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Abstract 
 

Real-time object detection is essential for many 
computer vision applications. Many rapid detection 
algorithms are based on using cascades of tests. But 
existing design criteria for cascades either ignore the 
time complexity of the tests or make over-simplified 
assumptions about them. This paper gives a criterion for 
designing a time-efficient cascade that explicitly takes 
into account the time complexity of tests (as evaluated by 
computer run time) including the time for pre-processing. 
We design a greedy algorithm to minimize this criterion 
(noting that the full problem is NP-complete). Finally, we 
illustrate our method on the task of text detection in city 
scenes. This gives a text detection algorithm that runs at 
0.025 seconds per 320×240 image, which is equivalent to 
40 frames per second. This is a speed up factor of 2.5 
compared to our previous text detector. It gives a real-
time system which can be used for applications to help 
the blind and visually impaired. 
 
 
1. Introduction 

 
Real-time object detection is essential for many real 

world vision applications. Recent work shows that certain 
objects, such as faces [1,2,3,4] and text [5,6,7,8,9], can be 
detected reliably and fairly quickly. But the detection 
speed is not always fast enough for applications. The goal 
of this paper is to provide a technique, time-efficient 
cascades, that can speed up object detection. 

We are particularly interested in designing computer 
vision systems to help the blind and visually impaired. In 
particular, we want algorithms which detect text in city 
scenes so that the text can be enhanced for visually 
impaired subjects, or read aloud to blind subjects. These 
applications require real-time search through large images 
(e.g. 1,600 by 1,200)  with high quality performance (as 
measured by false positive and false negative rates). Our 
previous work gave acceptable performance [9] but its 
speed was not quite fast enough when evaluated by 

visually impaired subjects. The techniques described in 
this paper enable us to obtain real-time detection. 

Arguably  the  most efficient way  to  build  a  real-
time  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  A cascade detector for text detection. 

 
A few layers of classifiers are often sufficient 

to rapidly reject many candidate regions. 
 
 
object detection system is to use the hierarchical  
structure known as a cascade [10].  A cascade is a 
degenerate decision tree and a typical example is shown 
in Figure 1.  Each level (or layer) of a cascade is 
implemented by a classifier evaluated on image features.  

The success of cascades for object detection tasks, 
such as face detection [4] or text detection [9], is based on 
the fact that most parts of an image contain no objects of 
interest. The key insight of cascades is to use simple, 
rapidly computable, classifiers to reject the parts of the 
image which do not contain objects while preserving 
those parts of the image which contain the objects.  Then 
more complex, and time consuming, classifiers need only 
be applied to limited parts of the image.  

Intuitively, the cascade is like carving a sculpture. At 
the beginning, large cuts are made to quickly give the 
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rough shape. Then smaller, more precise, cuts are made to 
refine the details. 

The design of efficient cascades requires a trade-off 
between the time-complexity of the classifiers and 
performance factors such as false positive rates. But 
previous work on cascades, and more generally on 
decision trees, has ignored the time-complexity of 
classifiers. This is reasonable if the classifiers used at 
different levels of the cascade are of similar time 
complexity. But it can be highly suboptimal if, as often 
happens, the classifiers in the cascade have different time 
complexity. 

For example, Viola and Jones [4,12] designed a 
cascade for face detection using a criterion based only on 
the maximum acceptable false positive rates and the 
minimum acceptable detection rates per cascade layer. 
The classifiers for their cascade were strong classifiers 
constructed by AdaBoost [11,12] in terms of weak 
classifiers based on Haar basis functions. These weak 
classifiers are of roughly similar time complexity, but the 
strong classifiers could consist of variable numbers of 
weak classifiers and so had different time complexity.  

The classifiers were even less likely to have similar 
time complexity in our previous work [9]. Our classifiers 
were also learnt by AdaBoost from weak classifiers. But 
our weak classifiers were based on a variety of different 
image features and so had variable time complexity. 
Some weak classifiers were based on simple texture 
features and could be computed rapidly. Other weak 
classifiers were based on spatial properties, such as 
spatial relations between edges, and required far more 
computation.  

Classifiers are even more likely to have variable time 
complexity if we expand the vocabulary of classifiers to 
include other techniques such as Support Vector 
Machines [15]. Moreover, even algorithms like Viola and 
Jones [4] and our own work [9] included pre-processing 
stages which should also be included in time complexity 
calculations. We conclude that a well designed cascade 
must take time-complexity into account. 

Somewhat similar arguments have recently been given 
by Geman and Blanchard for designing decision trees for 
scene understanding [13]. They give a mathematical 
analysis of this problem and prove the advantages of a 
coarse to fine processing strategy. But their approach is 
very different to ours and it is unclear how to apply their 
results to the problems which we wish to solve. 

In this paper, we give an optimization criterion for 
designing time-efficient cascades which takes into 
account the average processing time of each cascade layer 
as well as the false positive rate (we require that the false 
negative rate is zero on the training dataset). It is known 
that cascade design is a NP-hard problem [14] and cannot 
be solved by any known polynomial time algorithm. 
Instead we design a greedy algorithm which finds a 

solution to our criteria. We test this approach on a text 
detection problem where we can compare this time-
efficient classifier to our previous classifier (obtained 
using Viola and Jones’ classifier design [4]). We show 
that for this problem the time-efficient classifier performs 
2.5 times as fast as the our previous classifier [9]. This 
speed up is sufficient to make our text detection algorithm 
work in real-time and hence be useful for applications to 
assist the visually impaired. 

This paper is organized as follows.  Section 2 presents 
the optimization criterion for designing time-efficient 
cascades and describes the greedy algorithm to obtain the 
cascade.  In section 3 we apply the method in a real 
application of detecting street signs from city scene.  We 
conclude in section 4 and briefly describe future work. 

 
 

 
 
 
 
 
 

 
 
 

Figure 2.  Diagram of a cascade 
hi is the classifier of the l layer, ti is the average 
processing time, pi is the positive rate. 

 
 

 
2. Time efficient design of cascade 
 
In this section we give an optimization criterion for 
designing a time-efficient cascade for object detection. 
We note that finding a global optimal cascade is an NP-
hard problem. Then we define a greedy algorithm to 
search for minima of the criterion. 
 
2.1. Formulation 
 

The basic idea of a cascade is illustrated in Figure 2. 
The cascade is run on a set of candidate regions in the 
input image, which are typically image windows at a 
variety of scales and positions. The cascade consists of a 
sequence of binary-valued classifiers hl. The classifiers 
are designed so that they have no false negatives (at least 
on the training data). A candidate region is rejected if it 
fails the classifier test at any level, in which case it is not 
necessary to apply the classifiers of the remaining levels. 

The time complexity of the cascade depends on the 
time tl taken by the classifiers hl and by the number of 
regions that the classifier needs to process. Classifiers at 
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early levels of the cascade will typically be run on many 
image regions, and so will need to be fast. Slower, and 
more sophisticated, classifiers can be used at later levels 
of the cascade.  

Formally, we define a set of classifiers H and a 
training set S of images hand segmented into regions of 
objects and non-objects (in our experiments, the objects 
are text). A cascade c is a set of classifiers h1,…,hL where 
the number L of layers is a variable. Then the average 
processing time for each region is: 

 
1

1
2 1

lL

c l i
l i

t t t p
−

= =

 
= +  

 
∑ ∏    (1) 

1 1( ; ,.., )l l lt t h h h−  

1 1( ; ,.., )i i ip p h h h−  
 

where hl is the classifier in the lth layer, pi is positive rate 
of the ith layer (the sum of the false positives and true 
positives) and tl is the processing time of the lth layer. tl 
consists of both the feature calculation time and the 
classifier decision time (it is calculated empirically). Note 
that tl and pi depend on the classifiers selected in all the 
previous layers. 

The classifier hl is trained only on image regions 
which have been evaluated as objects by the previous 
layers. The classifiers are constrained to have no false 
negatives on the training set.  

If the classifiers all take equal time, then equation (1) 
reduces  to a formula for the average number of features 
used for each image region, see Viola and Jones [4].  But 
they used this formula only to compute the number of 
features used and not for classifier design. 
   Now we define an optimization criterion for designing a 
time-efficient cascade. The goal is to find the cascade c* 
which minimizes the average processing time tc  but 
maintains a low false positive rate and has no false 
negatives (on the training set). Formally, we seek 

 
* arg min( )c

c
c t=  

      ,l T l Td D f F> <∏ ∏          (2) 

 
where FT and DT are the preset threshold of overall false 
positive rate and detection rate. fl and dl are, respectively, 
the false positive rate and the detection rate of the lth layer 
in the cascade  c*.  
     In this paper, we require  dl to equal 1, (this is possible 
by using classifiers trained by asymmetric AdaBoost 
[12]). Hence the requirement on 

l Td D>∏  is 

automatically satisfied (with DT   equal to 1). 
 Solving equation (2) for c* is non-trivial because it is 

known that designing binary decision trees is an NP-

complete problem [6]. This means that no known 
polynomial time algorithm can solve the decision 
problem: 
 

Given t0, is there a c that tc < t0?   (3). 
 
Instead we design a greedy algorithm which attempts 

to find a solution to the optimization criterion in (2). 
 

2.2. A Greedy Algorithm 
 

Our greedy algorithm is motivated by the decision 
problem (3). We initialize t0 and define a greedy 
algorithm to see if we can solve the decision problem. If 
we cannot, then we raise t0 until we can. If we can solve 
the decision problem, we lower the value of t0 until we 
cannot solve it. This gives a solution to the optimization 
criterion given in (2). 

We now define the greedy algorithm for fixed t0. Let  
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with tl-1 and pl-1 defined by equation (1), then we select 
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as the classifier in lth layer of the cascade. A mathematical 
explanation for the algorithm is given in Section 2.3. 
Roughly speaking, we pick the lth      classifier to maximize 
the expected time remaining normalized by the expected 
number of regions remaining to be rejected. 

The algorithm defined by equation (5) has the intuitive 
property that it encourages fast classifiers with small false 
positive rates. Empirically, 0

lt  usually increases as l 
increases. This means that simple features and classifiers 
are preferred in the early layers and more complex 
features and classifiers are discouraged until 0

lt  is large. 
We apply equation (5) iteratively to construct the 

cascade.  The algorithm terminates with SUCCESS when 
we have achieved the desired false positive rate FT, or 
with FAIL if we cannot achieve this rate within time t0. 
Algorithm 1 shows the details of the algorithm. 

 
 

Algorithm 1.  Solving the Decision Problem 
 
• FT = overall required false positive rate 
• S = set of training images  
• P = set of positive examples 
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• N = set of negative examples 
• H = set of classifiers 
• l = 0 
• Fl = 1; 1

0
lt + = t0 

• While Fl > FT 
 l ← l + 1 
 Train H, ∀ h ∈ H, calculate th, fh ,ph using S 
 If ∀ h ∈ H, th ≥ t,  then return FAIL 
 Select hl according to (5) 
 Fl ← Fl-1 * fh 
 Calculate 1

0
lt +  according to (4) 

 Update N using current cascade 
• Return SUCCESS and get tc according to (1) 
 
 

Note that the positive examples  P  are all the object 
region examples in the training set S of images. The 
negative examples N are a subset of the non-object 
regions in the training set (there are too many non-object 
regions to use).  

If algorithm 1 results in SUCCESS, then we know that 
there is an algorithm that can obtain the desired false 
positive rate in time smaller than t0. But there may be an 
even faster algorithm. We therefore replace t0 by tc  and 
reapply algorithm 1. This is illustrated by Algorithm 2. 

The training time for this algorithm is much longer than 
previous methods, e.g. Viola and Jones [4]. But this is 
affordable since the training process is performed off-
line.   
 
Algorithm 2. Training a cascade detector 
 
• Set time t0 
• Set overall false positive rate FT 
• While  Algorithm1 is SUCCESS 

 t0  ←  tc 
• Return the last successful cascade and its tc 
 
 
2.3.  Justification for the Greedy Algorithm 
 

In this section we give a mathematical justification of 
the greedy algorithm. 

First, the time remaining after first m-1 layers is 
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We can solve the decision problem provided we can 

satisfy the following condition for all layers. 
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This is equivalent to finding hm,…,hL s.t. 
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where 0

mt is defined in sub-section 2.1.  The algorithm 
proceeds by finding classifiers iteratively.  We select 

classifier hm-1 to make  
1

0 1

1

m
m

m

t t
p

−
−

−

−
as big as possible.  

This maximizes the bound for m
ct  and so maximizes the 

time available for the remaining layers. 
 

2.4.  Preprocessing 
 

The time cost of a classifier consists of the feature 
calculation time and the decision time of the classifier. 
Many applications employ some kind of preprocessing to 
save time for feature calculation, for example, building 
integral images for Harr basis features [4], or calculating 
filter response maps for differential features.  We provide 
a way to incorporate preprocessing time into our 
algorithm for cascade design. 

Suppose n = |I| is the size of a image I.  Tpre(n) is the 
preprocessing time for a set of features X. K(n) is the 
number of all candidate regions in the image I.  Note for a 
feature set X, the preprocessing time is only counted once, 
when the set of feature is first used in the cascade.  
Suppose the lth layer is the first layer that uses features 
from X, then the average preprocessing time per candidate 
is  
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( )

( )
prel

pre
i

i l

T n
t

K n p
<

=
∏

   (6) 

 
If n is fixed, e.g. fixed image resolution, or K(n) ∝ n 

and Tpre(n) ∝ n, e.g. building the integral image and 
calculating differential filter response map,  then  l

pret  

only depends on the positive rates of previous layers. So 
it can be directly added to the corresponding th  in the 
algorithm. 

Equation (6) implies that when l is big (i.e. a feature 
set is first employed in a late layer),  preprocessing may 
not save time, since l

pret  will always be very big.  In such 

cases we should not use preprocessing.   
 

 
3. Application to text detection 
 

In this section, we apply the proposed algorithm to the 
text detection application described in our previous 
publication [9] which used Viola and Jones’ classifier 
design principle. Our new time-efficient text detector 
cascade runs 2.5 times faster and gives small 
improvement on the detection and false positive rates. 
(Note that comparison of our method to other text 
detection methods has been made in [9]).  The following 
experiment focuses only on the improvement of using a 
time-efficient cascade. 
 
3.1. The datasets 
 

Both the training dataset and testing data set were 
enlarged significantly compared to our previous work [9]. 
There are now 15,478 text samples taken from 1,174 text 
images, which consists of combining our previous text 
images with a benchmark training set [16]. Negative 
training samples were taken from 4,000 large images 
without text.  

Overall we have 930 images with resolution 1,600 by 
1,200, mostly taken by blind and visually impaired people 
in a variety of scenes, including offices, supermarkets, 
streets, bus stops, subway stations, and restaurants. We 
use 400 images as the training set S. The test set contains 
the rest 530 images.  
 
3.2. Feature set 
 

The feature set, used to construct the classifiers, is the 
same as in our previous work.  For completeness, we 
briefly summarize them below.  Details can be found in 
[9]. 

• Gray level means and variances calculated on 
blocks. 

• First order differential features calculated in blocks. 
• Histogram features of intensity and gradient. 
• Edge linking features. 
 

3.3. Classifier set 
 

We use the same set of classifiers as in our previous 
work [9], which enables direct comparison of our time-
efficient cascade to our previous cascade. 

Details are given in [9]. Briefly, the weak classifiers 
are linear separable planes in one and two dimensional 
feature space. AdaBoost is at each layer to  combine weak 
classifiers into a strong classifier.. 
 
3.4. Results 
 

The training time for the time-efficient cascade was 
more than ten times longer than our previous method. But 
this computation is off-line and so is not significant. 

Table 1 compares the speed and performance of the 
time-efficient cascade compared to our previous cascade. 
Observe that we get a speed-up of about 2.5 and slightly 
improved performance.  
 
 

Table 1.  Experiment results 

 Old New 
Number of layers 4 10 

False positive 5×10-6 2×10-6 
Detection rate 89% 91% 

320*240 image 0.067s 0.025s 
640*480 image 0.26s 0.1s 

1600*1200 image 1.54s 0.59s 
 
 
3.5. Implemented systems 
 

The text detector was tested in two systems to help 
blind and visually impaired people navigate in streets.  
One system is called the “Smart Telescope”.  It is 
designed for people with low vision, and is shown in 
Figure 3. The system consists of three parts: A camera, a 
portable computer and a micro-screen mounted on eye 
glasses. The camera captures and transfer 640 by 480 
images to the computer in real-time. The computer runs 
the cascade detection algorithm, finds and marks the 
regions of text in the image, and shows an enhanced 
image on the micro-screen.  Visually impaired people can 
select a region using wireless mouse and enhance for 
reading.  As shown in table 1, the text detector can 
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process  640 by 480 images at 10 frame per second. This 
is  fast enough for practical use. 

The other system called “Signfinder” is designed  for 
blind people. The user has a hard-head mounted digital 
camera connected to a laptop computer.  Once a picture is 
taken, it is automatically transferred to the laptop and 
processed by our text detector.  The picture resolution is 
1,600 by 1,200.  On average the time-efficient cascade 
detector takes about 0.6 second to process a picture which 
is fast enough for practical use. Figure 4 shows some of 
the detection results. 
 
 

 

 
 

Figure 3.  Smart telescope system 
 

 
 

4. Conclusion and future work 
 

In this paper, we formulated an optimization criterion 
for designing a time-efficient binary cascade taking into 
account the time complexity of classifiers. We developed 
a greedy algorithm for training efficient cascades 
motivated by our criterion (noting that the full problem is 
NP-complete). Our approach can be applied to design 
cascades using any type of classifiers. The techniques in 
this paper can be extended to a greater range of problems, 
including multi-object detection.  

We illustrated our approach on the problem of text 
detection. The time-efficient cascade was shown to be on 
average 2.5 times fasters than our previous cascade [9] 
which was designed using the criterion given in [12]. 

This results in two systems, Smart Telescope and 
Signfinder, which use text detection to design systems to 
assist the blind and visually impaired. 
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Figure 4.  Text detection examples 




