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Abstract

Computational cognitive modeling is an important tool for understanding
the processes supporting human and animal decision-making. Choice data
in decision-making tasks are inherently noisy, and separating noise from sig-
nal can improve the quality of computational modeling. Common approaches
to model decision noise often assume constant levels of noise or exploration
throughout learning (e.g., the ✏-softmax policy). However, this assumption
is not guaranteed to hold – for example, a subject might disengage and lapse
into an inattentive phase for a series of trials in the middle of otherwise low-
noise performance. Here, we introduce a new, computationally inexpensive
method to dynamically infer the levels of noise in choice behavior, under
a model assumption that agents can transition between two discrete latent
states (e.g., fully engaged and random). Using simulations, we show that
modeling noise levels dynamically instead of statically can substantially im-
prove model fit and parameter estimation, especially in the presence of long
periods of noisy behavior, such as prolonged attentional lapses. We further
demonstrate the empirical benefits of dynamic noise estimation at the indi-
vidual and group levels by validating it on four published datasets featuring
diverse populations, tasks, and models. Based on the theoretical and empir-
ical evaluation of the method reported in the current work, we expect that
dynamic noise estimation will improve modeling in many decision-making
paradigms over the static noise estimation method currently used in the mod-
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eling literature, while keeping additional model complexity and assumptions
minimal.

Keywords: cognitive modeling, decision-making, reinforcement learning,
decision noise, hidden Markov model, task engagement, attention, lapses

1. Introduction1

Computational modeling has helped cognitive scientists, psychologists,2

and neuroscientists to quantitatively test theories by translating them into3

mathematical equations that yield precise predictions [1, 2]. Cognitive mod-4

eling often requires computing how well a model fits to experimental data.5

Measuring this fit – for example, in the form of model evidence [3] – enables6

a quantitative comparison of alternative theories to explain behavior. Mea-7

suring model fit to the data as a function of model parameters helps identify8

the best-fitting parameters for the given data, via an optimization procedure9

over the fit measure (typically negative log-likelihood) in the space of possi-10

ble parameter values. When fitted as a function of experimental conditions,11

model parameter estimation can help explain how task manipulations modify12

cognitive processes [5]; when fitted at the individual level, estimated model13

parameters can help account for individual di↵erences in behavioral patterns14

[6]. Moreover, recent work has applied cognitive models in the rapidly grow-15

ing field of computational psychiatry to quantify the functional components16

of psychiatric disorders [7]. Importantly, cognitive modeling is particularly17

useful for explaining choice behavior in decision-making tasks – it reveals18

links between subjects’ observable choices and putative latent internal vari-19

ables such as objective or subjective value [8], strength of evidence [9], and20

history of past outcomes [10]. This link between internal latent variables21

and choices is made via a policy : the probability of making a choice among22

multiple options based on past and current information.23

An important feature of choice behavior produced by biological agents is24

its inherent noise, which can be attributed to multiple sources including inat-25

tention [11, 12], stochastic exploration [39], and internal computation noise26

[14]. Choice randomization can be adaptive, as it encourages exploration,27

which is essential for learning [15]. Exploration can come close to optimal28

performance if implemented correctly [16, 17, 18]. However, the role of noise29

is often downplayed in computational cognitive models, which usually em-30

phasize noiseless information processing over internal latent variables – for31
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example, in reinforcement learning, how the choice values are updated with32

each outcome [19]. A common approach to modeling noise in choice behav-33

ior is to include simple parameterized noise into the model’s policy [2]. For34

example, a greedy policy, which chooses the best option deterministically,35

can be “softened” by a logistic or softmax function with an inverse temper-36

ature parameter, �, such that choices among more similar options are more37

stochastic than choices among more di↵erent ones. Another approach is to38

use an ✏-greedy policy, where the noise level parameter, ✏, weighs a mixture of39

a uniformly random policy with a greedy policy. This approach is motivated40

by a di↵erent intuition: that lapses in choice patterns can happen indepen-41

dently of the specific internal values used to make decisions. Multiple noise42

processes can be used jointly in a model when appropriate [20].43

Failure to account for a noisy choice process in modeling could lead to44

under- or over-emphasis of certain data points, and thus inappropriate con-45

clusions [21, 22]. However, commonly used policies with noisy decision pro-46

cesses share strong assumptions. In particular, they typically assume that47

the levels of noise in the policy are fixed, or “static”, with regards to some48

learning variable (e.g., trial for ✏-greedy and value di↵erence between choices49

for softmax), over the duration of the experiment, with some exceptions50

reviewed by [23, 24] further described in Discussion. This static assump-51

tion could hold for some sources of noise, such as computation and some52

exploration noise, but many other sources are not guaranteed to generate53

consistent levels of noise. For instance, a subject might disengage during54

some periods of the experiment, but not others. Therefore, existing models55

with static noise estimation might fail to fully capture the variance in noise56

levels, which can impact the quality of computational modeling.57

To resolve this issue, we introduce a dynamic noise estimation method58

that estimates the probability of noise contamination in choice behavior trial-59

by-trial, allowing it to vary over time. Fig 1A illustrates examples of static60

and dynamic noise estimation on human choice behavioral data from [4, 5].61

The probabilities of noise inferred by models with static and dynamic noise62

estimation are shown in conjunction with choice accuracy. In this example,63

choice accuracy drops steeply to a random level (0.33) around Trial 350,64

indicating an increased probability of noise contamination. This change is65

captured by dynamic noise estimation but not the static method.66

Our dynamic noise estimation method makes specific, but looser assump-67

tions than static noise estimation, making it suitable to solve a broader range68

of problems (Fig 1B). Specifically, a policy with dynamic noise estimation69
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Figure 1: Dynamic noise estimation computes the noise levels in choices trial-
by-trial. A: Example noise levels in choice behavioral data estimated by static and
dynamic noise estimation methods. Background shading indicates the block design of
the experiment; black line is smoothed accuracy; orange circles and green dots represent
estimated static and dynamic noise levels, respectively. Data is an example subject from
[4, 5]. B: Static noise estimation is a special case of dynamic noise estimation subject to an
additional constraint – the static noise model space is included in the dynamic noise model
space. C: Hidden Markov models representing the static and dynamic noise estimation
frameworks with transition probabilities between latent states.

models the presence of random noise as the result of switching between two70

latent states – the Random state and the Engaged state – that correspond to71

a uniformly random, noisy policy and some other decision policy assuming72

full task engagement (e.g., an attentive, softmax policy). We assume that73

a hidden Markov process governs transitions between the two latent states74

with two transition probability parameters, TE
R and TR

E , from the Random75

to Engaged state and vice versa. Note that static noise estimation can be76

formulated under the same binary latent state assumption, with the addi-77

tional constraint that the transition probabilities must sum to one, making78

it a special case of dynamic noise estimation (see Materials and methods for79
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proof). The hidden Markov model of dynamic noise estimation captures the80

observation that noise levels in decision-making tend to be temporally auto-81

correlated, which may be a reflection of an evolved expectation of temporally82

autocorrelated environments [25].83

We show that noise levels can be inferred dynamically trial-by-trial in84

multi-trial decision-making tasks, using a simple, step-by-step algorithm (Al-85

gorithm 2). On each trial, the model infers the probability of the agent being86

in each latent state using observation, choice, and (if applicable) reward data.87

It estimates the choice probability as a weighted average of decisions gener-88

ated by the Random policy and the Engaged policy, which is then used to89

estimate the likelihood. Therefore, dynamic noise estimation can be incor-90

porated into any decision-making models with analytical likelihoods. Model91

parameters can be estimated using procedures that optimize the likelihood92

or its posterior distribution, including maximum likelihood estimation [26]93

and hierarchical Bayesian methods [27].94

2. Modeling framework95

In a multi-trial decision-making task, the agent’s data include observation-96

action pairs (ot, at) over the learning trajectory for time t = 1, 2, ..., T . In a97

reinforcement learning task, reward rt is additionally observed on each trial.98

We assume that choices are generated by a Markov decision process [52]. The99

decision-making model leads to a policy ⇡(a|o) that the agent uses to choose100

between discrete actions given the observation. The policy may include noise101

mechanisms, such as using the softmax function for action selection, and it102

is conditional on the model’s latent variables and parameters (e.g., learned103

values and learning rates for reinforcement learning models). We describe104

two extensions of such a decision model: the static noise estimation method105

that implements the classic ✏-mechanism (or ✏-softmax) [21] and the new dy-106

namic noise estimation method. The parameters ✓ of both extended models107

can be optimized by maximizing the likelihood of the data given the model108

parameters, denoted as L(✓). In this section, we focus only on the policy109

part of the models; all other model equations (such as reinforcement learning110

value updates) are taken from the published models and reported in Model111

equations.112
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2.1. Static noise estimation113

Static noise policies assume that decision noise is at a constant level ✏114

throughout the learning trajectory. At any time t, from the set of available115

actions A, the agent samples an action uniformly at random (with probabil-116

ity ✏) or based on the learned policy (with probability 1 � ✏). Static noise117

estimation can be incorporated into likelihood estimation according to Al-118

gorithm 1. Thus, any model that can be fitted with likelihood-dependent119

methods can incorporate static noise into its policy.120

Algorithm 1: Static noise estimation likelihood computation

Initialize L(✓) = 0;
for t = 1, 2, ..., T do

Calculate the action probability ⇡t(at|ot) ;
L(✓) L(✓) + log[✏ · 1

|A| + (1� ✏) · ⇡t(at|ot)] ;
Update the policy with (ot, at, rt).

end

2.2. Dynamic noise estimation121

Our dynamic noise estimation method provides a computationally lightweight122

procedure to estimate the trial-by-trial latent state occupancy and likelihood123

of the hidden Markov model described in Fig 1C. Dynamic noise estimation124

can be implemented according to Algorithm 2: on trial t, the likelihood, lt,125

Algorithm 2: Dynamic noise estimation likelihood computation

Initialize L(✓) = 0 and p0(h) for h 2 {R,E} ;

for t = 1, 2, ..., T do

Calculate the action probability ⇡t(at|ot) ;
lt(✓) = log[ 1

|A| · pt�1(R) + ⇡t(at|ot) · pt�1(E)] ;

L(✓) L(✓) + lt(✓) ;

pt(h) 
1

|A| ·pt�1(R)·Th
R+⇡t(at|ot)·pt�1(E)·Th

E

exp(lt(✓))
for h 2 {R,E} ;

Update the policy with (ot, at, rt).

end
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and latent state occupancy probabilities, pt(Random) and pt(Engaged), can126

be estimated using the observation, action, and reward data, (ot, at, rt), and127

some engaged policy, ⇡.128

The full details of our dynamic noise estimation framework, which can be129

added on to any standard decision-making or learning model, can be found130

in the Materials and methods section, including the derivation of relevant131

mathematical equations. Here, we briefly highlight the core assumptions132

made by dynamic noise estimation:133

1. The agent fully occupies one latent policy state on any given trial.134

2. Latent state occupancy is temporally autocorrelated, and governed by135

a hidden Markov process: the latent state that the agent occupies on136

trial t conditionally depends on the latent state it occupied on trial137

t� 1.138

3. Any learning involved in either latent state occurs regardless of latent139

state occupancy.140

Additionally, the simulations and analyses below include the following141

non-core assumptions that can be easily modified for extended applications142

of our modeling framework: We assume that there are only two possible143

latent states, that one (“engaged”) follows the standard policy; and the other144

(“disengaged”) follows a uniform random policy. Both core and non-core145

assumptions are further discussed and explored in the discussion section.146

3. Results147

3.1. Theoretical benefits of dynamic noise estimation148

We first performed a simulation study to demonstrate the benefits of our149

dynamic noise estimation approach. By definition, we expected dynamic150

noise estimation to explain choice data better than static noise estimation151

when noise levels are highly variable across trials in a temporally autocor-152

related fashion. To illustrate it, we compared models implemented with153

static and dynamic noise estimation mechanisms on simulated data in a two-154

alternative, probabilistic reversal learning task widely used to assess cognitive155

flexibility [28], in which the correct action switched every 50 trials (Fig 2).156

In the simulations, we used the model with static noise to generate choice157

data, in which we produced periods of lapses into random behavior (e.g., due158

to inattention) by making the agent choose randomly between the actions.159
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Figure 2: Dynamic noise estimation outperforms static noise estimation when
subjects lapse into random behavior. A: Example learning curves of two simulated
subjects and their best fit models with static and dynamic noise estimation; since the noise
levels are fixed in the static model, the model overestimates performance in disengaged
periods and underestimates it in engaged ones. B: The deviations of the best fit models’
learning curves from the data quantified by the mean squared error per trial, as a function
of lapse duration. C,D: The absolute di↵erences between the true and inferred model
parameters, over true parameter value (C) and lapse duration (D).

After fitting the models to the data, we simulated behavior using the160

best fit parameters of both models and compared their learning curves to the161

data as a validation step. Fig 2A shows the learning curves of two example162

subjects and their best fit models. In both cases, the subjects performed at163

chance level (accuracy = 0.5) during lapses and better than chance otherwise.164

The phasic fluctuations of choice accuracy were synchronized to the reversals165

(dashed vertical lines). The learning curves generated by the dynamic model166

matched the data substantially better than the learning curves of the static167

model. Critically, this is true both during and outside of lapses: having to168

account for the lapse periods, the static noise model inferred too much noise169

overall, which contaminated the engaged periods. Thus, the static noise170
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model overestimates performance in disengaged periods and underestimates171

it in engaged ones; by contrast, the dynamic noise model accurately captures172

behavior in both situations.173

To further understand how the duration of lapse interacts with the e↵ec-174

tiveness of static and dynamic noise estimation, we varied the lapse duration175

in the simulations. Fig 2B shows how the amounts of deviation between the176

learning curves of the models and data (measured by the mean squared er-177

ror between the curves per trial) changed as the duration of lapse increased.178

Overall, the model with dynamic noise estimation was able to replicate be-179

havior better than the static model, as the learning curves of the former180

matched the data more closely. Although lapses only weakly a↵ected the fit181

of the dynamic noise model, the static model fitted worse in the presence of182

lapses, especially when lapse and non-lapse periods were intermixed in the183

learning trajectory.184

Next, we tested how well the true parameters used to generate the data185

could be recovered by the static and dynamic models (Fig 2C). Both learning186

parameters (learning rate and choice stickiness) were better recovered by the187

dynamic model, as measured by the absolute amounts of di↵erences between188

the true and recovered (best fit) parameters. The advantage of the dynamic189

model in parameter recovery persisted over the whole range of parameter190

values sampled in the simulations and various lengths of lapses, with weaker191

e↵ects when lapses were short relative to the duration of the experiment192

(less than 20%). Additionally, we performed the same set of analyses using193

the static model as the ground truth (Fig A.7). As expected, overall, the194

static model outperforms the dynamic model, even though both models can195

accurately capture behavior and recover true parameter values, since the196

dynamic model space fully includes the static models.197

To verify that including dynamic noise estimation would not undermine198

a model’s robustness, we performed validation and recovery analyses on data199

simulated with the dynamic noise model in the same probabilistic reversal200

task environment used in the previous simulations. In model validation, the201

dynamic model reproduced behavior more closely than the static model in202

both the engaged state and the random state: the dynamic noise model203

showed much more sensitivity to the latent state than the static noise model.204

(Fig 3A). This suggests that fitting a model with static noise estimation205

when the underlying noise mechanism of the data is dynamic could lead to206

inaccurate interpretations of the behavior and model.207

Furthermore, we confirmed that the occupancy probabilities of the latent208
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states and model parameters were recoverable by fitting the dynamic model209

to the simulated data to infer the quantities of interest. The occupancy210

probability of the Engaged state, p(Engaged), was perfectly recovered across211

its range of values (Fig 3B). The inferred or recovered values of p(Engaged)212

formed a symmetric, bimodal distribution with peaks near 0 and 1, suggesting213

that both latent states were visited equally frequently and that the model was214

confident, for the majority of the time, that the agent was in either latent215

state (Fig 3C). The true values of all model parameters were recoverable216

through fitting (Fig 3D).217

3.2. Empirical evaluation of dynamic noise estimation218

The above analyses based on controlled simulations showed that, theoret-219

ically, dynamic noise estimation could substantially improve model fit and220

parameter estimation, especially in the presence of prolonged lapses. We221
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next tested the method on empirical datasets to verify whether and to what222

extent this conclusion stands when the data is collected from real animal and223

human subjects while the true generative model is unknown. To help set fair224

expectations for the applications of dynamic noise estimation in practice, we225

thoroughly evaluated the method on four published datasets featuring di-226

verse species, age groups, task designs, behaviors, cognitive processes, and227

computational models. Table 1 summarizes the population, task, and model228

information about these datasets.229

For each dataset, we used either the winning model in the original research230

article or an improved model from later work. We implemented and com-231

pared two versions of each model: one with static noise estimation and one232

with dynamic noise estimation. The models were fitted on each individual’s233

choice data using maximum likelihood estimation for simplicity, although234

the noise estimation methods are both also compatible with more complex235

likelihood-based fitting procedures. The fitted models were compared using236

the Akaike Information Criterion (AIC) [34], since it yielded better model237

identification than the Bayesian Information Criterion (BIC; Fig A.8). Fig238

4 shows the model-fitting results at both the individual and group levels , as239

well as the absolute percentage of fit improvement, using the fit measure of240

negative log-likelihood (NLLH), made by applying dynamic noise estimation241

instead of static noise: NLLH(dynamic)�NLLH(static)

NLLH(static)
. To compare the models at242

the group level, we report the p-values of one-tailed Wilcoxon signed-rank243

tests with the alternative hypothesis that the AIC values of the dynamic244

Table 1: Summary of empirical datasets.

Dataset Population Task Model
Dynamic
Foraging [29]

Mice Two-armed ban-
dits with proba-
bilistic reversal

Reinforcement learning with
dynamic learning rates

IGT [30] Young and old
adult humans

Iowa gambling task A hybrid of exploitation and
exploration processes [31]

RLWM [32] Adult humans Reinforcement
learning and work-
ing memory

A hybrid of reinforcement
learning and working memory
processes

2-step [33] Developing and
adult humans

Two-step task A hybrid of model-based and
model-free learning processes
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model were lower than those of the static model. Additionally, we report the245

protected exceedance probability (pxp) [35] of the dynamic model. At the246

group level, dynamic noise estimation significantly improved model fit com-247

pared to static noise estimation on the Dynamic Foraging (�AIC = �8.31,248

p = 0.0002, pxp = 0.96) and IGT (�AIC = �2.79, p = 3.48 ⇥ 10�12,249

pxp = 1.00) datasets. This populational di↵erence was present but not sta-250

tistically significant on the RLWM (�AIC = �1.43, p = 0.83, pxp = 0.38)251

and 2-step (�AIC = �3.04, p = 0.47, pxp = 0.44) datasets. While the abso-252

lute percentage of fit improvement is small for most subjects, it can be very253

high for some, which may enable researchers to still include “noisy” subjects254

in their analyses without biasing results (median = 0.29% for Dynamic For-255

aging, 1.21% for IGT, 0.16% for RLWM, and 0.3% for 2-step). Since static256

noise estimation is fully nested in dynamic noise estimation, the absolute fit257

improvement by dynamic noise estimation is strictly positive.258

As detailed in Materials and methods, the likelihood of the dynamic noise259

estimation model should not be worse than that of the static model, since260

the latter is equivalent to a special case of the former. This relationship was261

confirmed by the fitting results on all four empirical datasets: for individuals262

whose data were better explained by the static model, the �AIC values were263

upper-bounded by 2, which corresponded to the penalty incurred by the extra264

parameter in the dynamic model. In other words, the dynamic model did not265

impair likelihood estimation in practice, which aligned with our prediction.266

We additionally validated both models against behavior and found no267

significant di↵erences between the static and dynamic noise models (Fig A.9).268

We verified that the quantities specific to dynamic noise estimation, including269

the occupancy probability and noise parameters, were recoverable (Fig A.10).270

The distributions of the estimated occupancy probability of the Engaged271

state, p(Engaged), were heavily right-skewed and long-tailed. This indicates272

a scarcity of data in the Random state overall, which likely led to a lack273

of transitions from the random state to the engaged state and, thus, under-274

powered the recovery of TE
R , causing it to be noisier than the recovery of275

TR
E .276

Knowing that likelihood favors the dynamic model over the static model,277

the remaining questions are: how does this improvement manifest, and does278

it impact the insights we can gain from computational modeling? To ad-279

dress these questions, we compared the values of best fit parameters between280

both models (Fig 5). On the Dynamic Foraging dataset, the values of the281

positive learning rate and forgetting rate parameters, which govern the value282
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Figure 5: Dynamic noise estimation can lead to shifted parameter fit. Changes
in best fit parameter values between the models with static and dynamic noise estimation
mechanisms for each individual. Individual data points are color-coded according to the
winning model by AIC: orange if the static model fitted better and green if the dynamic
model fitted better.

updating rate of rewarded actions and the forgetting rate of unchosen ac-283

tions (see Model equations for the full model description), increased at the284

group level (two-tailed Wilcoxon signed-rank test p = 7.56 ⇥ 10�7 for posi-285

tive learning rate and p = 2.66⇥ 10�5 for forgetting rate). We speculate this286

may suggest that dynamic noise estimation helped the model capture faster287

learning dynamics in the task, which may have led to the improved fit. On288

the RLWM dataset, the distributions of the bias (p = 0.0016) and stickiness289

(p = 0.0022) parameters, which represent the bias in learning rate for unre-290
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warded actions compared to rewarded actions and the choice stickiness (see291

Model equations for the full model description), both shifted in the positive292

direction. On the 2-step dataset, the softmax inverse temperature parameter293

for the second-stage choice was also estimated to increase after incorporating294

dynamic noise estimation into the model (p = 8.8⇥ 10�6). Similarly, on the295

IGT dataset, the softmax inverse temperature parameter increased signifi-296

cantly (p = 2.78⇥ 10�7). An increase in the inverse temperature parameter297

can be interpreted as capturing a policy that is less noisy and more sensitive298

to internal variables; these results highlight the success of the dynamic noise299

model in identifying noisy time periods and decontaminating on-task periods300

from their influence.301

Besides the policy parameters, the noise parameters also showed distri-302
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butional di↵erences that were correlated with improved fit. Fig 6 illustrates303

the relationship between the static noise parameter, ✏, and the dynamic noise304

parameter, TR
E , on all four empirical datasets. For individuals whose data305

were better explained by the static noise model according to the AIC, TR
E306

and ✏ were estimated to take on comparable and highly correlated values307

(Dynamic Foraging: Kendall’s ⌧ = 0.84, p = 5.67 ⇥ 10�5; IGT: ⌧ = 0.82,308

p = 1.23 ⇥ 10�67; RLWM: ⌧ = 0.89, p = 6.78 ⇥ 10�23; 2-step: ⌧ = 0.84,309

p = 1.42⇥ 10�26). This observation was in line with our expectation: when310

the static model was favored by the AIC, the di↵erence in likelihoods be-311

tween both models must be smaller than the penalty incurred by the extra312

parameter in the dynamic model (2 for AIC), which means both models fitted313

similarly to the data. On the other hand, when the dynamic model outper-314

formed the static model, TR
E was estimated to be lower than ✏ (Dynamic For-315

aging: one-tailed Wilcoxon signed-rank test p = 0.031; IGT: p = 4.90⇥10�8;316

RLWM: p = 0.0072; 2-step: p = 0.0017). A similar, though noisier, relation-317

ship between TE
R and 1 � ✏ was also observed on all empirical datasets (Fig318

A.11). No consistent strong correlations were found across datasets between319

the noise parameters of the dynamic model (softmax inverse temperature,320

TR
E , and TE

R ; Fig A.12). The lower values of the dynamic noise parameter321

than the static noise level parameter, which is the average noise level, indi-322

cate that the dynamic model successfully separated noisy trials from engaged323

trials.324

To demonstrate the behavioral relevance of the latent state occupancy325

predicted by dynamic noise estimation, we investigated whether behavior326

di↵ered between the putatively engaged and lapsed trials (as identified by327

our approach) on four empirical datasets: Dynamic Foraging [29], IGT [30],328

2-step [33], and RLWM [4, 5] (Fig A.13). In general, we found that behavior329

shifted towards random patterns from engaged trials to lapsed trials. Inter-330

estingly, some components of behavior regressed to randomness more than331

others. For example, on the IGT dataset, behavioral changes were driven by332

decks A and D, but not decks B and C. On the RLWM dataset, the win-stay333

probability decreased more than the lose-shift probability across set sizes.334

Lapses identified by dynamic noise estimation varied in lengths and occurred335

throughout learning, with no strong evidence for consistently more frequent336

lapses in specific parts of the experiments across datasets (Fig A.14).337

Furthermore, we related the estimated latent state occupancy to an inde-338

pendent measure of behavior – reaction time – using regression analyses on339

both the group and individual levels on two empirical datasets with published340

16



reaction time data: RLWM [32] and 2-step [36]. On both datasets, we found341

significant inverted-U relationships between reaction time and p(Engaged)342

both between- and within-individual (Fig A.15). The squared average re-343

action time inversely predicted the average p(Engaged) across participants344

(RLWM: �RT 2 = �3.59, p = 0.0016; 2-step: �RT 2 = �0.94, p = 0.0085). We345

found a similar relationship within-participant across trials while accounting346

for a random e↵ect of participant identity (RLWM: �Z(log(RT ))2 = �0.0036,347

p = 1.04 ⇥ 10�15; 2-step: �Z(log(RT ))2 = �0.0052, p = 0.0018). These results348

suggest that low task engagement estimated by dynamic noise estimation is349

more likely to occur in trials with unusually short and long reaction time,350

which potentially includes when participants answer excessively fast due to351

boredom or very slowly due to external distraction, such as multitasking.352

4. Discussion353

Our results show that dynamic noise estimation can improve model fit354

and parameter estimation both theoretically and empirically, qualifying it355

as a candidate alternative to static noise estimation, despite one additional356

model parameter. Our approach is especially powerful and e↵ective in the357

presence of lapses, since it explains more variance in the noise levels of choice358

behavior. Additionally, it is generalizable and versatile: it can be applied to359

any decision policies with analytical likelihoods and be incorporated into any360

likelihood-based parameter estimation procedures, making it an accessible361

and computationally lightweight extension to many decision-making models.362

Another benefit of dynamic noise estimation is that it could help avoid363

excluding whole individuals or sessions due to poor performance, thus im-364

proving data e�ciency. Dynamic noise estimation takes e↵ect by identifying365

periods of choice behavior that are better explained by random noise than366

the learned policy (e.g., lapses). The likelihoods of these noisy periods are367

lower-bounded by that of the random policy, which limits the impacts of368

these trials on the estimation of the overall likelihood and model parameters.369

Thus, dynamic noise estimation can mitigate the e↵ects of noise contami-370

nation on model-fitting. On the contrary, static noise estimation does not371

provide a meaningful lower bound to the likelihood of noisy data, such that372

relatively noisy parts of the behavior may heavily bias parameter estimation.373

Thus, using dynamic instead of static noise estimation could allow fewer indi-374

viduals to be excluded due to noisy behavior. For example, without dynamic375

noise estimation, the last two blocks in Fig 1A might lead to the exclusion of376
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this subject by some performance-based criterion. However, dynamic noise377

estimation might allow fitting of the whole individual’s data with minimal378

contamination due to the noisy blocks, even though it may not improve mod-379

eling dramatically for most participants. This outcome can be particularly380

desirable when data collection is challenging or expensive, such as in clinical381

populations, neuroimaging experiments, and time-consuming tasks.382

Although the putative lapses identified by dynamic noise estimation may383

correlate with lower choice accuracy, dynamic noise estimation has a number384

of advantages over approaches that rely solely on accuracy to identify lapses.385

First, when more than one action is available, dynamic noise estimation can386

use information in both the correctness and the choice identities to estimate387

lapse rates. As a result, it can distinguish random behavior from non-random388

components of decision-making such as learning and bias, which might drive389

the accuracy to the random level. Second, dynamic noise estimation accounts390

for the temporal autocorrelation of noise between trials, which is characteris-391

tic of lapses, by factoring noise information from previous trials in predicting392

the noise level of the next trial. Indeed, Fig A.16 shows that the probability393

of lapsing is not directly related to degree of accuracy. Third, the application394

of dynamic noise estimation is independent of the task design: it does not395

require task-specific tuning of any hyper-parameters or criteria.396

Other approaches have been proposed to consider non-static noise or ex-397

ploration, including models where noise parameters evolve trial-by-trial. For398

example, some decision models with softmax policies allow decision certainty399

to increase over learning, by defining the inverse temperature parameter or400

the value di↵erence between choices as a parameterized function of time or401

certainty [37, 38, 39]. While these models may help capture the decrease in402

choice randomization over the experiment, they can only account for decision403

noise that changes in an incremental fashion (e.g., gradually decreasing), but404

not lapses that could occur unexpectedly throughout the experiment. Our405

approach instead relies on the assumption that participants may switch be-406

tween finite, discrete late states abruptly, which is supported by behavioral407

findings for discrete policies [40, 41].408

Biologically, our latent state assumption aligns with an established lit-409

erature on how norepinephrine modulates attention, a major contributor to410

varying noise levels: the phasic or tonic mode of activity of the noradrenergic411

locus coeruleus system closely correlates to good or poor task performance412

[42, 43]. It is worth noting that the binary assumption of the latent states413

may not always be accurate. Nonetheless, it is a less strict assumption than414
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that of static noise estimation, which additionally assumes that the prob-415

ability of transitioning into each latent state is independent of the current416

state. Thus, although dynamic noise estimation may be limited by its binary417

latent state assumption, it is still more suitable to solve a broader range of418

problems than static noise estimation.419

Compared to other recent work identifying discrete latent policy states,420

namely the GLM-HMM model [44], dynamic noise estimation has the ad-421

vantages of simplicity, accessibility, and versatility. Contrary to our method,422

GLM-HMM additionally assumes that all decision policies can be described423

as generalized linear models, which limits its applications to descriptive mod-424

els rather than cognitive process models. The parameter estimation proce-425

dure for GLM-HMM does not generalize trivially when this assumption is426

challenged (e.g., with process models such as reinforcement learning). On427

the other hand, our likelihood estimation procedure for dynamic noise esti-428

mation can be readily plugged into any existing likelihood-based optimization429

procedure to fit both descriptive models and process models.430

We recommend that the user keep in mind the assumptions outlined in431

the beginning of the Results section when applying our modeling framework432

to their data. Dynamic noise estimation can be applied to any multi-trial433

decision-making tasks and models with analytical likelihoods, especially when434

more than one action is available in the task. Assumption 3 (the latent state435

only a↵ects the policy, but not the underlying process) imposes a limitation to436

our approach: in the random state, information is still being processed (e.g.,437

action value updating), but not used for decision-making. Removing this438

assumption can significantly complicate the inference process over the latent439

state by making the likelihood intractable, and thus making the inference440

process much less accessible. Addressing this limitation will be an important441

direction for future work.442

Other non-core assumptions of the method may appear as limitations, but443

can be easily extended, such as the nature of the engaged and disengaged444

policies and even the number of states itself. For example, an extension to445

the likelihood estimation procedure derived in the current work is to apply446

it on policy mixtures in a broader sense – i.e., hidden Markov models that447

involve two or more latent states of any eligible policies – rather than a448

fixed random policy and some other decision policy (e.g., softmax) as pre-449

sented in the current work. This extension allows us to fit mixture models450

between two or more decision policies to capture the switching between dif-451

ferent strategies. When applying our framework to fit such mixture models,452
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we recommend that the user check Assumption 1 (the agent fully occupies453

a single latent decision state), as it may not be appropriate for all mixture454

models. For example, the RLWM model [4] is a mixture of a reinforcement455

learning process and a working memory process, which could technically be456

modeled as two latent policy states. However, Assumption 3 is biologically457

implausible here: participants are unlikely to transition from fully occupying458

one policy state to the other between trials since reinforcement learning and459

working memory operate concurrently.460

Future work should also further validate dynamic noise estimation ex-461

perimentally, for example, by comparing estimated occupancy probabilities462

to an independent measure of attention or task-engagement and testing463

whether inferred latent states capture this measure. Possible approaches464

include to measure task-engagement based on choice behavior [45], reac-465

tion time [46], pupil size [47], and event-related brain potentials [48]. If the466

occupancy probability can indeed serve as an objective measure of atten-467

tion to the task, it could be applied to behaviorally characterize attentional468

mechanisms in computational psychiatry [49], especially for patients with469

attention-deficit/hyperactivity disorder (ADHD) [50]. Another potential fu-470

ture direction is to explore whether dynamic noise estimation changes the471

interpretations of behaviors and models when applied to other decision poli-472

cies than the softmax policy, such as Thompson sampling [17] and the upper473

confidence bound algorithm [51].474

In conclusion, our dynamic noise estimation method promises potential475

improvements over the static noise estimation method currently used in the476

modeling literature of decision-making behavior. Dynamic noise estimation477

enables us to capture di↵erent degrees of task-engagement in di↵erent task478

periods, limiting contamination of model-fitting by noisy periods, without479

requiring ad-hoc data curating. Based on the theoretical and empirical eval-480

uation of the method reported in the current work, we expect that dynamic481

noise estimation in modeling choice behavior will strengthen modeling in482

many decision-making paradigms, while keeping additional model complex-483

ity and assumptions minimal.484

5. Materials and methods485

5.1. Mathematical formulation of dynamic noise estimation486

The dynamic noise estimation method models decision noise by assuming487

that the agent is in one of two latent states at any given time: the random488
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state in which the agent chooses actions uniformly at random or the engaged489

state in which decisions are made according to the true model policy. The490

transitions between both states are governed by two parameters: TE
R and TR

E ,491

the probabilities of transitioning from the random state to the engaged state492

and vice versa. From these transition probabilities, we can calculate the stay493

probability for each latent state: 1�TE
R for the random state and 1�TR

E for494

the engaged state.495

The state is composed of an observation ot, often encoding the stimulus,496

and unobserved, latent variables including the learned policy and ht, where497

ht 2 {R,E} indicates whether the agent is in the random state or engaged498

state at time t. It is further assumed that rt and ot are conditionally indepen-499

dent of the latent states up to time t given the observed data history, since500

rewards and future observations in behavioral experiments do not depend on501

subjects’ unobserved mental states.502

Our goal is to maximize the following log-likelihood:503

L(✓) =
TX

t=1

log IP(at|ot, ōt�1; ✓)

=
TX

t=1

log IP
⇣X

i

IP(at|ot, ht = i; ✓)IP(ht = i|ōt�1; ✓)
⌘
,

(1)

where ōt�1 denotes the observation-action-reward triplets up to time t � 1.504

The probability on the right of Eq 1, the occupancy probability of the latent505

state i 2 {R,E} at time t, is not trivial to compute. Denoting it as pt(i), we506

have507

pt(i) = IP(ht = i|ōt�1; ✓)

=
X

j

IP(ht = i|ht�1 = j, ōt�1; ✓)IP(ht�1 = j|ōt�1; ✓), (2)

where j 2 {R,E} and508

IP(ht�1 = j|ōt�1; ✓) =
IP(ht�1 = j, at�1, rt�1|ot�1, ōt�2; ✓)P
k IP(ht�1 = k, at�1, rt�1|ot�1, ōt�2; ✓)

. (3)

Notice that for any given k, each term in the denominator of the right-509
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hand side of Eq 3, as well as the nominator with k = j, is equal to510

IP(rt�1|ot�1, at�1, ht�1 = k, ōt�2; ✓)⇥ IP(at�1, ht�1 = k|ot�1, ōt�2; ✓),

the first term of which is independent of ht�1 and is, therefore, canceled out511

between the nominator and denominator in Eq 3. Thus,512

IP(ht�1 = j|ōt�1; ✓) =
IP(at�1|ht�1 = j, ot�1, ōt�2; ✓)IP(ht�1 = j|ōt�2; ✓)P
k IP(at�1|ht�1 = k, ot�1, ōt�2; ✓)IP(ht�1 = k|ōt�2; ✓)

. (4)

We can now compute pt(i) by plugging Eq 4 into Eq 2, which then allows513

us to calculate L(✓) by plugging Eq 2 into Eq 1. The probabilities needed514

to infer pt(i) and L(✓) can be iteratively updated according to Algorithm 2515

over the learning trajectory. These calculations can be easily incorporated516

into fitting procedures based on optimizing the model’s likelihood, including517

maximum likelihood estimation and hierarchical Bayesian modeling.518

5.1.1. The relationship between static and dynamic noise estimation519

Static noise estimation can be formulated under the binary latent state520

assumption of dynamic noise estimation (Fig 1B), with the additional con-521

straint that the probability of transitioning into each latent state is indepen-522

dent from the current state:523

TE
R + TR

E = 1. (5)

In other words, the probabilities of transitioning to the random state from524

the engaged state must be equal to the probability of transitioning to the525

random state from the random state:526

TR
E = ✏ = 1� TE

R .

Similarly, the probabilities of transitioning into the engaged state from the527

random state and the engaged state must be equal:528

TE
R = 1� ✏ = 1� TR

E .

Both the above relationships can be summarized by Eq 5.529

Therefore, static noise estimation is a special case of dynamic noise es-530

timation with an additional assumption described by Eq 5, as illustrated in531

Fig 1C. It can also be experimentally verified that dynamic noise estima-532
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tion converges to static noise estimation once this constraint is added to the533

model-fitting procedure (results not included).534

Theoretically, with optimal parameters, the likelihood estimates made535

by the dynamic noise estimation model must be no worse than those made536

by the static noise estimation model. In practice, this relationship may not537

hold if the optimizer fails to converge to the global minimum when fitting538

the dynamic model. However, this issue can be circumvented by initializing539

the parameter values of the dynamic model to the best fit parameters of the540

static model (e.g., TR
E as ✏̂ and TE

R as 1� ✏̂).541

5.1.2. Initializing p(Engaged)542

In the above formulation, the starting points of the estimated latent state543

occupancy probabilities, p(Engaged) and p(Random) = 1 � p(Engaged),544

are undefined, since dynamic noise estimation is compatible with any valid545

initial values of these probabilities. Therefore, the user can choose the most546

appropriate initial p(Engaged) for their data. Some potential candidates,547

reflecting di↵erent assumptions, include: 1 (initially engaged), 0.5 (equal548

chance of either), 1 � TR
E (staying engaged), and

1�TR
E +TE

R
2

(average noise549

level). Alternatively, the initial p(Engaged) value can be fitted as a free550

parameter, which may reduce bias in the estimation of latent state occupancy,551

but at the cost of increased model complexity. All models in the current work552

are fitted with initial p(Engaged) = 1�TR
E , which ensures that the dynamic553

noise model fully includes the static model, since p(Engaged) of the static554

model is always 1 � TR
E = 1 � ✏. For reference, in Figure A.16, we show555

the estimated p(Engaged) trajectories for di↵erent initialization methods on556

the RLWM dataset. This indicates that di↵erences in initialization lead to557

di↵erences only in the very first few trials of a learning block.558

5.2. Analysis methods559

5.2.1. Simulation setup560

The task environment in which the data were simulated for the theoretical561

analyses had two alternative choices with asymmetrical reward probabilities562

(80% and 20%) that reversed every episode. Each agent was simulated for 10563

episodes with 50 trials per episode. The simulations with lapses included data564

from 3,000 individuals generated by the model with the static noise mecha-565

nism (Fig 2). Model parameters were sampled uniformly between reasonable566

bounds: learning rate ⇠ Uniform(0, 0.6), stickiness ⇠ Uniform(�0.3, 0.3),567

and ✏ ⇠ Uniform(0, 0.2). For each individual, we simulated a lapse into568
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random choice behavior whose duration was sampled uniformly at random569

between 0 and the length of the experiment (500 trials). During the lapse,570

the agent was forced to randomly choose between the two available actions.571

In the analyses shown in Fig 3, we simulated data of 1,000 individuals using572

the model with the dynamic noise mechanism. The parameters were sam-573

pled from the following distributions: learning rate ⇠ Beta(3, 10), stickiness574

⇠ Normal(0, 0.1), TR
E ⇠ Beta(1, 15), and TE

R ⇠ Beta(1, 15). Both models575

were fitted to the simulated data per individual.576

5.2.2. Empirical datasets and models577

All empirical data were downloaded from sources made publicly available578

by the authors of the corresponding research articles. The data of all indi-579

viduals were included except that for the IGT dataset [30], we selected for580

the studies that used the 100-trial versions of the task. For the Dynamic581

Foraging (n=48) [29] and 2-step (n=151) [33] datasets, the winning models582

from the original papers were used in our analyses. Since the article con-583

taining the IGT dataset (n=504) [30] did not report modeling results, we584

tested the winning model from later work [31] on the data from the same in-585

dividuals included in the current work. For the RLWM dataset (n=91) [32],586

we implemented the best known version of the RLWM model [4] with an587

additional stickiness parameter, which improved model fit significantly. The588

mathematical formulation of the models can be found in Model equations.589

5.2.3. Model-fitting590

All models were fitted using the maximum likelihood estimation proce-591

dure at the individual level using the MATLAB global optimization toolbox592

with the fmincon function. Although hierarchical Bayesian methods may593

have yielded better model fit, we chose to use maximum likelihood estimation594

because it is simple, e�cient, and su�ces for our purpose of demonstrating595

the comparison between the static and dynamic noise models. In practice,596

we advise users of our dynamic noise estimation method to apply the fitting597

procedure with the most appropriate assumptions for the model and data.598

5.2.4. Model validation and recovery599

In model validation, we simulated choice behavior for each subject repeat-600

edly (e.g., for 100 times) using the maximum likelihood parameters obtained601

from model-fitting. For simulations with dynamic noise estimation, we used602
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the latent state probability – p(Random) and p(Engaged) – trajectories in-603

ferred from real data to simulate latent state occupancy. To validate how604

well the models captured behavior, we compared behavioral signatures (e.g.,605

learning curves) between these model simulations and the data (real or sim-606

ulated) that the models were fitted to.607

The recovery of the occupancy probabilities of model latent states was608

performed by simulating data 30 times per individual using best fit parame-609

ters and inferring occupancy probabilities from these data. Model parameters610

were recovered by first simulating behavior using best fit parameters and re-611

fitting the model to the simulated behavior to estimate parameter values.612

All recovery was performed at the individual level.613

6. Data and code availability614

All data and code used to produce figures in this manuscript can be down-615

loaded at: https://osf.io/b9tmn/?view_only=ba4e06cd8bc8475a8fe131561459f299616
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Figure A.7: Both models with static and dynamic noise estimation can fully
capture behavior and recover generative parameter values when the true model
has static noise. A: Evaluation of model fit with AIC on the data of 1,000 participants
simulated using the static noise model. Each dot shows the di↵erence in AIC for an
individual between the static and dynamic models. A positive value (orange) indicates
that the static model is favored and a negative value (green) means that the dynamic
model is preferred by the criterion. The inset shows the mean di↵erence in AIC between
the models at the group level. B: Learning curves of both models and data. C: Parameter
recovery using the static model. D: Parameter recovery using the dynamic model. For the
dynamic equivalent of the static model, TR

E = ✏ and TE
R = 1� ✏.
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Figure A.8: Model identification using AIC and BIC. We performed model identifi-
cation validation with confusion matrices [2]. To do so, we simulated data with parameters
fitted to subjects’ data. The AIC metric yielded better model identification than BIC.
We note that simulations of the dynamic noise model were often mis-classified as being
generated by the static noise model in RLWM and 2-step datasets. This is because most
subjects in these datasets did not benefit substantially from dynamic noise estimation,
and the parameters inferred made the dynamic noise model very similar to the static noise
model. Thus, simulated behavior was in a range where both models were indistinguish-
able (since the static noise model is nested in the dynamic one). In these cases, the trivial
improvements on likelihoods would be insu�cient to o↵set the penalty incurred by the
extra parameter in the dynamic model.
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Figure A.10: Recovery of latent state occupancy probability and noise param-
eters. p(Engaged) recovered well across datasets, with most recovered values between
0.9 and 1. TR

E recovery was robust overall, while TE
R recovered inadequately. This is

because the lack of data in the random state led to insu�cient potential transitions from
the random to engaged state, which under-powered TE

R recovery.
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Figure A.12: Relationships between noise parameters on the Dynamic Forag-
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Figure A.13: Behavior on putative engaged and lapsed trials predicted by dy-
namic noise estimation on the Dynamic Foraging [29], IGT [30], 2-step [33], and
RLWM [4, 5] datasets. On Dynamic Foraging, the learning curves around switches ap-
pear random-like during putative lapses. On the IGT dataset, choice frequencies of decks A
and D regressed to the random level (one-tailed Wilcoxon signed-rank test p = 9.35⇥10�20

for A, p = 0.48 for B, p = 0.11 for C, and p = 2.83⇥ 10�5 for D). For 2-step, the accuracy
decreased for all trial types (one-tailed Wilcoxon signed-rank test p = 1.73 ⇥ 10�5 for
common and rewarded previous trials, p = 0.019 for rare and rewarded previous trials,
p = 5.33 ⇥ 10�4 for common and unrewarded previous trials, and p = 0.002 for rare and
unrewarded previous trials). On the RLWM dataset, the win-stay probability decreased
more than the lose-shift probability overall (set size of 2: p = 0.056 for win-stay and
p = 0.38 for lose-shift; set size of 3: p = 0.07 for win-stay and p = 0.092 for lose-shift; set
size of 4: p = 2.9 ⇥ 10�4 for win-stay and p = 0.34 for lose-shift; set size of 5: p = 0.006
for win-stay and p = 0.28 for lose-shift).
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Figure A.14: Putative lapses identified by dynamic noise estimation on the IGT
[30] and 2-step [33] datasets, both with fixed numbers of trials across partic-
ipants. The lapses were identified as trials with p(Engaged) < 0.5, sorted by the start
trial, and shown across participants.
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Figure A.15: The inverted-U relationship between p(Engaged) and reaction time
between- and within-participants on the RLWM [32] and 2-step [36] datasets.
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specific statistics are reported in Results.
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Figure A.16: Di↵erent ways to initialize p(Engaged) lead to di↵erent latent state
occupancy estimations in the first few trials, but similar trajectories after-
wards. Note that the estimated engaged probability does not always follow the same
trend as accuracy: towards the end of the block, while the di↵erence in accuracy between
set sizes of 3 and 6 shrinks, the di↵erence in p(Engaged) does not.35



Appendix B. Model equations

Appendix B.1. Probabilistic Reversal

The model for the Probabilistic Reversal environment consists of 2 free
parameters: ↵ (learning rate) and � (choice stickiness). The softmax inverse
temperature is fixed at � = 8.

On trial t, the choice is made according to action probabilities computed
through the softmax function. For example, the probability of choosing the
left action is:

Pt(l) =
1

1 + exp
⇣
� ·

�
Qt(r)�Qt(l)� � · at�1 [l]

�⌘ ,

where at�1 [l] takes on the value of 1 if at�1 = l and -1 otherwise.
Once the reward rt has been observed, the action values are updated:

Qt+1(at) = Qt(at) + ↵ · (rt �Qt(at)).

Appendix B.2. Dynamic Foraging

The meta-learning model in the original paper was implemented [29].
The model has 7 parameters: � (softmax inverse temperature), bias (for the
right action), ↵(+) (positive learning rate), ↵(�)0 (baseline negative learning
rate), ↵v (rate of RPE magnitude integration),  (meta-learning rate for
unexpected uncertainty), and ⇠ (forgetting rate).

On trial t, a decision is sampled from choice probabilities obtained through
a softmax decision function applied to the action values of the left and right
actions:

Pt(l) =
1

1 + exp
⇣
� ·

�
Qt(r)�Qt(l) + bias

�⌘

and

Pt(r) = 1� Pt(l).

Once the reward is observed, assuming the left action is chosen, its value
is updated as follows:

Qt+1(l) = Qt(l) + ↵t · �t · (1� Et),
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where ↵t is ↵(+) if the reward-prediction error (RPE), �t = Rt�Qt(l), is pos-
itive, and ↵(�)t otherwise. Et is an evolving estimate of expected uncertainty
calculated from the history of absolute RPEs:

Et+1 = Et + ↵v · vt,

where

vt = |�t|� Et.

When the RPE is negative, the negative learning rate is dynamically
adjusted and lower-bounded by 0:

↵(�)t = max
⇣
0, · (vt + ↵(�)0) + (1�  ) · ↵(�)t�1

⌘

Finally, the unchosen action (e.g., right) is forgotten:

Qt+1(r) = ⇠ ·Qt(r).

Appendix B.3. IGT

The Value plus Sequential Exploration model [31] was implemented for
the IGT dataset. The model is defined by 5 parameters: ↵ (learning rate),
� (softmax inverse temperature), ✓ (value sensitivity), � (decay), and �
(exploration bonus).

On trial t, the decision is sampled based on the probability of choosing
deck d:

Pt(d) =
exp

⇣
� ·

�
Exploret(d) + Exploitt(d)

�⌘

P
4

i=1
exp

⇣
� ·

�
Exploret(i) + Exploitt(i)

�⌘ ,

where Exploret(d) and Exploitt(d) are the action values of deck d using the
exploration and exploitation weights. For the selected deck, their values are
updated according to the following equations:

Exploret+1(d) = 0
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and

Exploitt+1(d) = � · Exploitt(d) + vt,

where vt = (Gaint)✓ � (Losst)✓. For the unselected decks, the weights are
controlled by the following equations:

Exploret+1(d) = Exploret(d) + ↵ · (�� Exploret(d))

and

Exploitt+1(d) = � · Exploitt(d).

Appendix B.4. RLWM
The RLWM model is improved upon previously published versions [4, 32]

by the inclusion of a choice stickiness parameter. The model has 6 param-
eters in total: ↵ (learning rate), bias (for negative learning), � (stickiness),
⇢ (working memory weight), � (forgetting rate), and K (working memory
capacity). The softmax inverse temperature parameter is fixed at � = 20.

On trial t, the probability of choosing an action at in state st is given
by a weighted combination between a reinforcement learning policy and a
working memory one:

P (at|st) = (1� w) · PRL(at|st) + w · PWM(at|st),

where w = ⇢ ·min(1, K
NS ) and NS is the set size. The action values for both

policies are computed as follows:

PRL(at|st) =
exp

⇣
� ·

�
Qt(st, at) + � · at�1 [at]

�⌘

P
i exp

⇣
� ·

�
Qt(st, ai) + � · at�1 [ai]

�⌘

and

PWM(at|st) =
exp

⇣
� ·

�
WMt(st, at) + � · at�1 [at]

�⌘

P
i exp

⇣
� ·

�
WMt(st, ai) + � · at�1 [ai]

�⌘ ,

where at�1 [ai] is an indicator that takes on the value of 1 if ai = at�1 and 0
otherwise.
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All working memory values are forgotten on each trial:

WMt+1 = WMt + � ·
⇣ 1

|A| �WMt

⌘
,

where |A| is the total number of available actions. The values are then
updated according to the following equations:

Qt+1(st, at) = Qt(st, at) + ↵RL · (rt �Qt(st, at))

and

WMt+1(st, at) = WMt(st, at) + ↵WM · (rt �WMt(st, at)),

where if rt = 1, ↵RL = ↵ and ↵WM = 1, and if rt = 0, ↵RL = bias · ↵ and
↵WM = bias.

Appendix B.5. 2-step

The 2-step model [33] contains 6 free parameters: ↵ (learning rate), �MB

(softmax inverse temperature for the model-based policy), �MF (softmax in-
verse temperature for the model-free policy), � (softmax inverse temperature
for the second stage), p (stimulus stickiness), and � (response stickiness).

The first-stage decision is made according to action probabilities com-
puted using both the model-based and model-free action values:

P (a1t ) =
exp

⇣
�MB ·QMB(a1t ) + �MF ·QMF (a1t ) + � · a1t�1

[a1t ]
⌘

P
i exp

⇣
�MB ·QMB(a1i ) + �MF ·QMF (a1i ) + � · a1t�1

[a1i ]
⌘ ,

where a1t�1
[a1i ] is an indicator that takes on the value of 1 if a1i = a1t�1

and 0
otherwise. The second-stage action probabilities are also computed through
the softmax function:

P (a2t |s2t ) =
exp

⇣
� ·Q2(s2t , a

2

t )
⌘

P
i exp

⇣
� ·Q2(s2t , a

2

i )
⌘ .

Once the reward rt has been observed, the action values are updated as
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follows:

QMF (a
1

t ) QMF (a
1

t ) + ↵ ·
⇣
Q2(s

2

t , a
2

t )�QMF (a
1

t )
⌘
+ p · ↵ ·

⇣
rt �Q2(s

2

t , a
2

t )
⌘

and

Q2(s
2

t , a
2

t ) Q2(s
2

t , a
2

t ) + ↵ ·
⇣
rt �Q2(s

2

t , a
2

t )
⌘
.

Note that the model-based action values do not need to be updated and can
be computed directly:

QMB(a
1

t ) 
X

i

max
j

�
Q2(s

2

i , a
2

j)
�
· T s2i

a1t
,

where T
s2i
a1t

is the transition probability from the first-stage choice a1t to the

second-stage state s2i , which the agent is assumed to know.
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