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Abstract

Prediction, explanation, and control are basic cognitive abil-
ities. Here we show how they can arise, simultaneously,
from underlying mental models built during unstructured,
exploration-based learning. Our experimental paradigm, in-
volving interaction with a symbolic “chatbot”, allows us to
vary the relative difficulty of the tasks, and to measure how
participants leverage the Bayesian evidence of their mental
models for decision-making. Our experimental manipulation
focuses on hidden information and task complexity. With full
information, there are significant differences between the three
tasks: for example, people are more sensitive to Bayesian ev-
idence in prediction than in control or explanation. When in-
formation is hidden, however, performance equalizes. Taken
together, our results suggest that, while specific heuristics may
lead to different levels of performance in cases with full in-
formation, more fundamental forms of reasoning, based on an
underlying mental model, and less sensitive to the specific task,
come into play when pieces are missing.
Keywords: exploration-based learning; explanation; predic-
tion; control; counterfactual reasoning; finite-state machines;
dynamic decision-making

Introduction
Prediction, explanation, and control are computationally dis-
tinct cognitive abilities that are usually studied in isolation
(e.g., Griffiths & Tenenbaum, 2009; Bubic, Von Cramon, &
Schubotz, 2010; Horne, Muradoglu, & Cimpian, 2019; Os-
man, 2010; Uppal, Ferdinand, & Marzen, 2020; Gerstenberg,
Goodman, Lagnado, & Tenenbaum, 2021), but they are a core
trio of tasks that, in the real world, are often called upon in
rapid succession. Driving on a highway late at night, for ex-
ample, we might first try to predict what an oncoming car will
do; explain why its behavior is out of the ordinary; then con-
trol the outcome by flashing our lights, or honking our horn,
to avoid an accident.

Theoretical accounts of human learning typically put for-
ward one of these three abilities, giving the other two subor-
dinate roles. Prediction-first theories (Friston, 2010; Friston
et al., 2015; Hohwy, 2013; Clark, 2013) assume that the ulti-
mate goal of the human mind is to minimize the error between
predicted and actual inputs, while our abilities to explain and
control emerge as the result of this prediction-driven activ-
ity. In contrast, proponents of the explanation-first approach
(Lombrozo, 2006; Byrne, 2016; Wojtowicz & DeDeo, 2020)
suggest that people are driven by the desire to build an accu-
rate model of the causal structure of their environment, which
serves as the basis for their further decisions and predictions.

Control-first frameworks, on the other hand, describe how the
ability to control the environment can arise from mechanisms
that do not necessarily involve prediction or explanation—
e.g., instance-based learning (Gonzalez, Lerch, & Lebiere,
2003), reinforcement learning (Silver, Singh, Precup, & Sut-
ton, 2021), or heuristic decision-making (Gigerenzer, 2001).
While each of these approaches offers strong assumptions
about the relationship between prediction, explanation, and
control, there is a lack of empirical studies that simultane-
ously examine all three abilities, making it difficult to draw
clear conclusions in favor of one approach over another.

While each of these theories implies a hierarchical relation-
ship between prediction, explanation, and control—with one
of these implicitly driving the others—isolated studies sug-
gest that these abilities have complex relationships to each
other. For example, Fernbach, Darlow, and Sloman (2010,
2011) showed that people are better at making diagnostic
(i.e., explanatory, backward-reasoning) judgments compared
to predictive, forward-reasoning judgments about the proba-
bilities of future events. They referred to it as an alternative
neglect bias, which is a tendency to ignore alternative causes
of a given event. Additionally, studies of human performance
in dynamic system control tasks have found that people can
be equally good at control and prediction under a salient rule,
but when the pattern becomes less obvious, people can still
control the system but cannot predict it (Berry & Broadbent,
1984, 1988).

Fundamentally, prediction, explanation, and control are
goal-oriented tasks that involve finding the “right” answer.
However, individuals often learn to perform these tasks
through a period of self-guided free exploration in the ab-
sence of strong goals. This period is typically guided by epis-
temic drives such as curiosity (e.g., Dubey, Mehta, & Lom-
brozo, 2021) or belief-based utility (Golman & Loewenstein,
2018). While an adult at a cocktail party may be able to ex-
plain why, for example, a companion is upset, or be able to
find the right words to support them, these talents are honed
through years of experience in simply talking with others,
without explicit training.

This experience—of an early period of “playful” interac-
tion leading to good, and even expert, performance on goal-
oriented metrics—may well be the dominant form of learning
in childhood (Gopnik, 2020). Even in adult life (Gottlieb &
Oudeyer, 2018) we interact with a world where explicit feed-
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Task Basic Form Question Format Normative Answer

Prediction What is the most likely next Visible: 1a2b? argmaxiP(i|2b)

state? Hidden: 1aXb? argmaxi
(
∑

N
k=1 P(i|kb)P(k|1a)

)
Control What choice of inputs is most likely Visible: 1a2?3 argmax jP(3|2 j)

to put the system into the goal state? Hidden: 1?X?3 argmax{i, j}
(
∑

N
k=1 P(3|k j)P(k|1i)

)
Explanation Which input caused the system to be Visible: 1a2b3 P(3|2b)P(2|1b)< P(3|2a)P(2|1a)

in that particular final state? Hidden: 1aXb3 ∑
N
k=1 P(3|kb)P(k|1b)< ∑

N
k=1 P(3|ka)P(k|1a)

Note. Here, N is the number of intermediate states. The probabilities P are given by the subject’s mental model, which is learned from free exploration in phase one

of the experiment. In the explanation task, we show the case where the correct answer is “because the first input was a”.

Table 1: Normative answers to the test tasks. States are digits from 1 to 4, responses are subscript lowercase letters (a, b),
hidden information is X, and queries are “?” (see also Fig. 1)

back on performance is rare and ambiguous. This paper seeks
to understand the relationship between these two stages. We
are interested in both how someone constructs a mental model
of a system through undirected interaction without specific
goals or incentives, and then how they use that mental model
when called upon to do explicit prediction, explanation, and
control.

Our study aims at answering the following questions:
(1) Could one learn to predict, control, and explain a dynamic
system via free exploration? (2) How would the performance
change in the presence of hidden information, when multiple
unobserved possibilities had to be considered? (3) How do
these answers vary with the complexity of the underlying sys-
tem? To answer these questions, we conduct an experiment
where participants first interact with a dynamic system that
follows a set of rules (see Fig. 1 and Fig. 2), and then answer
a set of questions designed to evaluate their ability to predict,
explain, or control the dynamical system (Fig. 3). Addition-
ally, we vary the amount of information provided with each
test question by hiding or uncovering some pieces of infor-
mation that are necessary to make a correct judgment.

A Model of Mental Models
Drawing on recent work (Tikhonov, Marzen, & DeDeo,
2022), we understand prediction, explanation, and control
tasks as relying on an underlying mental model of the
system—a largely tacit, implicit, and probabilistic representa-
tion of how the system works. In our interpretation of the ex-
periments below, the idea is that a subject constructs a mental
model during the free exploration phase, which is then used
to answer the test questions in the second phase.

This is challenging. An individual who possesses a mental
model will, in general, have only partial access to its struc-
ture and can only articulate some fraction of what it contains.
Called upon to predict, explain, or control a system in re-
sponse to test questions, the individual faces the challenge of
making some aspects of the model explicit, and capable of
guided deliberative action.

We model this translation of implicit knowledge to explicit
decision-making in two stages. In the first stage, we con-

(a) Easy machine (b) Hard machine
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Figure 1: Finite-state machines (FSMs) that define responses
of the chatbot. Each of the four states represents an emoji
icon sent by the chatbot, while inputs (a, b) correspond to
emojis sent by participants. Parentheses indicate probabilities
for inputs with multiple next states.

sider the participant’s mental model of the underlying ma-
chine. This takes a Bayesian form, specifying the (probabilis-
tic) response of the machine to different inputs: explicitly, the
mental model gives the reasoner access to the probability dis-
tribution P(i| jk), where j is the current state, k is the current
input symbol, and i is the next state.

This model is then used by the agent to judge the relative
likelihoods for the different tasks. The form of the tasks and
the normative answers—i.e., the way in which the correct an-
swers are calculated—are shown in Table 1. In the predic-
tion case, for example, the participant is asked to predict the
response of the machine to a sequence of inputs, making a
binary choice between final state A (say), and final state B.
The mental model provides a degree of belief in these two
outcomes, P(A), and P(B), which can be summarized as the
relative log-likelihood, R, of the more likely choice; if P(A)
is larger than P(B), this is

R = log
P(A)+ ε

P(B)+ ε
, (1)

where ε is a small regularizing parameter that takes into ac-
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count that the participant may attribute some small probabil-
ity to an outcome that their mental model says is, formally,
impossible.

The value of R is taken to be more-or-less implicit content,
which the participant needs to act on. We assume that this
happens in a noisy fashion; if A is the correct answer at evi-
dence level R, then the participant chooses A with probability
pC given by

pC =
exp(βR)

exp(βR)+ exp(−βR)
, (2)

where β parameterizes the noise in the translation from im-
plicit to explicit. When β is large, the participant makes ef-
ficient use of the knowledge R; when it is small, the choice
is much less reliable; when it is equal to zero, the choice is
random.

To use this model to understand human decision-making,
we first construct an approximation to the mental model we
believe the participant possesses on the basis of their free ex-
ploration, based upon a simple frequency-based rule: P(i| jk)
is equal to the number of times the participant observes state
i follow state j under input k, divided by the number of times
they saw state j under input k. For any question i, we then
compute the relative probabilities, Ri, of the two options for
the answer to a task question (see Table 1): in the predic-
tion task, this might be the relative probability of the system
ending up in State 1 versus State 2; in the control task, the rel-
ative probability of the system ending up in the desired state,
given that the agent chooses to do either action a or action
b; in the causal (counterfactual) explanation task, the relative
probability that the system would have behaved differently if
action a was not done, versus action b. The is given by Eq. 1.

Finally, we see how well the choice indicated by the mental
model matches the actual behavior of the participant. For-
mally, this is simple: the β parameter of such a model is
simply the coefficient in a logistic regression on the correct
answer to question i, with independent variable Ri, without
intercept.

The reason for this rather elaborate process is that different
tasks will have different difficulties: a person’s mental model
may give clear guidance for a prediction task (i.e., suggest a
decisive choice, with large Ri), but a much weaker one for
a control task. What we care about is the reliability of the
use of the model at a fixed level of evidence (given by β),
not the actual performance, which is a mixture of both β and
R. If we simply score participants on performance, we will
confuse tasks that are difficult because the answers are less
clear, with tasks that are difficult because participants struggle
to use their mental model well.

A second benefit of our approach is that it allows us to com-
pare different ways a participant might use a mental model.
While this paper uses only the normative account of Table 1 to
define what is meant by prediction, explanation, and control,
it is possible, as discussed in Tikhonov et al. (2022) to con-
sider an alternative, non-normative, forms of the three tasks—

“alternative neglect”—to see if there is evidence for the use
of this distinct heuristic.

Methods
With the analysis procedure, above, in hand, we applied it in
an online experiment.

Participants
Ninety-seven English-speaking U.S. participants (49 men and
48 women; 18-47 y.o., Mage = 27.3,SDage = 6.7) with normal
or corrected to normal vision, were recruited online via Pro-
lific for a $2 compensation with a performance-based bonus
up to $2. The study took approximately nine minutes and
required a desktop or laptop computer.

Materials and Procedure1

Dynamic Interaction Task We developed an experimen-
tal paradigm that was modeled after Berry and Broad-
bent’s (1984) Personal Interaction Task, originally designed
to investigate implicit and explicit knowledge in dynamic sys-
tem control. In our study, participants interact with a “chat-
bot” using a fixed set of emoji icons. The procedure includes
a learning phase (45 interactions), a test phase (20 trials), and
a short questionnaire.

The chatbot’s behavior is defined by a finite-state machine
(FSM) with four states and transitions between them guided
by two inputs. Participants are randomly assigned to a con-
dition associated with one of two machines (see Fig. 1) that
differed in the number of probabilistic and deterministic tran-
sitions. The easy machine has two probabilistic and six deter-
ministic transitions. The hard machine has five probabilistic
transitions and three deterministic, so it requires much more
effort to be learned.

Learning Phase At the beginning of the learning phase,
participants were told that the chatbot’s responses follow a
certain pattern and were asked to freely interact with the chat-
bot “to get a sense of how it responds to different messages
so that they would be able to explain, predict, and control its
behavior.” They were also asked not to use any outside re-
sources or assistance. The chatbot begins in a random state
(see Fig. 1), emitting the associated emoji. Participants re-
spond by choosing one of the two emoji icons (corresponding
to a, or b) and instantly get the next reaction of the chatbot,
which depends on their input and the previous message from
the chatbot (Fig. 2).

Test Phase Participants were randomly assigned to one of
three test conditions that assessed their ability to predict,
explain, or control the chatbot’s behavior. All test tasks
were presented as episodes of conversation with the chatbot
(State1–Input1–State2–Input2–State3), exactly paralleling the
format of Table 1, with a two-alternative forced choice ques-
tion corresponding to the test condition. As a within-subjects

1Materials, data, and analysis scripts are available at
https://osf.io/59m8r/
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Figure 2: Interaction with the chatbot at the learning (“free
exploration”) phase.

variable, a form of test question (visible or hidden) was ma-
nipulated by presenting or hiding an intermediate message
from the chatbot (see Fig. 3). A total of 20 questions—ten
hidden and ten visible—were asked in random order. Partic-
ipants received 10 cents for each correct answer as a bonus
payment.

The goal of the prediction task was to see if partici-
pants could correctly anticipate the chatbot’s next response
by looking at past interactions. Visible form included a
State1–Input1–State2–Input2–[Question] combination along
with a question (What would be the next message from the
chatbot?) and two states as answer options. The hidden form
was identical except for State2 being concealed.

Visible control tasks were presented as
State1–Input1–State2–[Question]–State3 episodes with a
question (What messages would most likely trigger the
selected response?) and two inputs (a or b) as answer
options. Hidden control tasks contained only State1 and
State3 with State2 and both inputs being hidden. Answer
options included two (out of four possible) combinations
of Input1 and Input2. Participants had to determine which
message or combination of messages would evoke a specific
response from the chatbot.

In the explanation condition, the task was to decide which
of the previous messages caused the chatbot’s final reaction.
In the instructions, we emphasize that the message that causes
the final response need not be the one that occurred immedi-
ately before: “It can sometimes be the case, for example, that
once a certain action is taken, the next action has little or no
ability to change the outcome. In this case, the earlier ac-
tion may have been the cause.” Conversation episodes were
presented as State1–Input1–State2–Input2–State3 with State2
being visible or hidden along with a question (Which of your

Figure 3: Examples of questions presented during the test
phase. Participants selected their answers by clicking on the
corresponding buttons.

messages caused the selected reaction?) and two answer op-
tions—buttons pointing at Input1 or Input2.

Results
We evaluated participants’ learning performance using two
accuracy measures. Actual accuracy relied on FSMs as the
ground truth to determine the proportion of correct answers,
while mental model accuracy was more relative, based on
mental models inferred from probabilities observed during
self-guided free exploration.2 Figure 4 shows that actual and
mental model accuracies produced almost identical results,
and a paired-samples t-test found no significant differences
between them (mean accuracies were 60% and SDs = .18;
t(193) = 0.90, p = .370). Participants were able to predict,
control, and explain both visible and hidden forms of ques-
tions of the easy FSM. However, in the hard FSM condi-
tion, only control remained at the above chance level (see
Figure 4). As our primary interest is in understanding how
participants build and apply their mental models, we focused
on mental model accuracy in our analysis.

We conducted pairwise t-tests with Benjamini-Hochberg
adjustment for multiple comparisons to examine the differ-
ences between test conditions. In the easy FSM condi-
tion, participants performed better in prediction (M = 0.81,
SD = 0.13) than in explanation (M = 0.58, SD = 0.14) when
responding to the visible form of questions (t(30.7) = 4.83,
p < .001), but there was no statistically significant difference
in the hidden form (t(30.7) = 0.46, p = .891). No other sta-
tistically significant differences were found in the easy FSM.

2In rare cases where a state-input combination had never oc-
curred in the learning phase, we assigned equal probabilities to all
four next states.
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In the hard FSM condition, there was a performance advan-
tage in control (M = 0.66, SD= 0.10) compared to prediction
(M = 0.46, SD = 0.18, t(30) = 3.83, p = .004) and explana-
tion (M = 0.55, SD = 0.13, t(29.9) = 2.80, p = .026) for the
visible form of questions. In the hidden form of questions,
we found no significant differences. Overall, participant per-
formance varied across prediction, explanation, and control
tasks in the visible form of questions, with prediction supe-
rior in the easy FSM condition and control performing better
in the hard FSM condition. However, when the intermedi-
ate state was hidden, performance on prediction, explanation,
and control tasks became similar.

To explore how participants applied their mental models
to predict, explain, and control dynamic systems, we con-
ducted logistic regression analysis. We used the Bayesian ev-
idence of answer choices (Ri) and its interaction with question
form (visible/hidden) as predictors of mental model accuracy.
Larger Ri values correspond to questions that should be easier
to answer assuming that participants interact with their men-
tal models in a Bayes-like fashion. As indicated in Table ,
the answer choice evidence (Ri) was a statistically significant
predictor of accuracy across tasks in the easy FSM condi-
tion, suggesting that participants generally used evidence in
a Bayesian manner. When the intermediate state was hidden,
the interaction between Ri and question form became a neg-
ative predictor of accuracy in control and prediction tasks,
suggesting that limited information availability might impede
the efficient use of mental models. In the hard FSM condi-
tion, Ri remained a positive statistically significant predictor
of accuracy only for control, suggesting that machine com-
plexity influenced the extent of Bayesian information use.

Discussion
In the course of day-to-day life, we are sometimes tested,
more or less explicitly, on our abilities to predict, explain,
and control. How we perform on these occasional tests—and
the “feedback” we receive—can directly impact our flourish-
ing, if not our chances of survival. Such tests, however, with
their immediate feedback, are relatively rare. The learning
that enables us to perform well happens under very different
circumstances. What enables us to survive is often the prod-
uct of many years of experience with no tests at all—there is
a gap, in other words, between the things we do to gain the
ability, and the way in which those abilities are tested.

This paper has taken that gap seriously. Instead of seeing
how people train on a task in the presence of feedback, we
first present them with a system to explore in an unstructured
fashion. To make sense of their subsequent performance, we
then think of them as relying on the mental model they con-
structed in the first phase, and examine the extent to which
they are able to leverage that learning for what comes next.

Our most basic finding is clear: individuals can, indeed,
successfully learn to predict, explain, and control simple
dynamic systems through self-guided free exploration; they
demonstrate not only significantly above-chance performance

Figure 4: Actual and Mental Model Accuracy. Means and
95% CIs were calculated from aggregated participant data.

in all three tasks, but also a clear relationship between perfor-
mance on a question, and the Bayesian evidence that would
be present where they using mental models in the way we
expect. These results are robust even when they encounter
missing information and have to navigate through multiple
possibilities. Interestingly, we find that some tasks are more
“Bayesian” than others; prediction, in particular, is more sen-
sitive to Bayesian evidence than control and explanation.

In the simplest cases, prediction performance is much bet-
ter than explanation, with control performance falling in be-
tween. Explanation may bring many pleasures (Gopnik,
1998), but it appears more difficult to achieve than the more
prosaic tasks. This is, on the face of it, counterintuitive:
the ability to control, say, would seem to require mastery
of, informally, “what causes what”, and thus some ability
to explain. Our results, however, suggest that—at least in
the presence of complete information—good-enough perfor-
mance can be achieved even in the absence of a causal model.
A natural explanation for this phenomenon is that control
abilities (for example) can be gained by heuristics and mem-
orization, without needing to rely on a more complex model
of the world that would, indeed, give explanatory abilities.

In favor of this account is the fact that these large dif-
ferences exist only in the presence of complete information.
The differences in performance disappear when information
is hidden. This suggests that, when information is hidden,
participants are no longer able to rely on task-specific heuris-
tics, and must fall back, instead, on the use of the underlying
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Task β
Upper 95% CI

Lower 95% CI
z p

Easy FSM
Prediction
Ri 0.90 1.14

0.68 7.69 < .001***
Ri × Hidden −0.51−0.19

−0.83 −3.10 .002**

Control
Ri 0.48 0.67

0.31 5.26 < .001***
Ri × Hidden −0.27−0.01

−0.54 −2.04 .041*

Explanation
Ri 0.18 0.35

0.01 2.10 .036*
Ri × Hidden 0.17 0.42

−0.08 1.31 .189

Hard FSM
Prediction
Ri −0.06 0.10

−0.22 −0.68 .494
Ri × Hidden 0.14 0.39

−0.11 1.07 .285

Control
Ri 0.40 0.58

0.23 4.40 < .001***
Ri × Hidden −0.20 0.08

−0.47 −1.42 .156

Explanation
Ri 0.18 0.39

−0.01 1.83 .068
Ri × Hidden −0.19 0.09

−0.49 −1.32 .188

Note. The intercept was excluded to facilitate the interpretation of the Ri effects.

* p ≤ .05, **p ≤ .01, ***p ≤ .001.

Table 2: Predicting accuracy in different test conditions based
on answer choice evidence (Ri) and its interactions with ques-
tion form.

mental model. When this happens, we expect performance
to equalize simply because, as can be seen from Table 1, the
complexity of the three tasks—everything from the number
of things to keep track of, to the number of hidden states to
marginalize over—is identical, and the only difference is the
order in which the terms are multiplied and summed (a minor
difference is that control requires an argmax over two vari-
ables, but this is compensated by the fact that the decision
process is always over a binary forced choice). According to
our theoretical approach, when people rely upon probabilistic
mental models, in other words, they ought to produce similar
performance across all three tasks, and this is precisely what
we find in the case of hidden information.

Returning to the full information case, a third finding of
our work is that control is more robust to information com-
plexity than prediction and explanation. Specifically, partici-
pants were able to maintain their performance in control tasks
even under the hard FSM condition, while their ability to pre-
dict and explain the system deteriorated. This is consistent
with previous research on implicit learning of dynamic sys-
tems (Berry & Broadbent, 1984, 1988). However, we note

that this finding may have been influenced by the fact that
free exploration learning may have been more similar to the
control task, as participants had to actively choose inputs in
both cases.

A major limitation in our work is given by the large het-
erogeneity in performance. Looking at the individual level,
we find that, in many cases, some fraction of our partici-
pants performed no better than random, while others achieved
near-perfect accuracy. (Our limits on response time rule out
the possibility that top performers are, for example, build-
ing explicit models using pencil and paper.) A minority
of participants—around 20%—can achieve excellent perfor-
mance on the very hardest tasks, well above chance: 80% to
90% accuracy, for example, in causal reasoning about com-
plex machines under partial information.
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