
UCLA
Department of Statistics Papers

Title
A Time-Efficient Cascade for Real-Time Object Detection: With applications for the visually
impaired

Permalink
https://escholarship.org/uc/item/0126w913

Authors
Chen, X.
Yuille, A. L.

Publication Date
2005-05-28

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0126w913
https://escholarship.org
http://www.cdlib.org/

1 of 8

A Time-Efficient Cascade
for Real-Time Object Detection: With applications for the visually impaired.

X. Chen and A.L. Yuille
Dept. Statistics, UCLA.

xrchen@stat.ucla.edu, yuille@stat.ucla.edu

 In: 1st International Workshop on Computer Vision Applications for the Visually
Impaired (CVACVI). Workshop in association with CVPR 2005. June 20. San Diego. Organizers: J.
Coughlan (SKERI) and R. Manduchi (UC Santa Cruz).

Abstract

Real-time object detection is essential for many
computer vision applications. Many rapid detection
algorithms are based on using cascades of tests. But
existing design criteria for cascades either ignore the
time complexity of the tests or make over-simplified
assumptions about them. This paper gives a criterion for
designing a time-efficient cascade that explicitly takes
into account the time complexity of tests (as evaluated by
computer run time) including the time for pre-processing.
We design a greedy algorithm to minimize this criterion
(noting that the full problem is NP-complete). Finally, we
illustrate our method on the task of text detection in city
scenes. This gives a text detection algorithm that runs at
0.025 seconds per 320×240 image, which is equivalent to
40 frames per second. This is a speed up factor of 2.5
compared to our previous text detector. It gives a real-
time system which can be used for applications to help
the blind and visually impaired.

1. Introduction

Real-time object detection is essential for many real

world vision applications. Recent work shows that certain
objects, such as faces [1,2,3,4] and text [5,6,7,8,9], can be
detected reliably and fairly quickly. But the detection
speed is not always fast enough for applications. The goal
of this paper is to provide a technique, time-efficient
cascades, that can speed up object detection.

We are particularly interested in designing computer
vision systems to help the blind and visually impaired. In
particular, we want algorithms which detect text in city
scenes so that the text can be enhanced for visually
impaired subjects, or read aloud to blind subjects. These
applications require real-time search through large images
(e.g. 1,600 by 1,200) with high quality performance (as
measured by false positive and false negative rates). Our
previous work gave acceptable performance [9] but its
speed was not quite fast enough when evaluated by

visually impaired subjects. The techniques described in
this paper enable us to obtain real-time detection.

Arguably the most efficient way to build a real-
time

Figure 1. A cascade detector for text detection.

A few layers of classifiers are often sufficient

to rapidly reject many candidate regions.

object detection system is to use the hierarchical
structure known as a cascade [10]. A cascade is a
degenerate decision tree and a typical example is shown
in Figure 1. Each level (or layer) of a cascade is
implemented by a classifier evaluated on image features.

The success of cascades for object detection tasks,
such as face detection [4] or text detection [9], is based on
the fact that most parts of an image contain no objects of
interest. The key insight of cascades is to use simple,
rapidly computable, classifiers to reject the parts of the
image which do not contain objects while preserving
those parts of the image which contain the objects. Then
more complex, and time consuming, classifiers need only
be applied to limited parts of the image.

Intuitively, the cascade is like carving a sculpture. At
the beginning, large cuts are made to quickly give the

Layer 1

Layer 2

Layer 3

Layer 4

TEXT

NON-TEXT
CANDIDATE

REGION

2 of 8

rough shape. Then smaller, more precise, cuts are made to
refine the details.

The design of efficient cascades requires a trade-off
between the time-complexity of the classifiers and
performance factors such as false positive rates. But
previous work on cascades, and more generally on
decision trees, has ignored the time-complexity of
classifiers. This is reasonable if the classifiers used at
different levels of the cascade are of similar time
complexity. But it can be highly suboptimal if, as often
happens, the classifiers in the cascade have different time
complexity.

For example, Viola and Jones [4,12] designed a
cascade for face detection using a criterion based only on
the maximum acceptable false positive rates and the
minimum acceptable detection rates per cascade layer.
The classifiers for their cascade were strong classifiers
constructed by AdaBoost [11,12] in terms of weak
classifiers based on Haar basis functions. These weak
classifiers are of roughly similar time complexity, but the
strong classifiers could consist of variable numbers of
weak classifiers and so had different time complexity.

The classifiers were even less likely to have similar
time complexity in our previous work [9]. Our classifiers
were also learnt by AdaBoost from weak classifiers. But
our weak classifiers were based on a variety of different
image features and so had variable time complexity.
Some weak classifiers were based on simple texture
features and could be computed rapidly. Other weak
classifiers were based on spatial properties, such as
spatial relations between edges, and required far more
computation.

Classifiers are even more likely to have variable time
complexity if we expand the vocabulary of classifiers to
include other techniques such as Support Vector
Machines [15]. Moreover, even algorithms like Viola and
Jones [4] and our own work [9] included pre-processing
stages which should also be included in time complexity
calculations. We conclude that a well designed cascade
must take time-complexity into account.

Somewhat similar arguments have recently been given
by Geman and Blanchard for designing decision trees for
scene understanding [13]. They give a mathematical
analysis of this problem and prove the advantages of a
coarse to fine processing strategy. But their approach is
very different to ours and it is unclear how to apply their
results to the problems which we wish to solve.

In this paper, we give an optimization criterion for
designing time-efficient cascades which takes into
account the average processing time of each cascade layer
as well as the false positive rate (we require that the false
negative rate is zero on the training dataset). It is known
that cascade design is a NP-hard problem [14] and cannot
be solved by any known polynomial time algorithm.
Instead we design a greedy algorithm which finds a

solution to our criteria. We test this approach on a text
detection problem where we can compare this time-
efficient classifier to our previous classifier (obtained
using Viola and Jones’ classifier design [4]). We show
that for this problem the time-efficient classifier performs
2.5 times as fast as the our previous classifier [9]. This
speed up is sufficient to make our text detection algorithm
work in real-time and hence be useful for applications to
assist the visually impaired.

This paper is organized as follows. Section 2 presents
the optimization criterion for designing time-efficient
cascades and describes the greedy algorithm to obtain the
cascade. In section 3 we apply the method in a real
application of detecting street signs from city scene. We
conclude in section 4 and briefly describe future work.

Figure 2. Diagram of a cascade
hi is the classifier of the l layer, ti is the average
processing time, pi is the positive rate.

2. Time efficient design of cascade

In this section we give an optimization criterion for
designing a time-efficient cascade for object detection.
We note that finding a global optimal cascade is an NP-
hard problem. Then we define a greedy algorithm to
search for minima of the criterion.

2.1. Formulation

The basic idea of a cascade is illustrated in Figure 2.
The cascade is run on a set of candidate regions in the
input image, which are typically image windows at a
variety of scales and positions. The cascade consists of a
sequence of binary-valued classifiers hl. The classifiers
are designed so that they have no false negatives (at least
on the training data). A candidate region is rejected if it
fails the classifier test at any level, in which case it is not
necessary to apply the classifiers of the remaining levels.

The time complexity of the cascade depends on the
time tl taken by the classifiers hl and by the number of
regions that the classifier needs to process. Classifiers at

h1 h2 hL

t1 t2 tL p
1
 p

2
 p

L-1

 Non-objects

O
bjects

C
andidates

 …

3 of 8

early levels of the cascade will typically be run on many
image regions, and so will need to be fast. Slower, and
more sophisticated, classifiers can be used at later levels
of the cascade.

Formally, we define a set of classifiers H and a
training set S of images hand segmented into regions of
objects and non-objects (in our experiments, the objects
are text). A cascade c is a set of classifiers h1,…,hL where
the number L of layers is a variable. Then the average
processing time for each region is:

1

1
2 1

lL

c l i
l i

t t t p
−

= =

= +

∑ ∏ (1)

1 1(; ,..,)l l lt t h h h−

1 1(; ,..,)i i ip p h h h−

where hl is the classifier in the lth layer, pi is positive rate
of the ith layer (the sum of the false positives and true
positives) and tl is the processing time of the lth layer. tl
consists of both the feature calculation time and the
classifier decision time (it is calculated empirically). Note
that tl and pi depend on the classifiers selected in all the
previous layers.

The classifier hl is trained only on image regions
which have been evaluated as objects by the previous
layers. The classifiers are constrained to have no false
negatives on the training set.

If the classifiers all take equal time, then equation (1)
reduces to a formula for the average number of features
used for each image region, see Viola and Jones [4]. But
they used this formula only to compute the number of
features used and not for classifier design.
 Now we define an optimization criterion for designing a
time-efficient cascade. The goal is to find the cascade c*
which minimizes the average processing time tc but
maintains a low false positive rate and has no false
negatives (on the training set). Formally, we seek

* arg min()c

c
c t=

 ,l T l Td D f F> <∏ ∏ (2)

where FT and DT are the preset threshold of overall false
positive rate and detection rate. fl and dl are, respectively,
the false positive rate and the detection rate of the lth layer
in the cascade c*.
 In this paper, we require dl to equal 1, (this is possible
by using classifiers trained by asymmetric AdaBoost
[12]). Hence the requirement on

l Td D>∏ is

automatically satisfied (with DT equal to 1).
 Solving equation (2) for c* is non-trivial because it is

known that designing binary decision trees is an NP-

complete problem [6]. This means that no known
polynomial time algorithm can solve the decision
problem:

Given t0, is there a c that tc < t0? (3).

Instead we design a greedy algorithm which attempts

to find a solution to the optimization criterion in (2).

2.2. A Greedy Algorithm

Our greedy algorithm is motivated by the decision
problem (3). We initialize t0 and define a greedy
algorithm to see if we can solve the decision problem. If
we cannot, then we raise t0 until we can. If we can solve
the decision problem, we lower the value of t0 until we
cannot solve it. This gives a solution to the optimization
criterion given in (2).

We now define the greedy algorithm for fixed t0. Let

1
0 0t t= ,

1
0 1

0
1

l
l l

l

t tt
p

−
−

−

−
= , (4)

with tl-1 and pl-1 defined by equation (1), then we select

0 1 1

0 1 1

1 1
(; ,...,)

(; ,...,)arg max ()
(; ,...,)

l
l

l
l

l
h H l

t t h h h

t t h h hh
p h h h

−

−

∈ −
>

−
= (5)

as the classifier in lth layer of the cascade. A mathematical
explanation for the algorithm is given in Section 2.3.
Roughly speaking, we pick the lth classifier to maximize
the expected time remaining normalized by the expected
number of regions remaining to be rejected.

The algorithm defined by equation (5) has the intuitive
property that it encourages fast classifiers with small false
positive rates. Empirically, 0

lt usually increases as l
increases. This means that simple features and classifiers
are preferred in the early layers and more complex
features and classifiers are discouraged until 0

lt is large.
We apply equation (5) iteratively to construct the

cascade. The algorithm terminates with SUCCESS when
we have achieved the desired false positive rate FT, or
with FAIL if we cannot achieve this rate within time t0.
Algorithm 1 shows the details of the algorithm.

Algorithm 1. Solving the Decision Problem

• FT = overall required false positive rate
• S = set of training images
• P = set of positive examples

4 of 8

• N = set of negative examples
• H = set of classifiers
• l = 0
• Fl = 1; 1

0
lt + = t0

• While Fl > FT
 l ← l + 1
 Train H, ∀ h ∈ H, calculate th, fh ,ph using S
 If ∀ h ∈ H, th ≥ t, then return FAIL
 Select hl according to (5)
 Fl ← Fl-1 * fh
 Calculate 1

0
lt + according to (4)

 Update N using current cascade
• Return SUCCESS and get tc according to (1)

Note that the positive examples P are all the object
region examples in the training set S of images. The
negative examples N are a subset of the non-object
regions in the training set (there are too many non-object
regions to use).

If algorithm 1 results in SUCCESS, then we know that
there is an algorithm that can obtain the desired false
positive rate in time smaller than t0. But there may be an
even faster algorithm. We therefore replace t0 by tc and
reapply algorithm 1. This is illustrated by Algorithm 2.

The training time for this algorithm is much longer than
previous methods, e.g. Viola and Jones [4]. But this is
affordable since the training process is performed off-
line.

Algorithm 2. Training a cascade detector

• Set time t0
• Set overall false positive rate FT
• While Algorithm1 is SUCCESS

 t0 ← tc
• Return the last successful cascade and its tc

2.3. Justification for the Greedy Algorithm

In this section we give a mathematical justification of
the greedy algorithm.

First, the time remaining after first m-1 layers is

11

0 1
2 1

()
lm

l i
l i

t t t p
−−

= =

− +

∑ ∏

The remaining layers will take time cost

1

1

m
m
c i

i

t p
−

=
∏

where,

1

1

lL
m
c m l i

l m i m

t t t p
−

= + =

= +

∑ ∏

We can solve the decision problem provided we can

satisfy the following condition for all layers.

1 11

0 1
21 1

()
m lm

m
c i l i

li i

t p t t t p
− −−

== =

< − +

∑∏ ∏

This is equivalent to finding hm,…,hL s.t.

1
0 1

1

(,...,)
m

m m
c m L

m

t tt h h
p

−
−

−

−
< ,

where 0

mt is defined in sub-section 2.1. The algorithm
proceeds by finding classifiers iteratively. We select

classifier hm-1 to make
1

0 1

1

m
m

m

t t
p

−
−

−

−
as big as possible.

This maximizes the bound for m
ct and so maximizes the

time available for the remaining layers.

2.4. Preprocessing

The time cost of a classifier consists of the feature
calculation time and the decision time of the classifier.
Many applications employ some kind of preprocessing to
save time for feature calculation, for example, building
integral images for Harr basis features [4], or calculating
filter response maps for differential features. We provide
a way to incorporate preprocessing time into our
algorithm for cascade design.

Suppose n = |I| is the size of a image I. Tpre(n) is the
preprocessing time for a set of features X. K(n) is the
number of all candidate regions in the image I. Note for a
feature set X, the preprocessing time is only counted once,
when the set of feature is first used in the cascade.
Suppose the lth layer is the first layer that uses features
from X, then the average preprocessing time per candidate
is

5 of 8

()

()
prel

pre
i

i l

T n
t

K n p
<

=
∏

 (6)

If n is fixed, e.g. fixed image resolution, or K(n) ∝ n

and Tpre(n) ∝ n, e.g. building the integral image and
calculating differential filter response map, then l

pret

only depends on the positive rates of previous layers. So
it can be directly added to the corresponding th in the
algorithm.

Equation (6) implies that when l is big (i.e. a feature
set is first employed in a late layer), preprocessing may
not save time, since l

pret will always be very big. In such

cases we should not use preprocessing.

3. Application to text detection

In this section, we apply the proposed algorithm to the
text detection application described in our previous
publication [9] which used Viola and Jones’ classifier
design principle. Our new time-efficient text detector
cascade runs 2.5 times faster and gives small
improvement on the detection and false positive rates.
(Note that comparison of our method to other text
detection methods has been made in [9]). The following
experiment focuses only on the improvement of using a
time-efficient cascade.

3.1. The datasets

Both the training dataset and testing data set were
enlarged significantly compared to our previous work [9].
There are now 15,478 text samples taken from 1,174 text
images, which consists of combining our previous text
images with a benchmark training set [16]. Negative
training samples were taken from 4,000 large images
without text.

Overall we have 930 images with resolution 1,600 by
1,200, mostly taken by blind and visually impaired people
in a variety of scenes, including offices, supermarkets,
streets, bus stops, subway stations, and restaurants. We
use 400 images as the training set S. The test set contains
the rest 530 images.

3.2. Feature set

The feature set, used to construct the classifiers, is the
same as in our previous work. For completeness, we
briefly summarize them below. Details can be found in
[9].

• Gray level means and variances calculated on
blocks.

• First order differential features calculated in blocks.
• Histogram features of intensity and gradient.
• Edge linking features.

3.3. Classifier set

We use the same set of classifiers as in our previous
work [9], which enables direct comparison of our time-
efficient cascade to our previous cascade.

Details are given in [9]. Briefly, the weak classifiers
are linear separable planes in one and two dimensional
feature space. AdaBoost is at each layer to combine weak
classifiers into a strong classifier..

3.4. Results

The training time for the time-efficient cascade was
more than ten times longer than our previous method. But
this computation is off-line and so is not significant.

Table 1 compares the speed and performance of the
time-efficient cascade compared to our previous cascade.
Observe that we get a speed-up of about 2.5 and slightly
improved performance.

Table 1. Experiment results

 Old New
Number of layers 4 10

False positive 5×10-6 2×10-6
Detection rate 89% 91%

320*240 image 0.067s 0.025s
640*480 image 0.26s 0.1s

1600*1200 image 1.54s 0.59s

3.5. Implemented systems

The text detector was tested in two systems to help
blind and visually impaired people navigate in streets.
One system is called the “Smart Telescope”. It is
designed for people with low vision, and is shown in
Figure 3. The system consists of three parts: A camera, a
portable computer and a micro-screen mounted on eye
glasses. The camera captures and transfer 640 by 480
images to the computer in real-time. The computer runs
the cascade detection algorithm, finds and marks the
regions of text in the image, and shows an enhanced
image on the micro-screen. Visually impaired people can
select a region using wireless mouse and enhance for
reading. As shown in table 1, the text detector can

6 of 8

process 640 by 480 images at 10 frame per second. This
is fast enough for practical use.

The other system called “Signfinder” is designed for
blind people. The user has a hard-head mounted digital
camera connected to a laptop computer. Once a picture is
taken, it is automatically transferred to the laptop and
processed by our text detector. The picture resolution is
1,600 by 1,200. On average the time-efficient cascade
detector takes about 0.6 second to process a picture which
is fast enough for practical use. Figure 4 shows some of
the detection results.

Figure 3. Smart telescope system

4. Conclusion and future work

In this paper, we formulated an optimization criterion
for designing a time-efficient binary cascade taking into
account the time complexity of classifiers. We developed
a greedy algorithm for training efficient cascades
motivated by our criterion (noting that the full problem is
NP-complete). Our approach can be applied to design
cascades using any type of classifiers. The techniques in
this paper can be extended to a greater range of problems,
including multi-object detection.

We illustrated our approach on the problem of text
detection. The time-efficient cascade was shown to be on
average 2.5 times fasters than our previous cascade [9]
which was designed using the criterion given in [12].

This results in two systems, Smart Telescope and
Signfinder, which use text detection to design systems to
assist the blind and visually impaired.

References

[1] H. Rowley, S. Baluja, and T. Kanade, “Neural

network-based face detection”, In IEEE Trans. PAMI,
vol. 20, 1998.

[2] F. Fleuret, and D. Geman, “Coarse-to-Fine face
detection”, International Journal of Computer Vision,
June, 2000.

[3] H. Schniederman and T. Kanade, “A Statistical
method for 3D object detection applied to faces and
cars”, Proc. of Computer Vision and Pattern
Recognition, 2000.

[4] P. Viola and M. Jones, “Robust Real-Time Face
Detection”, International Journal of Computer Vision,
57(2), 137–154, 2004

[5] A. K. Jain and B. Yu, “Automatic text localication in
images and video frames”, Pattern Recognition,
31(12), 1998.

[6] T. Sato, T. Kanade, E. Hughes, and M. Smith, “Video
OCR for Digital News Archives,” IEEE Intl.
Workshop on Content-Based Access of Image and
Video Databases, Jan, 1998.

[7] H. Li, D. Doermann and O. Kia. ”Automatic Text
Detection and Tracking in Digital Video”. IEEE
Transactions on Image Processing, 9(1):147–156,
2000.

[8] J. Xi, X. Hua, X. Chen, W. Liu, H.-J. Zhang. “A
Video Text Detection and Recognition System”. IEEE
International Conference on Multimedia and Expo
(ICME 2001), pp 1080-1083. 2001.

[9] Anonymous.
[10] J. Quinlan, Induction of decision trees. Machine

Learning,1:81–106, 1986.
[11] Y. Freund and R. Schapire, ”Experiments with a new

boosting algorithm”, Proc. of the Thirteeth Int. Conf.
on Machine Learning, 148–156 (1996).

[12] P. Viola and M. Jones, “Fast and Robust
Classification using Asymmetric AdaBoost and a
Detector Cascade”, In Proc. of NIPS01, 2001.

[13] G. Blanchard, D. Geman. “Hierarchical testing
designs for pattern recognition.” Preprints.

[14] L. Hyal and R. Rivest. Constructing optimal binary
decision trees is NP-complete. Information Processing
Letters, 35(1):15--17, 1976.

[15] V.N. Vapnik. Statistical Learning Theory. Wiley,
New York, 1998.

[16] S. M. Lucas, A. Panaretos, L. Sosa, A. Tang,
S.Wong and R.Young. ”ICDAR 2003 Robust Reading
Competitions”, In 7th International Conference on
Document Analysis and Recognition- 2003.

Micro-screen
Video camera

Computer

7 of 8

Continue on next page

8 of 8

Figure 4. Text detection examples

