UC Berkeley

Working Papers

Title

Emergency Medical Services (EMS) and the California EMS Information System (CEMSIS) Working Paper

Permalink https://escholarship.org/uc/item/01j3411t

Authors

Doggett, Sarah Ragland, David R. Felschundneff, Grace

Publication Date

2019-05-14

Peer reviewed

EMS and CEMSIS Working Paper

Sarah Doggett, Corresponding Author

Graduate Student, Safe Transportation Research and Education Center (SafeTREC) University of California, Berkeley 2614 Dwight Way #7374 Berkeley, CA 94720-7374 Phone: 510-642-0655, Fax: 510-643-9922 doggett sarah@berkeley.edu

David R. Ragland, PhD, MPH

Professor Emeritus, School of Public Health Director, Safe Transportation Research and Education Center (SafeTREC) University of California, Berkeley 2614 Dwight Way #7374 Berkeley, CA 94720-7374 Phone: 510-642-0655, Fax: 510-643-9922 davidr@berkeley.edu

Grace Felschundneff

Senior Editor, Safe Transportation Research and Education Center (SafeTREC) University of California, Berkeley 2614 Dwight Way #7374 Berkeley, CA 94720-7374 Phone: 510-642-0655, Fax: 510-643-9922 gracefelschundneff@gmail.com

January 8, 2019

ABSTRACT

This study examines data from the California EMS Information System (CEMSIS) to identify factors that influence prehospital time for EMS events related to motor vehicle collisions (MVCs). While only 19 percent of the United States population resides in rural areas, over half of all traffic fatalities involve rural motor vehicle collisions. Rural and urban MVCs result in similar injury severities, however relative inaccessibility of trauma centers and prehospital EMS time (activation, response, and transport time) likely contribute to the generally higher mortality rate in rural areas. For the present study, 24 CEMSIS data variables were requested, many of which involved missing data, which severely restricted the potential analysis of the impact of EMS response times. However, the findings did show that average overall EMS time (including response, scene and transport time) were approximately twice as long for collisions in rural zip codes compared with urban zip codes. Several limitations influence the interpretation of these results. Data on prehospital EMS times is missing for much of the state-even for zip codes with records of EMS events, data is likely incomplete. In addition, zip code level location data is insufficient for adequate study of the effects of the built environment and road network on prehospital time. Furthermore, according to the National EMS Information System (NEMSIS) User Manual, the national dataset suffers from selection and information bias, which are likely also present in the CEMSIS data. Although the present study cannot analyze the effect of longer prehospital times on patient outcome, other research has found that longer prehospital times may negatively impact patient health. Recommendations for reducing time from injury to appropriate medical care in rural areas include improving cell phone coverage, compliance of rural 911 center with FCC wireless, use of GPS technology, and integration of automatic vehicle location and computer aided navigation technologies into all computer-aided dispatch systems. In addition, CEMSIS should improve the coverage of their dataset and ensure that all EMS activities are recorded. To expand the type of analyses that can be conducted using CEMSIS data, EMS records must include fields that allow them to be linked to hospital and police datasets. When such data becomes available, research must be conducted to determine whether prehospital time is significantly related to patient outcome following motor vehicle collisions.

INTRODUCTION

This study examines data from the California EMS Information System (CEMSIS) to identify the factors that influence prehospital time for EMS events related to motor vehicle collisions (MVCs).

LITERATURE REVIEW

There is widespread belief in the significance of the 'golden hour' immediately following an injury, during which time resuscitation, stabilization and transport to a medical facility offer the greatest chance of survival for the patient.¹ By reducing prehospital time, more advanced medical care can be provided sooner, resulting in reduced mortality.

While only 19 percent of the United States population resides in rural areas, over half of all traffic fatalities involve rural motor vehicle collisions. In 2011, a total of 75 percent of drivers who were injured in MVCs and died during transport to the hospital were in rural areas.²

Rural motor vehicle collisions are not intrinsically more deadly—one study found that rural and urban motor vehicle crashes result in similar injury severities.³ Mortality rates are similar for severely injured patients regardless of whether the incident occurred in an urban or a rural setting—this indicates that patients with lower injury severity contribute to the generally higher mortality rate in rural areas.³

This discrepancy could be caused by the relative inaccessibility of trauma centers in rural areas. Although patients who are treated at Level 1 trauma centers within one hour of injury are 25 percent less likely to die as a result, more than 45 million U.S. citizens live over an hour away from a Level 1 or 2 trauma center.² In a study of motor vehicle collisions in Texas, the authors found that activation time, response time, and transport time were significantly longer for fatal motor vehicle collisions in rural areas than in urban areas.⁴

According to a study of urban sprawl and ambulance arrival delays, urban sprawl was significantly associated with longer EMS response times and a greater likelihood of delayed ambulance arrival.⁵ Counties exhibiting characteristics of sprawl—including low density construction, limited street connectivity, and separation of residential development from commercial areas—had a higher probability of delayed ambulance arrival than counties with smart growth features. The authors surmised that the "integration of more comprehensive land-

¹ Harmsen, A. M. K., G. F. Giannakopoulos, P. R. Moerbeek, E. P. Jansma, H. J. Bonjer, and F. W. Bloemers. The Influence of Prehospital Time on Trauma Patients Outcome: A Systematic Review. *Injury*, Vol. 46, No. 4, 2015, pp. 602–609. https://doi.org/10.1016/j.injury.2015.01.008.

² Towards Zero Deaths Steering Committee. Toward Zero Deaths: A National Strategy on Highway Safety. 2014.

³ Gonzalez, R. P., G. R. Cummings, H. A. Phelan, M. S. Mulekar, and C. B. Rodning. Does Increased Emergency Medical Services Prehospital Time Affect Patient Mortality in Rural Motor Vehicle Crashes? A Statewide Analysis. *The American Journal of Surgery*, Vol. 197, No. 1, 2009, pp. 30–34. https://doi.org/10.1016/j.amjsurg.2007.11.018.

⁴ Lu, Y., and A. Davidson. Fatal Motor Vehicle Crashes in Texas: Needs for and Access to Emergency Medical Services. *Annals of GIS*, Vol. 23, No. 1, 2017, pp. 41–54. https://doi.org/10.1080/19475683.2016.1276102.

use metrics, such as measures of urban sprawl, into EMS dispatch algorithms may improve resource utilization and potentially response reliability."⁵

METHODOLOGY

Background on CEMSIS

The California EMS Information System CEMSIS is a secure, consolidated data system that collects information about emergency medical service calls, patients treated at hospitals, and EMS providers.⁶ Data are collected according to National Emergency Medical Services Information System (NEMSIS) standards. Prior to 2017, data was collected according to version 2.2.1 of the standards, and subsequently, local EMS agencies have gradually transitioned to using the current 3.4 version.

Eventually, CEMSIS data will be used to develop and coordinate high quality emergency medical care across the state via programs that link treatments to patient care outcomes, enhancing agency collaboration across jurisdictions, and increasing public awareness of EMS services in California.⁷ However, CEMSIS is currently a demonstration project and is not yet fully implemented throughout the state. Table A1 in the appendix illustrates the timeline of CEMSIS participation by each local EMS agency (LEMSA) in California.

CEMSIS uses the NEMSIS data dictionary, although not all variables listed in the NEMSIS dictionary are populated—even partially—in the CEMSIS dataset.

Based on the data requested from CEMSIS, variables designated as national elements are generally populated in the CEMSIS dataset. These elements are required to be collected by the local EMS agencies and submitted to NEMSIS by each state.⁸ The current version of NEMSIS (3.4) has definitions for 165 national elements, as well as 420 recommended and optional elements.

Data Description

For the present study, 24 variables were requested, including the zip code in which the incident occurred, the time at which an EMS unit was notified of the incident, the time at which the EMS unit was en route to the patient, the arrival and departure times to and from the scene, and the time when the EMS unit reached their hospital or trauma center destination. Demographic variables, such as patient gender and ethnicity, were requested but were not released due to privacy concerns. Only records that listed the cause of injury as a motor vehicle traffic accident were included in the present study.

Many of the variables that were requested involved missing data. For example, 97 percent of the records for 2013 were missing data on the condition of the patient at the hospital or trauma

⁵ Trowbridge, M. J., Gurka, M. J., & O'Connor, R. E. (2009). Urban Sprawl and Delayed Ambulance Arrival in the U.S. *American Journal of Preventive Medicine*, 37(5), 428–432. https://doi.org/10.1016/j.amepre.2009.06.016

⁶ https://emsa.ca.gov/cemsis/

⁷ ibid.

⁸https://nemsis.org/media/nemsis_v3/3.3.4.140328/DataDictionary/PDFHTML/DEMEMS/NEMSISDataDictionary.pdf

center destination. For the present study, the prevalence of missing data severely restricted the potential analysis of the impact of EMS response times.

Year	Number of Records	Number of Distinct Zip Codes for which there are records	Number of Distinct Counties for which there are records	
2013	9083	131	11	
2014	27211	330	34	
2015	39834	509	40	

Table 1: CEMSIS Dataset Description

Figures A1-A3 in the Appendix illustrate the geographic coverage of the CEMSIS dataset. While coverage has been expanded over the years, CEMSIS is still not receiving information from a large part of the state.

Analysis at the Zip Code Level

Because data on EMS events were available only at the zip code level, it was necessary to conduct the present analyses at that scale. There are 843 urban and 876 rural zip codes in California. Demographic variables were aggregated from the census block group level to the zip code level, using 2016 ACS data. If a block group fell into more than one zip code, it was assumed that the population was evenly distributed and a fraction of that demographic was added to the zip code proportional to how much of the block group fell inside the zip code.

Zip codes were classified as urban or rural based on the location of their centroid. If the centroid fell within an urbanized area (as defined by the Census, shown in Figure A4 in the Appendix), then the zip code was classified as urban, otherwise the zip code was classified as rural. The average size of a rural zip code in the state is 170 square miles, while the average size of an urban zip code is 11 square miles.

The Euclidean distance between the zip code centroid and the nearest trauma center location was calculated using ArcGIS's Near tool.

For the present study, the average duration of various segments of prehospital time were calculated according to characteristics of the zip code in which the scene was located. The prehospital segments included response time, the time from the notification of the EMS vehicle and the arrival of the vehicle at the scene; scene time, the time between the arrival of the EMS vehicle at the scene and the departure of the vehicle from the scene; and transport time, the time between the departure of the vehicle from the scene and its arrival at the emergency room or trauma center destination. Overall time is comprised of these three components of prehospital time.

RESULTS

Year:	2013		20)14	2015	
	Rural Zip	Urban	Rural Zip	Urban	Rural Zip	Urban
Collision Location:	Code	Zip Code	Code	Zip Code	Code	Zip Code
Average Response						
Time (min)	21.2	6.8	21.4	6.8	17.9	7.2
Average Scene						
Time (min)	27.6	19.1	26.8	18.3	23.1	17.4
Average Transport						
Time (min)	26.2	15.1	35.2	14.6	31.3	14.9
Average Overall						
Time (min)	73.3	40.9	85.0	39.9	79.7	39.8

Table 2: Rural/Urban Difference in Response Time—Scene Time, Transport Time, and Overall Time

The CEMSIS dataset included 57 urban zip codes and 74 rural zip codes in 2013, 118 urban zip codes and 212 rural zip codes in 2014, and 246 urban zip codes and 263 rural zip codes in 2015.

As shown in Table 2, the average EMS response time to a motor vehicle collision is substantially longer when the collision occurs in a rural zip code rather than in an urban zip code. This was true for each study year, although the difference appeared to be slightly smaller in 2015. This difference was statistically significant each year (p=0.000).

Average scene time was also longer in rural zip codes than in urban zip codes for all study years. However, the difference was not as dramatic as it was for response times. The difference in scene time was not statistically significant in 2013, but was statistically significant in 2014 (p=0.015) and in 2015 (p=0.000).

Average transport time was approximately twice as long in rural zip codes as in urban zip codes for all study years. The difference was statistically significant for all years (p=0.000).

Average overall time was also approximately twice as long in rural zip codes than in urban zip codes for all study years, although the difference appeared to be the smallest in 2013. The difference was statistically significant for all years (p=0.000).

As shown in Table 3, the difference in prehospital times is not as substantial when comparing zip codes with and without trauma centers as it is when comparing urban and rural zip codes. Average response time is approximately one minute shorter in zip codes with trauma centers than in zip codes without them. The difference is statistically significant in 2013 (p=0.009) and 2014 (p=0.001), but not in 2015.

Year:	201	13	2014		2015	
		At least		At least		At least
		one	No	one		one
	No Trauma	Trauma	Trauma	Trauma	No Trauma	Trauma
	Center in					
Collision Location:	Zip Code					
Average Response Time						
(min)	7.8	6.8	7.9	6.6	7.8	6.7
Average Scene Time (min)	19.6	19.6	19.1	18.2	17.7	18.4
Average Transport Time						
(min)	16.2	11.1	16.7	10.5	16.3	10.6
Average Overall Time (min)	43.3	37.4	44.1	35.5	42.6	36.0

Table 3. Differences in Times Based on Presence of Trauma Centers in Zip Code

Average transport time is approximately 5 to 6 minutes shorter in zip codes with trauma centers than in zip codes without them. The difference is statistically significant in all years (p=0.000).

Average overall time is shorter in zip codes with trauma centers than in those without them. The difference is statistically significant in all years (p=0.007 in 2013, p=0.000 in 2014 and 2015).

Year:	2013		20	14	2015		
				At least			
	No	At least one	No	one	No	At least one	
	Emergency	Emergency	Emergency	Emergency	Emergency	Emergency	
Collision	Room in	Room in Zip	Room in	Room in	Room in Zip	Room in Zip	
Location:	Zip Code	Code	Zip Code	Zip Code	Code	Code	
Average							
Response							
Time (min)	8.4	6.6	8.4	6.8	8.0	7.2	
Average							
Scene Time							
(min)	19.5	19.7	19.5	18.1	17.9	17.5	
Average							
Transport							
Time (min)	17.2	13.5	18.3	12.6	17.1	13.5	
Average							
Overall Time							
(min)	44.8	39.7	46.8	37.4	44.1	38.4	

 Table 4. Differences in Times Based on Presence of ERs in Zip Code

 Very

As shown in Table 4, there is some difference in prehospital times between zip codes with emergency rooms and zip codes without ERs. In zip codes with no emergency rooms, average response times are approximately 1 minute longer than in those with emergency rooms. This difference is statistically significant for all years (p=0.000).

Average transport times are approximately 4 minutes longer for zip codes without ERs than for those with them. This difference is statistically significant for all years (p=0.000).

Average overall prehospital time is longer in zip codes without ERs than it is in zip codes with ERs. This difference is statistically significant for all years (p=0.018 in 2013, p=0.000 in 2014 and 2015).

Regression Results

Regression models were generated for each year using the distance from the zip code centroid to the nearest trauma center and a dummy variable signifying its rural status as independent variables (both alone and together) and using either response time, scene time, transport time, or overall time as the dependent variable. All models were statistically significant, though the R-squared value varied.

Year	2013	2014	2015
Model A: Distance onl	y		
Constant	4.985***	4.943***	5.666***
Miles to nearest	0.473***	0.588***	0.469***
Trauma Center			
R-squared	0.1419	0.1909	0.1124
Adjusted R-squared	0.1418	0.1909	0.1124
No. observations	8,793	25,585	38,531
Model B: Rural Status	only		
Constant	6.800***	6.844***	7.202***
Rural	14.426***	14.517***	10.718***
Desugard	0.2212	0.0577	0.4247
R-squared	0.2313	0.2577	0.1217
Adjusted R-squared	0.2312	0.2577	0.1217
No. observations	8,793	25,585	38,531
Model C: Distance and	Rural Status		
Constant	5.633***	5.409***	5.962***
Miles to nearest	0.233***	0.341***	0.316***
Trauma Center			
Rural	11.698***	11.086***	7.674***
R-squared	0.2575	0.3074	0.1627
Adjusted R-squared	0.2574	0.3074	0.1627
No. observations	8,793	25,585	38,531

Table 5: Regression	Results f	or Resnanse	Time	(minutes)	
Table 5. Regression	Nesults I	of Response	I me	minutes	

*,**,*** indicates significance at the 90%, 95%, 99% level, respectively

As shown in Table 5, Model A demonstrates that distance to the nearest trauma center has a small but significant impact on the average response time for a zip code. When rural status is controlled for in Model C, the impact of distance is reduced but is still significant.

On its own, as shown by Model B, rural status has a large impact on response time, although it is smaller in 2015 than in 2013 and 2014. When distance to the nearest trauma center is controlled for in Model C, the impact of rural status is slightly reduced.

In each year, Model C accounts for more of the variation in response time than Model A and B.

Table 6: Regression	Results for Scene 1	ime (minutes)	
Year	2013	2014	2015
Model A: Distance onl	У		
Constant	17.745***	16.918***	16.587***
Miles to nearest	0.322***	0.401***	0.248***
Trauma Center			
R-squared	0.0292	0.0442	0.0130
Adjusted R-squared	0.0290	0.0442	0.0130
No. observations	6,570	17,382	25,666
Model B: Rural Status	only		
Constant	19.074***	18.344***	17.418***
Rural	8.558***	8.490***	5.670***
R-squared	0.0346	0.0441	0.0140
Adjusted R-squared	0.0344	0.0440	0.0140
No. observations	6,570	17,382	25,666
Model C: Distance and	l Rural Status		
Constant	18.047***	17.154***	16.741***
Miles to nearest	0.203***	0.271***	0.166***
Trauma Center			
Rural	6.263***	5.707***	4.036***
R-squared	0.0437	0.0594	0.0187
Adjusted R-squared	0.0434	0.0593	0.0186
No. observations	6,570	17,382	25,666

Table 6: Regression Results for Scene Time (minutes)

*,**,*** indicates significance at the 90%, 95%, 99% level, respectively

The regression for scene time does not explain much of its variation. Distance to the nearest trauma center has a small but significant impact on the average scene time for a zip code. The rural status of the zip code has a larger impact on scene time.

Year	2013	2014	2015
Model A: Distance onl	y	·	
Constant	13.355***	11.848***	12.217***
Miles to nearest	0.413***	0.838***	0.776***
Trauma Center			
R-squared	0.0435	0.1251	0.1027
· · · · · · · · · · · · · · · · · · ·	0.0433	0.1250	0.1027
Adjusted R-squared			
No. observations	6,449	17,136	24,456
Model B: Rural Status	only		
Constant	15.076***	14.611***	14.912***
Rural	11.130***	20.605***	16.371***
R-squared	0.0502	0.1678	0.0954
Adjusted R-squared	0.0500	0.1678	0.0954
No. observations	6,449	17,136	24,456
Model C: Distance and	Rural Status		
Constant	13.760***	12.485***	12.637***
Miles to nearest	0.262***	0.482***	0.552***
Trauma Center	0.202	0.402	0.552
Rural	8.028***	15.668***	10.964***
R-squared	0.0638	0.1995	0.1369
Adjusted R-squared	0.0635	0.1994	0.1368
No. observations	6,449	17,136	24,456

Table 7: Regression Results for Transport Time (minutes)

*,**,*** indicates significance at the 90%, 95%, 99% level, respectively

The regression for transport time does not explain much of its variation. Distance to the nearest trauma center has a small but significant impact on the average transport time for a zip code. The impact was higher in 2014 and 2015 than in 2013. The rural status of the zip code has a much larger impact on response time. Rural status had the largest effect in 2014.

Table 8: Regression	Results for Overall	lime (minutes)	
Year	2013	2014	2015
Model A: Distance on	y		
Constant	36.337***	33.748***	34.519***
Miles to nearest	1.119***	1.860***	1.620***
Trauma Center			
R-squared	0.0884	0.1951	0.0955
Adjusted R-squared	0.0883	0.1950	0.0955
No. observations	6,498	17,263	24,649
Model B: Rural Status	only		
Constant	40.889***	39.881***	39.806***
Rural	32.366***	45.123***	39.942***
Deguarad	0.1100	0.2590	0.1210
R-squared	0.1180	0.2589	0.1218
Adjusted R-squared	0.1179	0.2588	0.1218
No. observations	6,498	17,263	24,649
Model C: Distance and	l Rural Status		
Constant	37.589***	35.157***	35.682***
Miles to nearest	0.654***	1.073***	1.000***
Trauma Center			
Rural	24.628***	34.160***	30.137***
	0.4.45	0.0000	0.4500
R-squared	0.1415	0.3086	0.1509
Adjusted R-squared	0.1412	0.3085	0.1509
No. observations	6,498	17,263	24,649

 Table 8: Regression Results for Overall Time (minutes)

*,**,*** indicates significance at the 90%, 95%, 99% level, respectively

The regression for overall time explains a little of the variation in 2013 and 2015, but explains more in the 2014 dataset. Distance to the nearest trauma center has a small but significant impact on the average overall time for a zip code. The rural status of the zip code has a much larger impact on overall time.

DISCUSSION

The data shows that there are substantial differences in response, scene, and transport times between collisions that occur in urban and rural zip codes. However, there are several limitations influencing interpretation of the results.

Limitations

Data on EMS response, scene, and transport times are missing for much of the state (see Fig A1-3 in Appendix). Even for zip codes that have records of EMS events, the dataset is likely incomplete (i.e., not all EMS responses to motor vehicle collisions in a zip code are recorded). Therefore, the data recorded in CEMSIS may not be representative of EMS events throughout California.

Additionally, zip code level location data is insufficient for adequate study of the effects of the built environment and road network on prehospital time.

The analyses that can be conducted using zip code level data are limited by missing data. Fields such as patient condition are not populated, thus analyses for such factors cannot be completed. For example, without data on patient condition, the effect of response time on health outcomes cannot be determined.

CEMSIS, like NEMSIS, is a convenience sample, in which data are submitted voluntarily by local EMS agencies. According to the NEMSIS User Manual, the dataset suffers from selection bias, which occurs when a perceptible difference between two groups is caused by different criteria being included. The dataset also suffers from information bias, which is a difference between two groups that is due to differences in the data available for comparison.⁹ The problems that the national database experiences are likely also present in CEMSIS data.

Possible Implications of Urban/Rural Differences

Despite the study limitations, it is possible that there is a significant difference for EMS response and transport times between urban and rural zip codes.

Although the present study cannot analyze the effect of longer prehospital times on patient outcome, previous research has found that longer prehospital times may negatively impact patient health. According to one study, fatality rates resulting from rural traffic collisions are nearly twice as high as those involving urban collisions. The study also found that increases in EMS prehospital time appear to be associated with higher mortality rates for injuries resulting from traffic collisions in rural areas.¹⁰

Another study found that severely injured trauma patients from urban-area collisions exhibited higher 30-day mortality rates compared with patients injured in rural areas, however length of ICU stays were similar for both groups. The study also found that more pre-hospital deaths occurred as a result of collisions in rural areas, suggesting that time prior to mobile ICU arrival is critical to trauma patient survival, particularly in rural areas.¹¹

A survey of 29 EMS personnel in eastern SD was conducted to identify existing issues related to roads and traffic controls. Among the responses, one outstanding issue was motorists' lack of

⁹ https://nemsis.org/wp-content/uploads/2017/10/NEMSIS-RDS-221-2016-User-Manual.pdf

¹⁰ Gonzalez, R. P., G. R. Cummings, H. A. Phelan, M. S. Mulekar, and C. B. Rodning. Does Increased Emergency Medical Services Prehospital Time Affect Patient Mortality in Rural Motor Vehicle Crashes? A Statewide Analysis. *The American Journal of Surgery*, Vol. 197, No. 1, 2009, pp. 30–34. https://doi.org/10.1016/j.amjsurg.2007.11.018.

¹¹ Raatiniemi, Lasse, Janne Liisanantti, Suvi Niemi, Heini Nal, Pasi Ohtonen, Harri Antikainen, Matti Martikainen, and Seppo Alahuhta. 2015. Short-Term Outcome and Differences between Rural and Urban Trauma Patients Treated by Mobile Intensive Care Units in Northern Finland: A Retrospective Analysis. *Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine* 23 (1). https://doi.org/10.1186/s13049-015-0175-2.

compliance to emergency vehicles. All respondents considered the failure of other drivers to pull over as a major safety concern.¹²

According to a statewide analysis of MVCs in Alabama, increased EMS prehospital time appears to be associated with higher mortality rates in rural areas. For the study, prehospital data from a two-year period were analyzed to determine EMS response scene and transport time in rural and urban areas. When mortalities occurred, the mean EMS transport time for rural areas was 12.45 minutes, and 7.43 minutes in urban areas (P < .0001). When mortalities occurred, the overall mean prehospital time in rural areas was 42.0 minutes, and 24.8 minutes in urban areas (P < .0001). The mean EMS response time for rural MVCs with survivors was 8.54 minutes compared with a mean of 10.67 minutes with mortalities (P < .0001). The mean EMS scene time for rural MVCs with survivors was 14.81 minutes compared with 18.87 minutes with mortalities (patients who were declared dead at the scene and extrication patients were excluded) (P = .0014).¹³

RECOMMENDATIONS AND FUTURE WORK

Improvements to EMS Response Time in Rural Areas

The National Cooperative Highway Research Program (NCHRP) recommends the following strategies for reducing time from injury to appropriate medical care in rural areas:¹⁴

- Improve cellular telephone coverage in rural areas
- Improve compliance of rural 9-1-1 centers with FCC wireless
- "Phase II" automatic location capability
- Utilize GPS technology to improve response time
- Integrate automatic vehicle location (AVL) and computer aided navigation (CAN) technologies into all computer-aided dispatch (CAD) systems
- Equip EMS vehicles with multi-service and/or satellite capable telephones

To create a comprehensive approach to reducing EMS response time in rural areas, NCHRP further recommends these related strategies:¹⁵

- Public information and education (PI&E) programs
- Enforcement of traffic laws
- Strategies directed at improving the safety management system

Local EMS systems should evaluate ambulance patient offload time at the hospital as a key indicator of efficient EMS system function. Those that have identified negative system impacts

¹² Samra, Haifa, Xiao Qin, and Zhaoxiang He. 2014. *Improving Rural Emergency Medical Services (EMS) through Transportation System Enhancements*. Mountain Plains Consortium. https://www.ugpti.org/resources/reports/downloads/mpc14-267.pdf

¹³ Gonzalez RP¹, Cummings GR, Phelan HA, Mulekar MS, Rodning CB. Does increased emergency medical services prehospital time affect patient mortality in rural motor vehicle crashes? A statewide analysis. *Am J Surg.* 2009 Jan;197(1):30-4. doi: 10.1016/j.amjsurg.2007.11.018. Epub 2008 Jun 16. DOI:10.1016/j.amjsurg.2007.11.018

 ¹⁴ National Cooperative Highway Research Program (NCHRP), 2005. *Guidance for Implementation of the AASHTO Strategic Highway Safety Plan: A Guide for Enhancing Rural Emergency Medical Services*. NCHRP) Report 500, Vol. 15.
 ¹⁵ Ibid.

due to offload delays should use common language and metrics to define and measure delays in developing action plans to decrease or eliminate delays. Local EMS systems should establish ambulance patient offload time interval standards between 15-30 minutes that define when delay occurs.¹⁶

In a survey of hospitals and local emergency medical services in California, those that did not report transportation delays listed three factors that contributed to their success:

- 1. Optimizing the ED intake process
- 2. Successful hospital process improvement strategies
- 3. Hospital and LEMSA collaboration and ongoing process improvement strategies¹⁷

The first step to reducing offload delays in California involves establishing standardized definitions for data collection to address the significant variability in obtaining data from the state's 33 local agencies, hundreds of EMS provider agencies, and 320 acute care hospital emergency departments that receive 911 dispatched ambulances.¹⁸

Improvements to CEMSIS Data

CEMSIS should improve the coverage of their dataset and ensure that all EMS activities are recorded in its database. This will eliminate potential selection bias that is introduced by using the incomplete dataset. CEMSIS should also ensure that important fields such as patient outcome are populated with as little missing data as possible to reduce the information bias that occurs when one area populates a field more accurately than another. To expand the type of analyses that can be conducted using CEMSIS data, EMS records need to include fields that allow them to be linked to hospital and police datasets.

When this data becomes available, new research must be conducted to determine whether prehospital time is significantly related to patient outcome following motor vehicle collisions.

APPENDIX

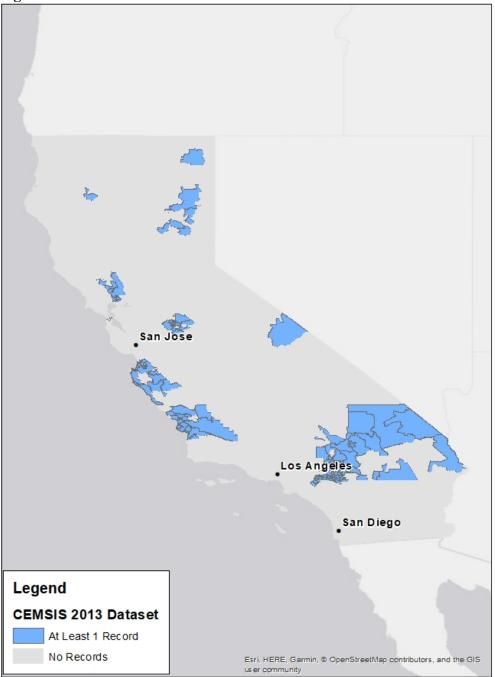
Table A1. Timeline of CEM	SIS Parti	cipatio	n by L	ocal E	MS Agencies in (Califo
LEMSA	2013	2014	2015	2016	2017	2018
Alameda County			Х	Х	Х	Х
Central California*		Х	Х	Х	Х	Х
Coastal Valleys**					Х	Х
Contra Costa County		Х	Х	Х	Х	Х
El Dorado County	Х	Х	Х	Х	Х	Х
Imperial County			No	t Partic	ipating	
Inland Counties***	Х	Х	Х	Х	Х	Х
Kern County					Х	Х
Los Angeles County			No	t Partic	ipating	
Marin County		х	х	х	Not Participating	Х
Merced County					Х	Х
, Monterey County	Х	Х	х	Х	Х	Х
Mountain Valley^	Х	Х	Х	Х	Х	Х
Napa County	Х	Х	х	Х	Х	Х
North Coast^^	Х	Х	Х	Х	Х	Х
Northern California^^^	Х	Х	Х	Х	Х	Х
Orange County				Х	Х	Х
Riverside County					Х	Х
Sacramento County			Х	Х	Х	Х
San Benito County		Х	Х	Х	Х	Х
San Diego County					Х	Х
San Francisco County	Х	Х	Х	Х	Х	Х
San Joaquin County					Х	Х
San Luis Obispo County	Х	Х	Х	Х	Х	Х
San Mateo County			Not Pa	rticipat	ing	Х
Santa Barbara County			Х	Х	Х	Х
Santa Clara County					Х	х
Santa Cruz County		Х	Х	Х	Х	Х
Sierra-Sacramento Valley [#]		х	х	х	Х	Х
Solano County			Not Pa	rticipat	ing	Х
Tuolumne County					Х	Х
Ventura County		Х	х	х	Х	Х
Yolo County		Х	Х	Х	Х	Х

Table A1. Timeline of CEMSIS Participation by Local EMS Agencies in California

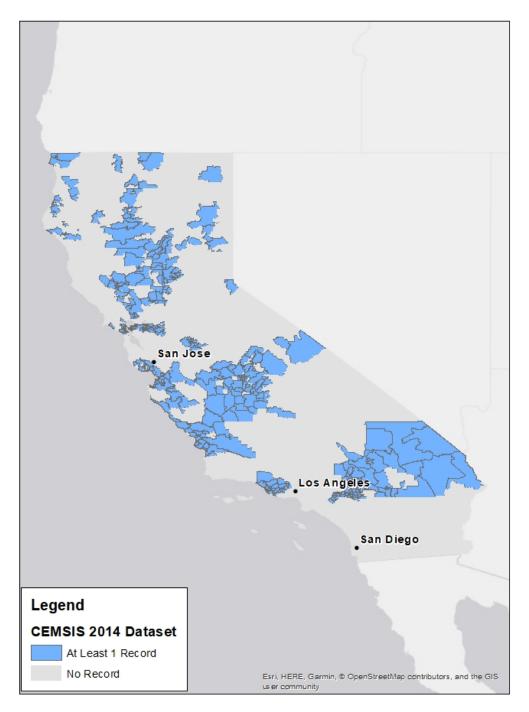
*Fresno, Kings, Madea, and Tulare Counties

**Sonoma and Mendocino County

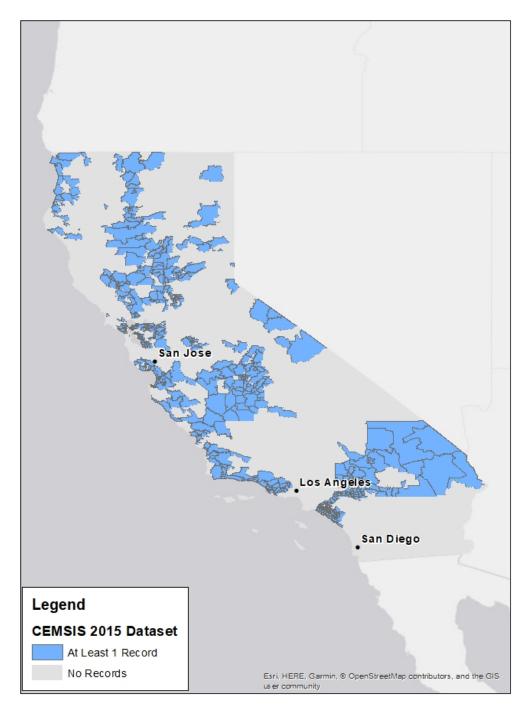
***Inyo, Mono, and San Bernardino Counties


^Alpine, Amador, Calaveras, Mariposa, Stanislaus

^^Del Norte, Humboldt, and Lake Counties


^^^Lassen, Modoc, Plumas, Sierra, and Trinity Counties

*Butte, Colusa, Glenn, Nevada, Placer, Shasta, Siskiyou, Sutter, Tehama, and Yuba County



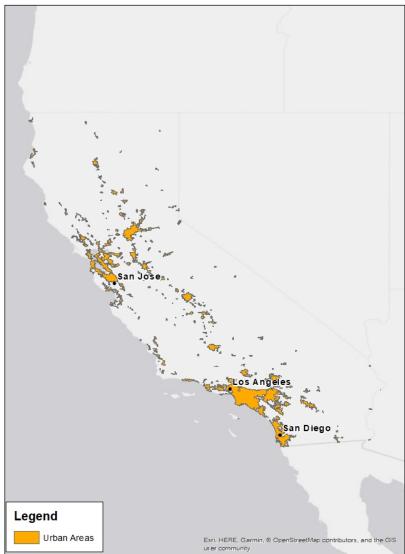


Figure A4. California Census Urban Areas

Table A2-9. Demographic Differences (or lack of) at Zip Code Level

Year:	20	2013		14	2015		
	% White	% White	% White	% White	% White	% White	
	Population at or			Population at or Population		Population	
	above State			Below State	above State	Below State	
Collision Location:	Average	Average	Average	Average	Average	Average	
Average Response Time (min)	9.7	6.3	8.8	6.7	8.6	7.0	
Average Scene Time (min)	20.2	19.2	19.5	18.5	17.9	17.6	
Average Transport Time (min)	16.9	14.9	17.1	15.3	16.1	15.6	
Average Overall Time (min)	46.1	40.5	46.1	40.6	44.1	40.3	

Year:	20	2013		14	2015		
	% Black	% Black	% Black	% Black	% Black	% Black	
	Population at or	Population	Population at or	Population	Population at or	Population	
	above State	Below State	above State	Below State	above State	Below State	
Collision Location:	Average	Average	Average	Average	Average	Average	
Average Response Time (min)	7.3	8.3	6.8	8.6	7.2	8.1	
Average Scene Time (min)	20.2	18.7	18.5	19.4	18.1	17.5	
Average Transport Time (min)	15.6	15.9	15.0	17.2	15.9	15.8	
Average Overall Time (min)	43.1	42.2	40.4	45.8	41.5	42.6	

Year:	20	2013		2014		2015	
	% Native	% Native	% Native	% Native	% Native	% Native	
	American	American	American	American	American	American	
	Population at or	Population	Population at or	Population	Population at or	Population	
	above State	Below State	above State	Below State	above State	Below State	
Collision Location:	Average	Average	Average	Average	Average	Average	
Average Response Time (min)	10.0	7.5	9.0	7.5	9.4	7.4	
Average Scene Time (min)	22.6	19.3	19.4	18.9	19.4	17.4	
Average Transport Time (min)	18.0	15.5	18.0	15.8	18.0	15.4	
Average Overall Time (min)	49.6	42.1	46.9	42.6	46.9	41.1	

Year:	2013		2014		2015	
	% Asian	% Asian	% Asian	% Asian	% Asian	% Asian
	Population at or	Population	Population at or	Population	Population at or	Population
	above State	Below State	above State	Below State	above State	Below State
Collision Location:	Average	Average	Average	Average	Average	Average
Average Response Time (min)	6.2	8.0	6.4	8.2	6.9	8.2
Average Scene Time (min)	19.3	19.6	18.5	19.1	16.9	18.2
Average Transport Time (min)	15.2	15.8	14.3	16.8	14.3	16.6
Average Overall Time (min)	40.5	43.1	39.1	44.7	38.0	44.1

Year:	20	2013		2014		2015	
	% Hispanic	% Hispanic	% Hispanic	% Hispanic	% Hispanic	% Hispanic	
	Population at or	Population	Population at or	Population	Population at or	Population	
	above State	Below State	above State	Below State	above State	Below State	
Collision Location:	Average	Average	Average	Average	Average	Average	
Average Response Time (min)	6.9	10.2	7.1	9.3	7.4	8.3	
Average Scene Time (min)	19.2	20.9	18.6	19.9	18.0	17.3	
Average Transport Time (min)	15.2	17.4	15.9	16.9	15.6	16.2	
Average Overall Time (min)	41.2	47.8	41.9	46.7	41.3	43.5	

Year:	2013		2014		2015	
	% Population	% Population	% Population	% Population	% Population	% Population
	Below Poverty	Below Poverty	Below Poverty	Below Poverty	Below Poverty	Below Poverty
	Line at or above	Line below	Line at or above	Line below	Line at or above	Line below
Collision Location:	State Average	State Average	State Average	State Average	State Average	State Average
Average Response Time (min)	7.9	7.3	9.2	7.0	7.7	7.8
Average Scene Time (min)	20.1	18.8	20.1	18.3	18.2	17.1
Average Transport Time (min)	15.5	16.1	18.0	15.1	15.9	15.8
Average Overall Time (min)	43.2	42.1	48.0	40.7	42.2	42.0

Year:	20	2013		2014		2015	
	% Homeowners Population at or above State	Population	% Homeowners Population at or above State	Population	% Homeowners Population at or above State	% Homeowners Population Below State	
Collision Location:	Average	Average	Average	Average	Average	Average	
Average Response Time (min)	9.1	6.6	9.2	7.0	8.7	7.1	
Average Scene Time (min)	19.8	19.4	20.1	18.3	17.9	17.6	
Average Transport Time (min)	17.5	14.3	18.0	15.1	17.4	14.9	
Average Overall Time (min)	46.1	40.0	48.0	40.7	45.8	39.9	

Year:	2013		2014		2015	
	/		,			% Uninsured
	Population at or		Population at or		Population at or	Population
	above State				above State	Below State
Collision Location:	Average	Average	Average	Average	Average	Average
Average Response Time (min)	7.6	7.9	8.1	7.3	7.7	7.8
Average Scene Time (min)	19.4	19.9	19.4	18.4	18.1	17.3
Average Transport Time (min)	16.0	15.2	17.2	14.6	16.3	15.2
Average Overall Time (min)	42.9	42.4	45.3	40.4	42.6	41.5