequence from a previously characterized protein in an

amino acid sequence database. It is therefore reasonable to ask of the predicted interactions:

“How many of the predictions made for C. jejuni could have been produced on
the basis of sequential similarity to the experimental interaction network of H.
pylori alone?

3Source: EBI Proteome Analysis Database http: //www.ebi.ac.uk/proteome/comparisons.html.
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The idea is to find orthologous proteins within each organism, then assemble sets of con-
served protein-protein interactions between each member of a known H. pylori interaction
pair and their respective orthologs in C. jejuni. This is the concept of “interologs” (con-
served interactions), proposed by Walhout and co-workers [195] as a means to functionally
annotate uncharacterized proteins. The interolog hypothesis is that physically interacting
proteins in one organism co-evolve such that their respective orthologs also interact within
another organism.

To investigate the overlap between interologs and the predicted interaction map,
I first estimated the orthologous amino acid sequences between C. jejuni (CJ) and H. pylori
(HP) using the program InParanoid [163]. For each pairwise sequence comparison,
InParanoid searches for possible orthology using BLAST [5]. BLAST (Basic Local
Alignment Search Tool) is actually a series of programs for heuristic local alignment of
biological sequences. This search was performed using the program blastp against the
non-redundant protein sequence database (nr) using default parameters. The amino acid
substitution matrix used was BLOSUM62 [86]. InParanoid input parameters used in-
cluded the minimum desired percentage overlap of amino acids in the match region (90%)
and a minimum bit score (100 bits). The length requirement precludes short, domain-level
matches [163, 164] while the stringent score cut-off value reduces spurious local similarities
in amino acid sequence.

After the BLAST search, a new interaction network of “interologs” is constructed,
and we analyze its correspondence with the set of predicted interactions. The strategy is
depicted in Figure V.2 in the form of a Venn diagram.

This figure shows the experimental map of H. pylori on the left, which is linked
to the SVM-predicted and BLAST-derived maps on the right. The topmost circle denotes
a collection of experimental interactions that may exist in heterogeneous databases such
as DIP [209], BIND [12], MINT [211], or any number of organism-specific protein inter-
action databases in the public or private domain. Of particular interest are the regions of
overlap indicated in the figure—these might offer evidence supporting the biological rele-
vance of the predicted interaction map. Overlap Region I represents the set of interactions
obtainable by sequence similarity search alone; in this region the predictions correspond
to interologs. Region II interactions represent the intersection of hypothesized and experi-
mental interactions. DIP contains a large number of the known protein interactions in the

literature. Its current utility for our purpose here is limited; as can be seen from Table V.3,
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82% of the data in DIP represent yeast, and (excluding H. pylori) the most-similar organism
to C. jejuni found therein would be E. coli. Although it would be interesting to investigate
the similarities and differences between E. coli and the C. jejuni interaction networks in a
future investigations, for the present purpose such a comparison would not necessarily pro-
vide additional insight. The strongest evidence supporting the predictions would be Region

II protein interactions developed experimentally from the C. jejuni proteome.

[ Organism | # Interactions | Frequench

S. cerevisiae 14,941 0.8273
H. pylori 1,415 0.0784
H. sapiens 717 0.0397
E. coli 286 0.0158
M. musculus 97 0.0054
Others 603 0.0334
Total 18,059 1.00

Table V.3: Interactions by organism found in the DIP database, circa November 2002.
Frequency expressed as fraction of total number of interactions for each organism.

Results

The main result from this analysis was that from a set of 125 putative interologs in
C. jejuni, only 4 might have been predicted on the basis of sequential similarity to H. pylori
interactions alone. This total represents 3.2% of the predicted orthologous interactions, an
unexpectedly low result. Biological intuition might lead one to expect a larger percentage
of common protein interactions, considering the high degree of proteomic overlap between
the two organisms. If one accepts the interolog presumption of co-evolution, given the strict
parameters used to construct the interologs in this analysis, SVM predictions disjoint from
the interolog set are are potentially false positives. More importantly, the low percentage
of interologs recovered by the prediction method suggest that the SVM method is very
insensitive, characterized by a high incidence of false negatives.

Compare the present 3.2% interolog “recovery rate” to that of Matthews and co-
workers [133]. Using yeast two-hybrid assays, these investigators were able to experimen-
tally verify only 16% of the predicted interologs in the nematode Caenorhabditis elegans
when extrapolating from Saccharomyces cerevisiae. This rate of validation of predicted

interologs precludes its automatic application to the generation of complete protein-protein
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interaction maps.

It is possible that some of the “interologs” produced by selecting one sequence
from each of two lists of BLAST hits were not biologically relevant. Wojcik and Schichter
argued that simple similarity search may be insufficient to detect some interactions, as sim-
ilarity is a property of emphindividual proteins, and not of protein pairs [207].

Interolog analysis remains an active research topic. For example, unpublished
work by Marc Vidal has verified some interologs between C. elegans and other species
such as humans and Drosophila melanogaster [193]. This research is ongoing, and the
rates of recovery of these interologs by experimentation are not available.

At present, we cannot assess the validity of the putative interologs between H.
pylori and C. jejuni without experimental studies. Until definitive experimentation is per-
formed, one likewise cannot quantitatively estimate the rates of false positives within the

prediction map. This is an important area for future investigation.

E.4 Physical characteristics of predicted interaction pairs

To further examine the validity of the protein interactions within the predicted
C. jejuni interaction map, we analyzed some of the charge and amino acid compositional
statistics of the map, and compared these properties to the corresponding quantities in H.
pylori. Such analysis may help in the assessment of the biological relevance of the pre-
dictions, and perhaps offer insight into particular biological characteristics associated with
successful and unsuccessful interaction predictions. We posed three specific questions in

this regard. These were as follows:

1. What is the distribution of charged residues for each set of interactions?
2. What percentage of hydrophobic residues are found within the predicted interactions?

3. Is there any significant trend showing a predominance of cysteine residues in the

interactions?

To address these questions, protein sequence statistics for H. pylori and C. jejuni
were analyzed using the program SAPS (Statistical Analysis of Protein Sequences) [36]

which describes protein sequence properties for a protein or group of proteins relative to a
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reference set®. The reference organism must be chosen from a select few; for this analysis
E. coli strain K-12 was chosen because of its similarity to both HP and CJ (although in prin-
ciple any reference organism would suffice, since the comparisons of interest are between
HP and CJ).

In this analysis, four different amino acid sequence sets were considered: (i) all
HP amino acid sequences, (ii) the set of interacting HP sequences, (iii) all CJ sequences
and (iv) the predicted interacting sequences for CJ.

Not surprisingly, the resulting compositional distributions of each of the 20 amino
acid types within HP and CJ were found to be highly similar to one another relative to the

reference organism.

Results

Charge: Results of the electrical charge distribution analysis are summarized in
Table V.4. Multiple observations can be made the data in this table. In a given column,
the attribute of an interaction network (predicted, or experimental) is compared to the cor-
responding value for the proteome at large, for a given organism. Data appearing across a
row provides a comparison of the predicted and experimental interaction sets representing
the two species.

One observation drawn from Table V.4 is that the net electrical charge within the
interacting sequence sets was positive, whereas the net charge over the entire proteomes
was negative’. This may reflect the fact that elements of the set of interacting proteins tend,
on average, to be more positively charged than their “population” as represented by the pro-
teome at large. Differential net charge between proteome and interacting protein set is seen
to be larger in HP than in CJ; this may be due to the influence of a larger set of interacting
proteins within CJ than in the HP experimental set (5,367 versus 1,039). The data in the
table suggest that the predicted interaction set has similar electrical characteristics to that

of the template organism.

Hydrophobic clusters: The SAPS analysis of amino acid sequences indicated

that the composition of statistically significant hydrophobic amino acid segments is larger

6sAps is available as an online service at http://bioweb.pasteur.fr/seqanal/
interfaces/saps.html.
7Recall that the compositional analysis is carried out relative to a baseline organism, in this case E. coli.
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H. pylori | C. jejuni
Proteome -1.2% -1.2%
Interaction set | +0.7% +0.2%

Table V.4: Net charge distribution for all 20 amino acids in H. pylori and C. jejuni. “Pro-
teome” refers to the entire proteome of each organism. “Interaction set” refers to experi-
mental (for H. pylori) and predicted (for C. jejuni) protein-protein interaction maps. Num-
bers shown are relative to E. coli.

in both interaction sets than found in their proteomic supersets. The numerical results are
shown in Table V.5. From these data, it may be conjectured that the interacting proteins
appear to be generally more hydrophobic than the general population from which they are
extracted. Again, the level of agreement between CJ and HP inherent in these statistics sug-
gests that the predicted interaction set has qualitatively similar hydrophobic characteristics

to that of the template organism.

| | H. pylori | C. jejuni ]
Proteome 30.4% 31.8%
Interaction set | 31.7% 33.0%

Table V.5: Hydrophobics distribution for all 20 amino acids in H. pylori and C. jejuni.
“Proteome” refers to the entire proteome of each organism. “Interaction set” refers to ex-
perimental (for H. pylori) and predicted (for C. jejuni) protein-protein interaction maps.
Numbers shown are relative to E. coli.

Distribution of cysteine residues: Cysteine residues are known to be important
because they form strong, covalent disulfide bonds with other cysteines in a protein, caus-
ing sequentially distant segments of the protein to come together in the folded, three-
dimensional conformation [2]. Cysteine-rich, zinc-binding motifs along certain conserved
protein domains (e.g., the RING and B-Box domains) mediate protein interactions in the
context of a number of different biological functions, suggesting their fundamental impor-
tance to cellular molecular function [32]. An interesting question is whether or not cysteine
residues are over/underrepresented in the set of protein-protein interactions.

Table V.6 summarizes a comparison between H. pylori, C. jejuni in the same man-
ner as above, showing frequencies of occurrence of cysteine residues in the set of protein-

protein interactions (predicted and empirical), and their occurrence rates in the correspond-
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ing proteomes. It can be seen from the table that cysteines are observed less frequently
in the interacting protein samples than in their proteomic representation. One possible ex-
planation for this may be that the yeast two-hybrid assay used in obtaining the interaction
map [161] cannot adequately detect certain protein interactions, including those that require
post-translational modifications such as glycosylation, or disulfide bond formation. This is
because the “prey”’-“bait” interaction fundamental to the experimental technique must take
place in the nucleus [65]. This might account for the discrepancy in cysteine representation
relative to the proteome; that is, perhaps it is an artifact of the data collection method as

opposed to some fundamental biological phenomenon.

[ [ H. pylori | C. jejunﬂ
Proteome 1.5% 1.6%
Interaction set 1.1% 1.2%

Table V.6: Cysteine residue prevalence for all 20 amino acids in H. pylori and C. jejuni.
“Proteome” refers to the entire proteome of each organism. “Interaction set” refers to ex-
perimental (for H. pylori) and predicted (for C. jejuni) protein-protein interaction maps.
Numbers shown are relative to E. coli.

E.S5 Scaling properties of predicted interaction map

Objects or processes in Nature which are invariant with respect to mathematical
transformations are said to scale [123]. Networks of interactions in a number of natural and
man-made system display conserved motifs of substructural connections, suggesting uni-
versal design patterns that correlate with successful information processing or evolutionary
fitness [134]. We observed here that the inferred C. jejuni protein-protein interaction map
shares a key topological scaling property in common with previous proteome-wide inves-
tigations: the average connectivity of the interaction network. The agreement between the
present results and the cited works, which represent a variety of investigations on different
organisms, offers strong evidence supporting the biologically feasibility of the hypothe-
sized map. Another scaling property, namely the distribution of sizes of “clusters” of bi-
nary protein-protein interactions, varied significantly between the present investigation and
a previous study [93].

Network connectivity. A basic, large-scale architectural statistic describing a pro-
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Refs. | Organism Method | Proteomic Average
coverage | connectivity
1 S. cerevisiae | experiment 0.55 1.388
2 | S. cerevisiae | experiment 0.26 1.523
3 E. coli prediction 0.10 2.14
4 C. jejuni prediction 1.00 333
5 H. pylori | experiment 0.47 3.36
6,7 | S. cerevisiae | experiment 0.17 32,45-58
8 C. elegans | experiment ?7? 54

94

Table V.7: Comparison of proteome-wide interaction map connectivities for different or-
ganisms found in the literature. “Proteome coverage” is the estimated number of distinct
proteins involved in interactions as a fraction of either the total proteomic complement or
assay depth for a given organism. “Average connectivity” refers to the average number of
interaction partners per protein comprising the map. References: 1. [91]; 2. [172]; 3. [207];
4. Present investigation; 5. [161]; 6. [188]; 7. [187]; 8. [194]. Note: in [187], a retrospec-
tive reanalysis of data originally reported in [188] resulted in an updated estimated average
connectivity of 4.5—5.8 for S. cerevisiae.

tein interaction map is the average number of connections between a given protein and other
proteins in the map. Let us call this the “average connectivity” of the map. Table V.7 lists
data collected from several different proteome-scale investigations on different organisms.
It can be seen that on average, 3.33 proteins are linked to each protein in the C. jejuni
interaction map. This level of connectivity compares favorably to the other investigations
cited in the table, especially to the experimental data from [161], which provided the design

sample for training the learning system in the present investigation.

Table V.7 contains a column entitled “Proteome coverage”, defined here as the es-
timated number of distinct proteins involved in interactions as a fraction of either the total
proteomic complement or assay depth for a given organism. Note that the inferred network
of interactions in this investigation has full coverage, that is, each protein is expected to par-
ticipate in at least one biological interaction. Although this level of coverage is higher when
compared to estimates made from other investigations in the table, a recent investigation fo-
cused on elucidating multiprotein complexes in S. cerevisiae indicates higher connectivity

densities (0.78) than previously observed [72].

Cluster size distribution. In [93], it is argued that the most highly-connected pro-

teins within a cell are also the most critical for its survival. In studies involving the protein
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Ref. | Large clusters | Medium clusters | Small clusters
% % %
1 0.7 6.3 93
1.054 38.0 60.9

Table V.8: Distribution of protein interaction cluster sizes compared to [93]. A cluster size
represents the average number of interactions (edges) each protein (node) shares with other
proteins. “Large” clusters refer to instances of proteins with a large number of partners
(n>15); “medium” cluster nodes have 5< n <15, and in “small” clusters each protein has,
on average, n <5 connections to other proteins. Numbers are expressed as percentage of
total number of proteins comprising the map. References: 1. [93]; 2. Present investigation.

interaction network of Saccharomyces cerevisiae, they derived scaling laws describing the
distribution of numbers of connections between proteins in the network. Power-law scal-
ing characteristics were found common to both S. cerevisiae and H. pylori, indicating the
possibility of a universal large-scale structure in biological networks.

In that investigation, network architectural details for S. cerevisiae showed that
the largest and smallest clusters of connected proteins constituted 0.7% and 93% of the
total number of proteins comprising the map, respectively. A large interaction cluster was
defined as one with > 15 links, while small clusters had <5 binary connections to other
proteins. In the present investigation, we found similar connectivity distribution properties
in the predictions for C. jejuni only for the largest clusters, i.e. those where n> 15 partners
per protein mode were predicted. The inferred map has a much larger distribution of small-
to medium-sized clusters by comparison, as summarized in Table V.8. One explanation for
this variance might be represented in arguments put forth in [82], where it is noted that
the power-law cluster size distribution is characteristic of networks in a state of transitory
expansion. It follows that protein interaction network connectivity is a dynamic feature;
different connection properties would be expected at different states in an organisms’ evo-

lution.

E.6 Map visualization

We present a visualization of the complete hypothesized protein interaction map
for C. jejuni in Figure V.3. In the figure, individual proteins are represented as vertices, and
the interactions between pairs of proteins are indicated by edges connecting nodes. Proteins

with a large number of partners (> 15; 1% of all predictions) are colored red, while green
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Figure V.3: Predicted whole-proteome interaction map for Campylobacter jejuni. In this
diagram, individual proteins are represented as vertices, and the interactions between pairs
of proteins are indicated by edges connecting nodes. Proteins with a large number of part-
ners (> 15; 1% of all predictions) are colored red; green nodes signify that relatively few
proteins (< 5; 61% of predictions) are expected to interact with that node. Blue nodes
represent proteins with 6— 14 interaction partners.

nodes signify that relatively few proteins (< 5; 61% of predictions) are expected to interact

with that node. Blue nodes represent proteins with 6— 14 interaction partners®,

E.7 Selected biological examples

In this section, we present specifc biological examples of protein-protein inter-
actions predicted for C. jejuni, exemplifying the type of information that may be extracted

from the application of this approach. This represents only a sampling of the subnetworks

8The £gure was generated using the graph visualization program aiSee, available online at http://
www.AbsInt.de.
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QOPN36

Q9PN67

Figure V.4: Principal components of an hypothesized two-component thermoregulation sig-
nalling pathway in C. jejuni. Shown is a subnetwork of interactions comprising the primary
interaction partners of the sensor (Q9PN36) and regulator (Q9PN67) proteins. Each pro-
tein node is labelled by its corresponding ORF designation. The previously uncharacterized
protein QOPMG7 may play a role in transferral of the message from sensor to regulator in
the thermoregulation signalling pathway.

automatically generated by the interaction mining procedure.

1. Thermoregulation. Two-component signal transduction systems are essential
in regulation of many bacterial functions, including chemotaxis, metabolism, and the re-
sponse to environmental stress. The two-component mechanism constitutes a membrane
environmental sensor and a cytoplasmic regulator. This mechanism typically involves au-
tophosphorylation of histidine residues on the sensor protein, which then acts as a kinase for
the regulator, the phosphorylation of which induces transcriptional activation appropriate to

the chemical or thermal stimulus [107].

Elements of an hypothesized a two-component thermoregulation signalling path-
way in C. jejuni are presented in Figure V.4 and Table V.9. The figure displays only a
subnetwork of interactions comprising the primary interaction partners of the sensor and
regulator proteins. Each protein node is labelled by its corresponding ORF designation.
The two-component sensor (Q9PN36) is functionally linked to the putative heat-shock reg-
ulator (Q9PN67) via an intermediary protein Q9PMG7. Heat-shock proteins are known to

solubilize misfolded or denatured proteins in case of extreme thermal insult to the cell [2].

The intermediate protein Q9PMG?7 is designated as “hypothetical”, meaning it
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has sequential similarity to other proteins of unknown function. ThiS 180-residue protein
contains two possible sites for phosphorylation (casein kinase II, tyrosine) as detected by
PROSITE search [13]. It is feasible hypothesis that this previously uncharacterized pro-
tein may play a role in transferral of the message from sensor to regulator in the C. jejuni
thermoregulation signalling pathway.

If elements of this inferred pathway are validated in wet biological studies, we
suggest the possibility of its manipulation or obstruction using antibiotic agents. As recently
noted, targeted inhibition of histidine kinase signal transduction pathways in bacteria may
have beneficial effects for host mammals, in which cellular signal transduction proceeds

according to a different mechanism [132].

| ORF IStatusI Annotation | Partners |

QIPN36 A Two-component sensor | QIPNLS,Q9PNG1,Q9PMG7
Q9PN67 P Heat shock regulator | QI9PMG7,Q9PNF8,Q9PNF7,
Q9PNF3,Q9PNF1,Q9PNFS5,
Q9PNF6,Q9PNF4
QIPMG7 H Protein Cj1495c¢ QI9PN36,Q9PN67

Table V.9: Principal components of an hypothesized two-component thermoregulation sig-
nalling pathway in C. jejuni. ‘“Status” refers to the functional annotation status of the ORF,
with H=hypothetical, P=putative, A=annotated.

2. Ferric uptake and regulation. The storage and regulation of iron levels is a
fundamental aspect of cellular survival for gram-negative bacteria. Iron is a nonabundant
essential nutrient that is toxic in excessive concentrations, necessitating its regulation within
the cell. In C. jejuni, ferritins (iron-storage proteins) are also involved in oxidative stress

resistance [7].

A subnetwork of putative protein interactions integral to ferric uptake and reg-
ulation processes is shown in Figure V.5. This interaction group comprises proteins link-
ing the extracellular signal (Q9PJAS, putative integral membrane protein) to the regulatory
(P48796, ferric uptake regulation) and transcriptional machinery (Q9PNK3, leucyl-tRNA
transferase; Q9PN44, polyribonucleotide nucleotidyltransferase) within the cell. Such a
connection is required to respond to dynamically changing requirements for iron storage or
removal. Q9PNK3 is predicted to interact with Q9PMS3, a putative ferredoxin that may

play a role in the intracellular redox system.
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QOPN43
QOPMS4

QO9PJAS

Figure V.5: Principal components of an hypothesized ferric uptake regulation pathway in
C. jejuni. Each protein node is labelled by its corresponding ORF designation. The fig-
ure shows a subnetwork of predicted protein interactions linking the extracellular signal
(Q9PJAS, putative integral membrane protein) to the regulatory (P48796, ferric uptake regu-
lation) and transcriptional machinery (Q9PNK3, leucyl-tRNA transferase; QOPN44, polyri-
bonucleotide nucleotidyltransferase). Such connection is required to respond to changing
requirements for iron storage or removal. Protein QOPMDS (possible bacterioferritin) may
participate in redox stress resistance, by storing iron in a soluble, non-toxic form. Q9PMD35
is linked to a 30S ribosomal protein (Q9PI17) suggesting that this system may be involved
in protection of the ribosomal machinery from iron toxicity.

Another key protein in this figure is Q9PMDS5 (possible bacterioferritin) that may
be instrumental in redox stress resistance, by storing iron in a soluble and non-toxic form.
Q9PMDS is linked to a 30S ribosomal protein (Q9PI17) which may suggest that this system
is also involved in protection of the ribosomal machinery from iron toxicity. It is of interest
to note that the hypothetical protein Q9PMG7 appears again in this inferred scenario of iron
regulation. While a functional role has not been assigned for this protein, is it possible that
it participates in many pathways within the cell. Recall [93], where it was argued that the
most highly-connected proteins in protein interaction networks are most crucial to a cell’s
viability. Perhaps this protein carries such significance within C. jejuni. This question
awaits further proteomic study and validation.

The protein components central to the hypothesized ferric uptake interaction clus-

ter are summarized in Table V.10.

E.8 Postscript

There is a great amount of future research and experimentation required to fully

assess the biological relevance of predicted whole-proteome interaction maps using the
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| ORF | Status | Annotation ] Partners |
P48796 A Ferric uptake regulation protein | QIPNK3,Q9PNK2,Q9PNK1,
QIPNG1,Q9PMG7
Q9PNK3 A Leucyl-tRNA synthetase QI9PMS3,Q9PN43,Q9PMS4,
Q9PN44,Q9PJAS
Q9PMD5 A Possible bacterioferritin QO9P117,Q9PHR6,Q0ZI13,
Q9PI37,Q9PMG7

Table V.10: Principal components of an hypothesized ferric uptake regulation pathway in
C. jejuni. “Status” refers to the functional annotation status of the ORF, with
H=hypothetical, P=putative, A=annotated.

methodology proposed here. The fact is that we do not know whether or not each of the
predictions are useful until genetic or biochemical experiments are performed to substanti-
ate or invalidate them. Until that time, they may be considered as valid hypotheses awaiting
empirical confirmation or falsification.

We predict 5,367 protein-protein interactions in C. jejuni using training data from
H. pylori, which contains 1,039 data points. Are the 4,000 or so novel C. jejuni predictions
false positives? From the perspective of classical computational biology, one conclusion
that might be drawn from the interolog analysis discussed in Section E.3 is that there are
too few homologous pairs (from sequence similarity search) found within the predicted
interaction network. To the extent that many interologs truly exist between the two organ-
isms, the predictions are insensitive and imprecise, characterized by a large rate of both
false negatives and false positives.

From another angle, it is possible to argue the opposite position—that in fact the

. false positive rate is not compromised. Let us return momentarily to the discussion of

Section E.1. For the sake of argument, assume that the experimentalists have diligently
performed their duties, and that the interactions they have measured in H. pylori are indeed
comprehensive and biologically relevant. The SVM trained on these interactions in turn
predicted 5,367 protein-protein interactions in C. jejuni. This result appears to agree, at
least in order of magnitude, with the “true state of nature”. Since the two organisms have
highly-similar protein distributions, and are similar in terms of biological environment and
function, it would be reasonable, intuitively, to expect that the number of protein-protein
interactions in each should be roughly similar as well.

However, rigorously following the “needle in the haystack’ line of reasoning pre-
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sented in Section E.1, only finding 5,367 interactions in C. jejuni is a surprising result, as
one might expect a much larger number of predicted interactions ( O(100,000)!) to oc-
cur by extrapolation from raw numbers calculated from the precision and sensitivity cross
validation estimates. Does the SVM learn to “detect” an interaction on a constant percent-
age of data points, or only when a data point representing patterns correlated with a true
protein-protein interaction is presented?

These are important questions that need to be addressed in future research. The
only conclusion that may be advanced with certainty at the present time is that verification
(or refutation) of the hypothetical predictions requires experimentation. The methodology
presented in this chapter offers one framework in which the biological utility of proteome

interaction mining may be explored.
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VI

A new method to estimate

ligand-receptor energetics

A Introduction

The process of developing a new drug involves seven major steps [11]. (i) First,
a disease is identified, then (ii) drug targets (usually, proteins) within the cell are hypoth-
esized, the activation or inhibition of which it is thought to alter the disease state. Once
targets are identified, the next task is to (iii) identify potential lead compounds that will
bind to the target. These leads are subsequently (iv) optimized with respect to their struc-
tural characteristics in the context of the target binding site, then subjected to (v) preclinical
and (vi) clinical trials to determine their bioavailability and therapeutic potential. The final
step is to (vii) optimize efficacy, toxicity and pharmacokinetic properties. This may involve
the use of pharmacogenomics techniques to tailor compounds to a subset of the patient
population that is predisposed to a disease.

Pharmaceutical companies are exposed to great financial risk in the course of
identifying viable drugs to treat a certain condition or disease. There are also tremendous
direct and indirect (opportunity) costs associated with delaying the removal of non-viable
drugs from this drug discovery “pipeline” until the latest stages of the process.

A huge number of drug targets have been generated from genetics, genomics
and proteomics technologies. Accordingly, the lead identification and optimization steps

have assumed critical importance. High-throughput experimental screening assays [49]
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have been complemented recently by computational (“virtual screening”) approaches to
identify and filter potential ligands, given the characteristics of the target receptor structure
of interest [21, 200]. In virtual screening, databases of compound libraries are searched,
and scoring or discrimination functions are used to select the “best” candidate compounds

for biological activity analysis [116].

The scoring of ligands in virtual screening is often associated with computa-
tional docking simulations that mate receptor and cognate small-molecule ligand in three-
dimensional space. To provide broad generalization in “chemical diversity” space, com-
puting this score requires the accurate prediction of binding affinities of many structurally
distinct ligands [78]. Three main methodologies have been identified for free binding en-
ergy calculations. In order of computational complexity, these are: (1) knowledge-based
scoring functions, (2) partitioning the binding energy into biophysical energy terms and (3)
molecular dynamics [167]. The most accurate computations are represented by molecular
dynamics techniques, but their inherent computational intensity precludes their application

to industrial-size chemical databases.

Regression-based scoring functions, as exemplified by the work of Béhm [30],
are fast but require a three-dimensional structure of the receptor. This prohibits their use in
cases where the structure is difficult to obtain, such as with transmembrane proteins. The ac-
curacy of such methods has also been called into question. A recent investigation concluded
that “no significant correlation” existed between Bohm-type scores and experimentally-

determined binding affinities for a group of fifteen complexes [136].

In this research, we propose a new method to estimate the free binding energy
between a ligand and receptor. We extend a central idea developed in previous investiga-
tions [25, 26, 28] that uses simple descriptors to represent biomolecules as input examples
to train a support vector machine (SVM) [191], and the application of the trained system to
previously unseen pairs, estimating their propensity for interaction. Here, we seek to learn
the function that maps features of a receptor-ligand pair onto their equilibrium free binding

energy.
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B System and Methods

B.1 Thermodynamics of binding

For our purposes, consider that a single protein P binds a single small molecule

ligand L to form complex C, or
P+L=C (VL.1)

Assuming that this reaction is in thermodynamic equilibrium, the Gibbs free energy change

on binding AG? is written
AG® = —RTIn(K,,) (J/mol) (VL2)

where R is the gas constant, T is the temperature (°K) and K, is the equilibrium binding

constant between protein and ligand!. K, is defined as
K.=[Cl/[Pll] (M) (VI3)

where [C], [P] and [L] are molar concentrations of complex product, protein and ligand
reactants, respectively. Often the equilibrium dissociation constant K is used to quantify

ligand binding strength. It is simply the inverse of the binding constant, or

1
K;= = [PlL])/IC] (M) (V1.4)
a
and represents the concentration of ligand required to saturate half of the protein’s available
binding sites.
Calculation of AG® usually entails its partitioning into various energetic compo-
nents accounting for rotatable bond entropy, hydrogen bonds and ionic interaction forces,

lipophilic protein-ligand contact surface, and others [29].

B.2 Database of ligand-receptor objects

The data set used in this investigation was aggregated automatically using infor-
mation located in a number of disparate online resources, coupled with local computations.
An object data base was constructed from this data, and subsequently sampled to generate
examples for training and testing the performance of the regression estimation system. The
experimental database consisted of 2,956 objects, each having attributes as summarized in

this section.

1Under physiological conditions (310 °K, 1 atm, 1.0 M), the value of RT is about 2.577 kJ/mol or 0.616
kcal/mol.
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Ligand-receptor complex. Ligand-receptor data were extracted from the Computed Lig-
and Binding Energy (CLiBE)? database, a compendium of information on complexed re-
ceptors and ligands. Each record in CLiBE contains computed values for the total ligand-

receptor potential energy field AG?, given by
AG® = AG, +AGj + AG, + AG, (VL5)

where the right-hand-side partitioning represents energy contributions due to non-bonded
van der Waals interactions, hydrogen bonds, electrostatic forces and ligand desolvation en-
ergies, respectively [145]. Methods underlying the computation of binding energies com-
prising the database subject to this investigation are described in [45].

The complexes within this resource are themselves based on “heterogen” records
found in the Protein Data Bank (PDB) [20]° for which a chemical identity has been assigned
to the ligand. PDB is a public domain repository of experimentally determined structures

of biological macromolecules.

Ligand structures and chemical names. Data files with entries representing ligand struc-
tures and their associated chemical names were obtained from the National Cancer Institute
(NCT) Open Database of Compounds®. The data entries were represented as “SMILES”
strings, where SMILES (Simplified Molecular Input Line Entry System) is a specification
and nomenclature for describing molecules as a compact, one-dimensional string of char-

acters, including atoms, bonds, aromatic rings and branches [202].

Molecular connectivity. The SMILES representation for each ligand molecule was con-
verted to a two-dimensional connectivity matrix using a computational chemistry package
(JOEIib; [201])°. The rows and columns of this matrix reflect the cardinality of constituent
atoms established by the SMILES representation. At row i and column j, a unit-valued
entry is made if the corresponding atoms in the molecule are covalently connected; other-
wise the value of that matrix element is zero. Diagonal elements of this matrix store the

appropriate atomic number, as suggested previously {41].

2CLiBE circa August 2002 has 14,731 records, with 2,803 distinct ligands and 2,256 distinct receptors. See
http://xin.cz3.nus.edu.sg/group/clibe/clibe.asp.

3PDB contains 18,294 structures as of 23-Jul-2002. See http://www.rcsb.org/pdb/.

4Available at http://cactvs.cit.nih. gov/ncidb2/download.html, this resource currently
contains over 250,000 compounds.

5Open source, available at http://joelib.sourceforge.net/.
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Molecular synonyms. To maximize the chemical diversity of objects potentially avail-
able for numerical experiments, a list of common chemical synonyms corresponding to
each ligand were obtained using the online ChemFinder service®. Each ligand synonym
within its list was used in a lexical similarity search of the NCI compound files to obtain
SMILES representations in cases where different chemical names were used for identical

ligands across databases.

B.3 Support vector regression

The support vector algorithm, based on statistical learning theory, is applicable
to both (1) binary classification and (2) regression estimation [191]. In previous work, we
developed methods to train a support vector machine (SVM) classifier to learn to predict
protein-protein interactions using descriptors based on physicochemical properties of paired
amino acid sequences [25, 26, 28]. In the present application, we propose to exploit the
SV algorithm to solve a regression problem. The concept to be learned is the functional
mapping between a set of ligand-receptor features and the total free binding energy of the
complex. The basic idea in support vector regression (SVR) is to map a set of input patterns
X ={x1,x2,...,x} € R" onto a high-dimensional feature space ¥ via a nonlinear mapping
@ : R*—~RP (D > n), and then perform linear regression in ¥. Each pattern vector x; has
a matching target value y; € R. The goal is to find a function y = f(x) representing the real-
valued pairs {z; | z; = (x;,:), i € 1,...,I} within a certain acceptable maximum deviation
level € [179]. Practical implementation issues with SVR are presented in [179, 138], and

theory and algorithms for extension to regression estimation with noisy data appear in [178].

B.4 Feature representation

Each ligand-receptor complex was transformed into a vector of numerical fea-
tures presumed salient for learning the target concept. Receptor and ligand feature vectors
constructed as outlined in this section are concatenated and labelled with the value of their
total free binding energy. These vectors are subjected to SVM regression training and cross-

validation testing to evaluate how keenly the system learned the concept as posed.

6See http://chemfinder.cambridgesoft.com/result. asp.
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Receptor. Receptor protein features were generated as described previously [25], consid-
ering tabulated physicochemical properties (charge, hydrophobicity and surface tension) of
the amino acid sequence to be prototypical of binding characteristics of the receptor. Each
residue in sequence was replaced by floating point numbers with values corresponding to
these physical properties. This vector of numbers was then mapped onto a fixed-length
interval, to provide a basis for comparison between receptor proteins of varying sequence

length.

Ligand. Exemplars for the ligand component of each molecular complex required a novel
approach. The design ethos followed here dictates beginning with a minimal, elemental
group of features, in order to develop intuition regarding the feature space.

In accordance with this approach, the two-dimensional molecular connection ma-
trix described in Section B.2 was supplemented by additional arrays, each of which con-
tained numerical values for fundamental, measurable chemical properties characterizing the
atoms comprising the molecule. These properties included the atomic ionization potential
energy, which represents the energy necessary to remove the outermost electron from the
ground state of a neutral atom, and the electron affinity, which is a measure of energy change
upon adding an electron to a neutral atom [31]. Ionization energies are always positively-
valued, while electron affinities may assume either positive or negative numerical values.

For each small molecule ligand, three two-dimensional arrays representing molec-
ular topology, electronic structure and chemical behavior of the component elements, were
concatenated into a single, wide matrix. The resulting aggregate data matrix was then
factorized using the singular value decomposition [79]. The singular values computed in
this factorization are extracted, representing a projection onto one-dimensional space of
the essential characteristics of molecular bond topology, and, it is hypothesized, the spatial
distribution of molecular properties important for binding with a receptor.

Burden [41] introduced the idea of computing the eigenvalues of a hydrogen-
suppressed molecular bond graph with atomic number on the diagonal and numbers indi-
cating bond presence and type at off-diagonal positions. This matrix was used as a means to
group substructures for chemical similarity search. In that work, it was maintained that the
smallest eigenvalue embodied information on all molecules, and therefore was sufficient as
a topological descriptor. Here, all singular values are retained, regardless of their relative

magnitudes, as discarding the entire set is not justifiable. This vector is finally stretched (or
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compressed) onto a fixed length interval, as was performed for the receptor features.

C Implementation

C.1 Learning concept

The concept to be learned is the function y = f(x) that maps ligand-protein feature
vectors x to the corresponding free energy of binding y. How well the SVR machine learns
this concept will be quantified using the statistics described in Section C.2, collected from

observations of the cross validation protocol as described in Section C.3.

C.2 Evaluation of machine learning

One measure of effectiveness for regression estimation is the normalized mean

squared error, given by

N
E vk = %)’ (VL6)

Zl'd

1
nmse = —3

where N is the number of target points predicted, o is the actual sample variance, y; and ¥
are the actual and estimated target values of the k-th data point, respectively [74]. Because
nmse is normalized by the sample variance, it may be used to compare different regression
studies on a more equitable basis than would be possible using the conventional rms error;
intuitively, a given prediction experiment is less challenging where the variance in the data
is small. Notice that if we replace the prediction terms yj with the arithmetic mean y in
Eq. VL6, the value of the statistic is 1. This trivial case results when the predictor simply
outputs the mean value of the data. Low values of nmse indicate good overall predictive
acuity.

Pointwise predictions of ligand binding may be evaluated using the normalized

mean absolute error, defined by

nmae—ll§| — Vi! (VLT
oN & Ye— Yk .

This statistic is normalized by the sample variance for the same reasons as were cited for
nmse above. Furthermore, its value may be interpreted as the number of standard deviations,
on average, that predictions differ from the target values across the test set. The lower the

value of nmae, the better the system pointwise predictive ability.
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In some ligand screening situations (such as “virtual screening” [21]), predict-
ing the relative ranking of binding strengths among a set of ligand-receptor pairs may be
desired. The output of such an analysis would be a list of predicted binding energies,
sorted according to predicted magnitudes AGY. Tn such cases a measurement of non-
parametric or rank correlation, such as represented by Kendall’s T coefficient [104], is
informative. In cross-validation, given an ordered array of N “(actual,predicted)” values
1,91, - - -, (v, Yn ), We systematically compare the numerical signs of individual bivariate
pairs X = (y;,5;) and ¥ = (y;,¥;) fori=1,...,N, j=(i+1),...,N.

If either (a) y; > y; and ; > ¥}, or (b) y; < y; and y; < ¥; is observed, X and Y are
said to be “concordant”. Otherwise, the points are “discordant”. Kendall’s T expresses the
tendency of two ordered lists y and § to coordinately increase or decrease, and is computed

as
Nc—Np

T = y
VNc+Np+Tx/Nc+Np+Ty

where Nc is the total number of concordant pairs, Np is the number of discordant pairs,

-1<t<+1. (VL.3)

and Ty, Ty are counts of the “ties” found in X and Y pairs, respectively. A large pos-
itive(negative) value of T that the rank ordered values y and y are positively(negatively)

correlated.

C.3 Cross validation experiments

To estimate the generalization error of the trained support vector regression sys-
tem, we averaged the results of ten separate 10-fold cross validation experiments. In k-fold
cross validation, k random, equal-sized, disjoint partitions (folds) of the example data are
constructed, and an “inducer” (here, an SVR engine) is trained on (k—1) folds, with the
excluded fold being used to test the trained system performance. After k such experiments,
the results are averaged, and the observed error rate may be taken as an estimate of the
error rate expected upon generalization to new data [108]. To reduce further the effects of
chance in randomly sampling the data, we averaged the results of 10 different 10-fold cross
validation experiments, performing 100 different training/testing procedures. The results
we present are cross validation averages for the statistics nmse, nmae and T as described in
Section C.2.

The total sample used in these experiments comprised 2,671 distinct ligand-

receptor complexes. The output of the trained system is a predicted level of binding free
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energy y (in kcal/mol) given a set of features abstracted from a given input complex x. A
qualitative glimpse of typical results from one complete 10-fold cross-validation test is of-
fered in Figure VI.1, which shows a scatter plot of actual versus predicted binding energy.
The figure shows that some degree of correlation between prediction and truth exists. This

correlation will be examined on an objective basis in the discussion of Section D.1.

6 ] | ] |

Actual In(-A G) (kcal/mol)
w
|

o % * . [n=2671]
0 | — ™ T |

0 1 2 3 . 4 5 6
Predicted In(-A G) (kcal/mol)

Figure VI.1: Actual versus predicted binding free energy. Shown are typical results from
one complete 10-fold cross validation experiment on the ligand-receptor database discussed
in Section B.2. Sample size n=2,671.

D Discussion

D.1 Cross validation results

The principal results obtained in this investigation are summarized in Table VI.1
and in Figure VI.1. The table compares the ten 10-fold cross validation error estimates to
a number of studies reported in the literature. In contrast to the present results (shown in

boldface), all of the competing methodologies shown in the table are derived from scoring
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functions or simulations predicated upon knowledge of the three-dimensional structure of
receptor and ligand complex. The columns in Table VI.1 comprise test sample size n; the
mean target binding energy 7 and standard deviation (G,), in kcal/mol; normalized mean
square error (nmse, Eq. VI1.6); normalized mean absolute error (nmae, Eq. VL7); and

Kendall’s tau (1, Eq. VL8).

Ref. n v Oy nmse | nmae T
{(kcal/mol) | (kcal/mol)
1 14 -4.09 1.179 0.198 | 0.344 | 0.753
2 12 -0.98 0.332 0.271 | 0.401 | 0.667
3 11 -4.25 0.711 0.377 | 0.466 | 0.455
4 | 20671 -37.76 35.106 | 0.419 | 0.377 | 0.552
5 13 -3.93 0.796 0.440 | 0.497 | 0.632
6 30 -8.897 2.591 0.720 | 0.661 | 0.418
7 17 -8.17 3.785 0.789 | 0.621 | 0.358
8 63 -1.45 0.560 1.342 | 0.836 | 0.307
9 13 -10.27 6.683 1.466 | 0.511 | 0.533

Table VI.1: Comparison of predictions of ligand-receptor binding free energies in the
present investigation (boldface font) and various studies reported in the literature. Test data
statistics are sample size (n), target value mean () and standard deviation (). Results are
shown for normalized mean square error (nmse, Eq. VI.6), normalized mean absolute error
(nmae, Eq. V1.7), and Kendall’s tau (1, Eq. VI.8). References: 1. Head 1996, Table 3
[84]; 2. Bohm 1998, Table 3 [30]; 3. Wang 1998, Table 4 [198]; 4. Bock 2002 (Present
investigation); 5. Head 1996, Table 4 [84]; 6. Wang 2002, Table 4 [197]; 7. Rarey 1996,
Table 1 [162]; 8. Zhang 1996, Table 1 [212]; 9. Schapira 1999, Table S [167]. Note: results
for present investigation are average values from ten 10-fold cross validation experiments.

The records in the table are listed in order of increasing nmse. This statistic is
proposed as the primary objective indicator of accuracy for direct prediction of binding free
energy.

Of particular note on consideration of Table VI.1 are the sample size and mean
free binding energies characterizing the ligand-receptor data used here, when contrasted to
the other investigations. The current sample size (n =2,671) is a factor of 42 times larger
than the next largest data set. The mean free binding energy is seen to be —38 kcal/mol,
significantly stronger than the other data summarized in the table. Moreover, it can be seen

that the present data set is highly variable, as the standard deviation (35 kcal/mol) is on the
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same order as the mean.

Recall from the previous discussion that nmse values on the order of 1 are tan-
tamount to trivial prediction of the mean value of a test data set. Lower values of nmse
are associated with genuine learning of underlying patterns in the data, and effective gen-
eralization. On this basis, the highest predictive accuracy (#1; nmse = 0.198) observed in
this comparative study was realized by Head and co-workers [84], who present a hybrid ap-
proach combining ligand-receptor 3D-structural information and parameters derived from
molecular mechanics. The test set comprised 14 ligand-receptor complexes.

The second best nmse in this group was achieved by Bohm [30] using a regression-
based empirical scoring function based on hydrogen bonds, electrostatics, complementary
surface areas and other characteristics of receptor-ligand pairs where the 3D structure has
been previously determined.

Next in our list of prediction results is the investigation reported in Wang et al.
[198]. Their approach uses another empirical scoring function for binding free energy that
explicitly accounts for contributions due to Van de Waals interactions, metal-ligand bond-
ing, hydrogen bonds, desolvation energies and different kinematic effects. A regression
equation is developed using these terms derived from known receptor-ligand complexes.
All 11 data points in the test sample were based on endothiapepsin receptor complexes.

The current method, based on support vector regression, obtained the fourth-best
prediction error (nmse =0.419) averaged over ten different 10-fold cross validation tests.

We suggest that this error rate represents a significant step, for the following reasons:

1. The error rate and rank correlation value are surprisingly competitive with other in-
vestigations, in light of the relatively large variance and extremely large sample size
of the underlying data set. Note that the fifth-lowest nmse value in Table VI.1 was
also obtained by Head ef al. [84], for a different data set than they used in entry
#1. Group #5 comprised 13 HIV-1 protease/HIV protease inhibitor complexes, and
showed a value of nmse =0.440. So the same methodology by the same research
group, applied on a different data set, realized much different predictive results. This
demonstrates the variability in results that are possible when using small sample sizes,
while providing confidence in the robustness of our current method and results, which

were based on a sample size n=2,671.

2. The features used to represent the ligand-protein complexes in the support vector
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regression do not require any information about three-dimensional structure. All that
is required as input data are the amino acid sequence of the receptor, and a connection
table representing the ligand structure in two dimensions and the atom characteristics

at the nodes of this connection table.

3. There is no limitation on the protein family membership of the putative receptor(s),

or on the type (organic, synthetic) or size of ligand used.

4. The results obtained in this study suggest that it may be possible to infer binding
energies for complexes involving newly-sequenced or difficult-to-crystallize proteins,
or for ligands that only exist in computer memory, awaiting synthesis upon successful

in silico screening.

Rank correlation. We draw the reader’s attention to the trend in Kendall’s rank correla-
tion statistic T in Table VI.1. It is apparent that there is a general inverse correlation between
the magnitude of binding energy prediction errors (nmse, nmae) and the value of 7. That is,
low values of prediction error are associated with high values of the correlation coefficient.
T measures the tendency of two ordinal random variables (here, actual and predicted bind-
ing energy rank) to increase or decrease coordinately. If direct prediction of the physical
binding energy is reasonably accurate, we would expect to see a positive and non-trivial
correlation between the corresponding rank-ordered variables. |

Computing biomolecular binding energies to higher accuracy remains a challeng-
ing problem [76]. One author recently noted that current computational docking simula-
tions, used to search for the best (lowest energy) “fit” of ligand into a target receptor cavity,
still “suffer from insufficient precision of the scoring functions” [113]. In [117], molecular
dynamics simulations focused on biotin binding to avidin and streptavidin indicated that
the energies of protein and ligand reorganization were found to be significant contributors
to protein-ligand binding free energy in molecular dynamics simulations. These reorgani-
zation energies were estimated to be on the order of 10—30 and 4.5—6 kcal/mol for protein
and ligand, respectively. Because of the large variance in protein reorganization energy, the
authors concluded that precise predictions of binding free energy were suspect.

Given these difficulties, the ability to reliably rank a set of ligand-receptor com-
plexes during lead optimization (versus directly computing binding energy) remains im-

portant in the area of drug discovery. Such a procedure may add value, for example, as a
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decision aid when down-selecting a set of ligands for chemical synthesis. In connection
with the current methodology, we recognize that training the SVR requires example data
representing estimated or measured values of binding free energy. The output of a com-
putational technique cannot exceed the accuracy of its input; this is especially true with
systems that learn from examples. Therefore, at present the qualitative analysis or ranking

of potential ligands may be the main utility of the SVR technique.

The prediction evaluation statistics appearing in Table VI.1 are presented in the
form of a bar chart in Figure VI.2. The investigations numbered along the horizontal axis
appear in order of increasing nmse, and corresponding to the numbering in Table VI.1. This
visualization provides a different perspective on the opposing trends of nmse, nmae and t

as discussed above.

1.6 T T T T T T T

14 | nmse -
nmae

U -

nmse, nmae, 1

Investigation No.

Figure VI.2: Comparison of error and rank correlation statistics between this study and
the literature. The investigations numbered along the horizontal axis appear in order of
increasing normalized mean square error nmse (Eq. V1.6), and correspond to the numbering
appearing in Table VI.1. Notice the general trend of inverse correlation between binding
energy prediction errors (nmse, nmae) and rank correlation (7). The present cross validation
results are represented as Investigation #4 in this £gure.
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E Conclusions

In this work, we have introduced a new methodology, showing that it is possible
to predict the binding free energy between ligand and receptor without direct information
about their three-dimensional structures.

In cross validation experiments, we have demonstrated that objective measure-
ments of prediction error rate and rank-ordering statistics are competitive with several other
investigations, most of which depend on three-dimensional structural data. The size of the
sample used (n=2,671) indicates that this approach is robust and may have widespread
applicability beyond restricted families of receptor types.

Newly-sequenced proteins, or those for which three-dimensional crystal struc-
tures are not easily obtained, can be rapidly analyzed for their binding potential against a

library of ligands using this methodology.
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Conclusions

A Conclusions

1. In this thesis, I have demonstrated that explicit information about three-dimensional
biomolecular structure is not necessary to make predictions of protein-protein and
protein-ligand interactions. Using simple descriptors of physicochemical character-
istics of amino acid sequences (for proteins) and molecular connection tables (for
small-molecule ligands), the techniques introduced and developed here have been
shown to successfully predict these interactions at rates greatly exceeding chance.
This is a significant contribution, because it implies that researchers may proceed di-
rectly from sequence to inference of protein function, as represented by the context of
a protein’s interactions with other biomolecules. Newly-sequenced proteins, or those
for which three-dimensional crystal structures are not easily obtained, can be rapidly

analyzed using this methodology.

2. It is possible to predict a complete protein-protein interaction map within a single
organism, as shown in Chapter IV. Using receiver operating characteristic (ROC)
analysis, I have demonstrated that the precision and sensitivity of these predictions
can be traded against one another, and “‘engineered” to some extent by the choice of
parameters used to implement the support vector learning machine (SVM). In exper-
iments on data representing protein interactions in Saccharomyces cerevisiae, certain
SVMs were characterized by high degree of precision (> 90%) and low sensitivity

(36%); others produced classifiers that were characterized by more moderate cross
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validation sensitivities (64%) and precision (68%).

3. The investigation of Chapter IV showed that it is essential to eliminate redundant
data examples before training the learning machine. If this is not done, an artificially-
high sensitivity rate may be realized. I found that the observed sensitivity rate for S.
cerevisiae interaction data was overstated by more than 20% if redundancy-reducing

processing was not performed in advance.

4. This methodology may be used to infer a complete protein-protein interaction map in
a novel organism. In Chapter V, I presented an algorithm for systematically training
an SVM learner on protein interactions in species A, and predicting a complete inter-
action network in species B. The training data set does not require any examples of
interactions within B, only that the two organisms have sufficient genetic similarity
that useful rates of prediction may be expected. This idea has been demonstrated
by training a learning machine on experimental interactions in the bacterium Heli-
cobacter pylori, and computing a complete protein-protein interaction network for

the enteric pathogen Campylobacter jejuni.

5. The study presented in Chapter V considers the possibility of inferring interaction
networks across organisms, making predictions where no experimental interaction
data are yet available. When training a learning system on interactions found ex-
perimentally in one organism and generalizing to other organisms not represented in
training data, precision rates may be significantly less than those estimated from cross
validation errors. The true distribution of positive and negative examples in Nature
is expected to be highly skewed—the number of “non-interactions” greatly outweighs
the number of actual interactions when considering all pairwise combinations of pro-
teins for a given proteome. When making predictions, a constant false alarm rate
classifier will exhibit much lower rates of precision than those indicated by cross val-
idation errors in training. In such cases, a classifier architecture characterized by a
high rate of sensitivity would be preferred, as the sensitivity metric is independent of

the rate of false positives, and would be expected to remain unchanged.

6. The method and results described in Chapter VI establish the feasibility of predicting
the binding free energy of a ligand-receptor complex, without knowledge of the three-

dimensional structural configuration of either the ligand or the receptor. I showed that
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objective measurements of prediction error rate and rank-ordering statistics are com-
petitive with methods presented in several published investigations, most of which
depend on three-dimensional structural data. The size of the sample indicates that this
approach is robust, and may have widespread applicability beyond restricted families

of receptor types.

7. The objective of this research was to develop methods to automatically generate
hypothesized protein-protein interactions within a proteome. Machine learning ap-
proaches generate empirically falsifiable hypotheses to be subsequently supported (or
not supported) experimentally; therefore currently they may complement- but cannot
supplant— biological experiments. An iterative coupling between successive rounds
of computer prediction and experimental validation must be accomplished. Only in
so doing can the regions of applicability and limitations of the present approach be
discovered. Further development along these lines may produce a robust computa-
tional screening technique that may be useful to reduce the set of putative candidate
protein-protein or protein-ligand interactions within an organism, tissue or physio-

logical state of interest.

B Suggestions for future research

1. Negative examples. The specification of “negative” examples in designing machine
learning experiments such as this is fraught with simplifying assumptions. In Chapter
111, T used randomized amino acid sequences derived from native proteins to represent
the “non-interacting” class to a learning machine. Subsequently, my thinking on how
such examples should be properly constructed evolved: if the experimentally-derived
training data set is comprehensive, we can make some educated guesses about the
prevalence of protein interactions in Nature, and label the balance of the protein pairs
within a proteome as belonging to the negative class. This is a good starting position,
one that is reasonable based upon our present expectations given the limited amount
of experimental protein-protein interaction data currently available. Unfortunately,
this approach makes an assumption regarding the distribution of positive and nega-
tive examples in Nature. At present there simply is not sufficient experimental data

available (in either volume or species diversity) to firmly solidify our confidence in
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this assumption. Does the number of protein-protein interactions scale directly with
the size of a proteome? What are the differences in numbers of protein interactions
observed between, say, bacteria and the eukaryotes? When more empirical data be-
comes available, we may begin to sketch error bars on these quantities, and perhaps

begin to realize a better means to specify the negative class to a learning machine.

2. Optimization via interologs. In Chapter V, the predicted protein interaction map for
C. jejuni was evaluated using the method of “interologs” [195]. Interologs are con-
served interactions between species that are postulated on the basis of high sequence
similarity between paired proteins in an experimental map and their corresponding
orthologs in a second proteome. It would be very interesting to use the interolog
recovery rate in a predicted protein interaction network as the criterion to optimize
the parameters of a support vector machine—the architecture and learning parameters
associated with the highest interolog recovery would be associated with the most sen-
sitive discrimination in this scheme. A specific question to be addressed would be the
degree to which an SVM trained in such a scheme would learn to detect orthology as

opposed to more subtle patterns relating sets of amino acid sequence features.

3. Features. A natural extension of this research would be to optimize the 1-D feature
representation. In Chapter III it was noted that there are hundreds of different tab-
ulated metrics of residue properties available in the literature; many of these would
undoubtedly be useful to represent amino acid features to the learning algorithm.
This research only barely scratched the surface of the possible one-dimensional rep-
resentations of a protein. Further, the premise that “sequence determines structure
determines function” implies that higher-order structural information may increase
the prediction performance. Protein secondary structure is expressable as a string of
characters, for example. Hunter and Subramaniam [88] recently proposed a parsi-
monious one-dimensional structural description which uses only a single continuous
variable per amino acid to represent the C, backbone. It would be an interesting
experiment to study the use of such structural descriptors in protein interaction pre-
dictions, and to compare and contrast their predictive success with that of the physic-

ochemical descriptors used in this thesis.
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Appendix A: Support vector machine

A support vector machine (SVM) is a classification device constructed by build-
ing a decision surface in feature space to optimally separate classes of data [191]. One
way to do this is to locate this surface such that the closest point of approach of data points

representing each class is maximized.

A schematic SVM is depicted in Figure .1 for two classes, as represented by
the blue squares (Class A™) and red triangles (Class A™). These objects represent n-
dimensional, real-valued data vectors x. The separating hyperplane x”w = y (indicated
by a solid line in the figure) is offset by a distance y /||w|| from the origin of coordinates,
and its orientation is defined by the unit normal vector w/||w||, where w € R" and vy is a
constant. The margin surrounding the separating hyperplane is defined by the (dashed) par-
allel bounding planes x”w =y £ 1. The margin width is 2/||w||. If the data were linearly
separable, no violations of the margin would be observed; however the figure shows several
instances of data points that have exceeded the soft margin. This means that accurate class

discrimination for this case dictates a nonlinear separating plane.

For a given set of data, the objective is to find the parameters w,y defining the
hyperplane which optimally separates classes A™ and A~. Numerically, these parameters
may be computed using a variety of algorithmic strategies (e.g., see [95, 103, 157, 171, 126,
173]). Once this is accomplished, novel data points x can be classified according to their
location relative to this decision surface in feature space. Notice from Figure .1 that only a
subset of the training data essentially define the margin; these are the support vectors, and

appear as the symbols containing black dots.

The SVM is simply a linear combination of kernel function evaluations K (x,x7 ), i =
1,...,k, where x is the input vector, x; are the support vectors and k is their cardinality. The

kernel function K measures the similarity of x to each support vector x;. SVM maps input
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data x into a feature space F via a nonlinear map
®:xeR'—FecRP (A-1)

(where in general, D > n) and constructs a linear separation in this high(possibly infinite)-
dimensional space. In [34] it was observed that because @ enters the optimization and
classification problems (see Eqs. A-5, A-6 below) as inner products, finding an expression
for inner products in feature space F € RP in terms of input data points x € R" would
obviate the requirement to discover and compute the feature map ®. Symmetric functions

K with certain properties were proposed to implement this idea:
K(xl,)Q) = (I)(xl) -(I)()Cz) (A-2)

This equivalence facilitates computational efficiency as represented by the dot product eval-
uations, and an implicit mapping without the need to specify ®. Any linear algorithm com-
putable in terms of dot products can be made nonlinear in this manner by substitution of an

appropriate kernel [170]. In the case of a gaussian kernel
K (x1,72) = exp(—||x1 —x2|*/(26%)) (A-3)

F has infinite dimension, however an SVM can be readily computed to construct a linear
separation of data classes within this space [42].

To describe the basic equations that must be solved to construct the SVM, we use
the compact matrix notation as in [126] and [19]. Suppose that the training examples are
assembled in a matrix A, where A € R™, and [ is the number of examples used to train the
system. Each row of A contains a vector of features x € R”. The class labels corresponding
to these examples are appear in the diagonal matrix D € R, with D;; € {+1,—1}.

The constrained quadratic optimization problem to be solved is [191]
. 1 )
wrt Ce'&+ Slwll (A-4)

s.t. D{Aw—}—ey} >e—¢&
E>0, C>0

where & is a vector of “slack” variables allowing for margin errors, e is a vector of ones,
and both & ¢ € R!. The user-selected constant C in the objective function controls the

amount of penalty assigned to training example errors during optimization. If C is small,
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the margin is maximized, but many points step over the margin; if C is large, a narrower
margin is produced, with a minimum number of errors during training. Anecdotal evidence
suggests that enhanced generalization capability may be realized if allowance is made for
some training errors during the construction of the SVM [42].

In practical application the following dual formulation of Equation A-4 is solved

forue R

u

1
max Ty, EuTDAATDu (A-5)
st. e Du=0

0<u<Ce
and the primal variables defining the decision surface (w,Y) and the slack values & are

obtained after subsequent processing steps [125]. Once this is done, the nonlinear classifi-

cation decision for input vector x is
h(x) = sgn{K(xT,AT)Du -y } (A-6)

where the signum function is computed by sgn(z) = z/|z|]. Note that the kernel function K
in Eq. A-6 is only evaluated for training patterns (rows of A) corresponding to nonzero dual
variables u from optimization Eq. A-5. These patterns are the support vectors defining the

decision boundary.
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Figure .1: A schematic support vector machine for data falling into two classes: A™ (red
triangles) and 4~ (blue squares). In the case shown here, the classes are linearly inseparable;
the SVM has been constructed using a linear kernel. Support vectors are the symbols lying
on the margin containing black dots. After [42, 126].
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Appendix B: Fixed length vector

algorithm

This Appendix presents source code for mapping variable-length protein features
onto a fixed-length interval for SVM classification and regression analysis. A number of
investigators requested explicit details on how this mapping was carried out, as insufficient
mathematical details appeared in the original reference [25].

The code is written in Java, but should be easily transcribed to other programming
languages of choice. I make no claims about the numerical efficiency or precision of the

results of using these methods; they are admittedly inelegant, inefficient and brute-force.

import java.math.*;
import java.util.Vector;

/**

* This class contains methods used to interpolate
* arrays of data.
*
* @author Joel R. Bock
* @copyright (c¢) 2002 by Joel R. Bock.
*/
public class Interp
{
public static final String cid="INTERP: ";
static String DASH="-";

/**

* Interpolate(extrapolate) input signal "yin" onto
* smaller (bigger) length signal "yout".

* OQutput signal length is "oLen"

* @param yin Original data array
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* @param oLen The desired length of the
* interpolated array, on output.
*/
public static double[] interp(double[] yin,int
{
String mid="interp(): ";
String serr=null;
int i=0;
int 3=0;
int iLen=0;
double yInval=0.0f;
double yOutval=0.0f;
double yInval0ld=0.0f;
double yOutval0ld=0.0f;
double xVal=0.0f;
double xValOld=0.0f;
double m=0.0f;
double[] yout=null;
double[] XiOut=null;
double[] XiIn=null;
double XiIn01ld=0.0f;
double XiOut01ld=0.0¢f;
double dXi=0.0f;
double dy=0.0f;
boolean found=false;
boolean shrink=false;
double x0=0.0f;
double x1=0.0f;
double v0=0.0f;
double y1=0.0f;
Vector 1iBinV=new Vector();
Vector oBinV=new Vector();
int bin=0;

if ((yin==null) | | (yin.length<l))

prex(cid+mid+"Input array ’'yin’ is invalid...

if (oLen<l)

prex(cid+mid+"Input param ‘oLen’ is invalid...

iLen=yin.length; //--- input length
yout=new doubleloLen]; //--- output range
XiOut=new double[oLen]; //--- output domain
XiIn=new double[iLen]; //--- input domain
//--- 1s output array smaller (default) or larger

oLen)
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//--- than the input array?
shrink=((oLen>iLen)?false:true);

//~--- discretize output domain: 0 <= XiOut <= 1
dXi=1.0f/(oLen-1);

XiOut[0]}=0.0%f;

XiOut [oLen-1]1=1.0%;

for (i=1;i<(oLen-1);i++)XiOut[i]=XiOut[i-1]+dXi;

//--- discretize input domain: 0 <= XiIn <= 1
dXi=1.0£f/ (iLen-1);

XiIn{0]=0.0f;

XiIn{iLen-13}=1.0f;
for(i=1;i<(iLen-1);i++)XiIn[1]=XiIn[i-1]+dXi;

if (shrink)

{
//--- loop over output domain
for (i=0;i<oLen;i++)
{

found=false;
while (! found)

{
XiIn01ld=0.0f;
//-~-- loop over input domain
for(j=0;j<iLen;j++)
{

yvinval=yin([j];
yInvalOld=yInval;

//--- find bracket
if ((Xiout[1]>=X1iIn0ld)&&(XiOut[il<=XiIn[3j]})
{

1f((X1In{3j]-X1In01d) !=0.0f)
m=(yInVal-yInvalOld) / (XiIn[j]-XiIn01ld) ;
else
m=0.0f;
yvout [1]=yInValOld+ (m* (Xi0ut[i]-XiTn01ld)) ;
found=true;
yInvalOld=yInval;
break;
}
XiIn0ld=XiIn([jl;
yInValOld=yInval;
} // End: for(j=0;j<ilen;j++)
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/**

}

else

{

128

} // End: while
} // End: for(i=0;i<oLen;i++)

//--- shrink=false
//--- "bin" input domain
for (i=0;i<(iLen-1) ;i++)
iBinV.add (XiIn[i]+DASH+XiIn[i+1]);
//--- assign output domain to bins
for (i=0;i<oLen;i++)
oBinV.add (" "+getBin(iBinV,Xioutl[i]));

//--- Knowing domain bins for each output

[/ === domain, interpolate to find their range
/=== values

//--- Set endpoints

yout [0]=yin[0];
yout [oLen-1]=yin[iLen-11];
for(i=1;i<(oLen-1);i++)

{
bin=Integer .parseInt( (String)oBinV.elementAt(i));
//--- last edge
x0=Double.parseDouble (
getTokByIndex ( (String)iBinV.elementAt (bin),
1,DASH) };
//--- next edge
x1=Double.parseDouble (
getTokByIndex ((String)iBinV.elementAt (bin),
2,DASH) ) ;
//--- local slope
m=(yin[bin+l]-yin[bin])/(x1-x0) ;
dXi=XiOut[i]-x0;
yout [1]=yin[bin]+m*dX1i;
}

} // End: if(shrink)

//--- return array
return yout;
} // End: interp

* Assign "xi" to a bin in "v"

*

*

*

Elements of "v" are Strings composed

of dash-separted bin edges,
e.g. "0-0.333"
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*/
private static int getBin(Vector v,double xi)
{
String mid="getBin(): ";
String serr=null;
double x0=0.0f;
double x1=0.0f;
double xtest=0.0f;
int bin=0;
String s=null;
boolean found=false;

try
{
for(int i=0;i<v.size();i++)
{
s=(String)v.elementAt (i) ;
x0=Double.parseDouble (getTokByIndex(s,1l,DASH)) ;
x1=Double.parseDouble (getTokByIndex(s,2,DASH) ) ;
if (between(x0,x1,x1))
{
found=true;
bin=1;
break;
}
}
}
catch (NumberFormatException e)
{
prex(cid+mid+"NumberFormatException: "+e.getMessagel()):;
}
//--- return value

return bin;
} // End: getBin

/**

* "Between" function
* Tegt whether the input value lies

* within indicated limits, i.e.
* x0 <= x <= x1
*/

public static boolean between (double x0,
double x1,double xtest)
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String mid="between(): ";
boolean isBetween=false;

if((xtest>x1) || (xtest<x0))return false;
1f((x0<=xtest)&&(x1l>=xtest) ) isBetween=true;
//--- return value

return isBetween;
} // End: isBetween

/**

* Get String from input line by token index.

* @param line The String to parse.

* @param i1dx The index of the token desired.

* @param delim A list of delimiters to use in tokenizing.
* @return The indicated token on success; else null.

*

/
public static String getTokByIndex(String line,

int idx,String delim)

String mid="getTokByIndex(): ";
StringTokenizer st=null;
boolean done=false;

String tok=null;

String theTok=null;

int count=0;

if(delim!=null)

st=new StringTokenizer (line,delim);
else

st=new StringTokenizer (line);

while((!done) && (st.hasMoreTokens () ))

{
tok=st.nextToken() ;
count++;
if (count==1idx)
{
theTok=tok;
break;
}
}
//--- return object
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if (theTok!=null)
return theTok;
else
return ("");
} // End: getTokByIndex

/**
* Print to System.out and exit
*/
public static void prex(String s)
{
String mid="prex(): ";
String serr=null;
if(s==null)

{
serr=cid+mid+"Null input ‘s’; must be set...";
pr(serr);
return;

}

pr(s+"\n...[System.exit (0) called]");

ex();

} // End: prex

/** System.exit (0) */
public static void ex{()
{
String mid="ex(): ";
System.exit (0) ;
} // End: ex

/** System.exit(0) with message */
public static void ex(String msg)
{
String mid="ex(): ";
System.out.println (msg) ;
System.exit (0);
} // End: ex

} // End: Interp
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