UC Berkeley
 CEGA Working Papers

Title

The Right to Education Act: Trends in Enrollment, Test Scores, and School Quality

Permalink

https://escholarship.org/uc/item/06c489pz

Authors

Shah, Manisha
Millet Steinberg, Bryce
Publication Date
2019-04-22

Series Name: WPS
Paper No.: 075
Issue Date: 22 April 2019

The Right to Education Act: Trends in Enrollment, Test Scores, and School Quality

Manisha Shah, Bryce Millett Steinberg

Center for Effective Global Action

Working Paper Series

Center for Effective Global Action
University of California

This paper is posted at the eScholarship Repository, University of California. http://escholarship.org/uc/cega_wps Copyright © 2014 by the author(s).

The CEGA Working Paper Series showcases ongoing and completed research by faculty affiliates of the Center. CEGA Working Papers employ rigorous evaluation techniques to measure the impact of large-scale social and economic development programs, and are intended to encourage discussion and feedback from the global development community.

Recommended Citation:

Steinberg Millett, Bryce; Shah, Manisha. (2019). The Right to Education Act: Trends in Enrollment, Test Scores, and School Quality. Working Paper Series No. WPS-075. Center for Effective Global Action. University of California, Berkeley.

THE RIGHT TO EDUCATION ACT: TRENDS IN ENROLLMENT, TEST SCORES, AND SCHOOL QUALITY

Manisha Shah
Bryce Millett Steinberg

We thank Wookun Kim for his invaluable research assistance and Natalie Bau and Sarah Reber for their thoughtful comments. We gratefully acknowledge funding from NSF grant \#1658852.
© 2019 by Manisha Shah and Bryce Millett Steinberg. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source.

The Right to Education Act: Trends in Enrollment, Test Scores, and School Quality Manisha Shah and Bryce Millett Steinberg
February 2019
JEL No. I2,I21,I25,O1,O38,O53

line with the official provisions of the law.
Manisha Shah
Department of Public Policy
University of California, Los Angeles
Luskin School of Public Affairs
3250 Public Affairs Building
Los Angeles, CA 90095-1656
and NBER
manishashah@ucla.edu
Bryce Millett Steinberg
Watson Institute
Brown University
111 Thayer Street
Providence, RI 02912
and NBER
bryce_steinberg@brown.edu

ABSTRACT
The Right to Education Act in 2009 guaranteed access to free primary education for all children in India ages 6-14. This paper investigates whether national trends in educational data changed around the time of this law using household surveys and administrative data. We document four trends: (1) School-going increases after the passage of RTE, (2) Test scores decline dramatically after 2010, (3) School infrastructure appears to be improving both before and after RTE, and (4) The number of students who have to repeat a grade falls precipitously after RTE is enacted, in

1 Introduction

The Right of Children to Free and Compulsory Education Act or Right to Education Act (RTE) was enacted in August 2009 by the Indian Parliament, mandating free and compulsory education to all children ages six to fourteen. With RTE now operational, India joined some 20 other countries including Afghanistan, China and Switzerland which have laws guaranteeing free and compulsory education for eight years of elementary education (The Hindu, 2010).

The purpose of such laws is to operationalize the idea of education as a fundamental human right, though that can mean different things in different countries. In India, the four most important provisions of the law are: (1) government schools must be completely free for all children ages 6-14, (2) no student can be expelled or held back before the completion of primary school (grade 8), (3) twenty-five percent of private school seats must be held for disadvantaged students in the local area, and (4) infrastructure and quality minimum standards, such as the provision of libraries and girls' toilets, and minimum teacher qualifications and pupil-teacher ratios must be implemented.

This paper examines what changes, if any, occurred in the Indian educational system after the passage of this potentially transformative law. We use three separate nationallyrepresentative datasets to corroborate the findings. We examine changes in student enrollment, test scores, as well as various school characteristics, such as student-teacher ratios and school infrastructure. We document four important trends in the national data: (1) School-going increases after the passage of RTE, though this increase is more pronounced in "primary activity" NSS data than in official enrollment statistics, (2) Test scores decline dramatically after 2010 in both math and reading, (3) School infrastructure, including pupilteacher ratios, appear to be improving both before and after RTE, and (4) The number of students who have to repeat a grade falls precipitously after RTE is enacted, in line with the official provisions of the law.

Though a number of countries have passed laws like RTE around the globe, very little
microeconomic analysis exists on the impact of these types of laws. Some of this is likely due to the fact that these laws are implemented at the country level at one point in time, so causal analysis is challenging due to a lack of a counterfactual. We face similar constraints in this paper, and do our best to corroborate findings across various datasets. However we note that the results in this paper are correlational associations with the passage of RTE and should not be interpreted as causal.

2 Data Sources

We use three data sets to investigate changes in educational outcomes in the pre- and post-RTE world: two household surveys (ASER and NSS) and one administrative data set collected by the Indian Ministry of Education (DISE).

The Annual Status of Education Report (ASER) is a household survey implemented in almost every rural district in India, and is representative at the district level. We use annual ASER data from 2005-2014. The survey consists of several questions about the education of each child, including current enrollment status. We denote a child as enrolled if he or she reports being "currently enrolled" in school, and zero if he or she reports having dropped out or has never enrolled in school. ASER also tests each child in the household ages 516 on a total of four basic math and reading skills. Math score ranges from $0-4$, where 1 is "can recognize numbers $1-9$ ", 2 is "can recognize numbers $10-99$ ", 3 is "can subtract 2-digit numbers" and 4 is "can divide two-digit numbers". Reading scores range from 0 to 4 where 1 is "can recognize letters", 2 is "can read words", 3 is "can read a paragraph" and 4 is "can read a story". The test scores are constructed as in Shah and Steinberg (2017). Reading score is measured in the local language. The test is administered to each child in the household regardless of current school enrollment status and the same test is given to each child regardless of her age.

The National Sample Survey (NSS) is a nationally representative household survey that is is conducted on a regular basis by the National Sample Survey Organisation (NSSO) which
is under the Ministry of Statistics and Program Implementation of the Government of India. The NSS gathers nationally representative information on household structure, consumption, and production. We use data from Schedule 10, Rounds 62, 64, 66, and 68 giving us annual household data from 2005 to 2012. The survey asks each member of the household for their primary activity, including children, and we use this to measure school enrollment. We define a child as attending school if they report their primary activity as "attends school", and zero if they report another activity (such as market work, home chores, or being idle). ${ }^{1}$ In the main analysis we use both urban and rural households but in the Appendix we show that the results are robust to the rural sample only to be consistent with ASER data.

The District Information System for Education (DISE) data is a census of schools conducted yearly by the Ministry of Education. This census, aggregated to the state level, is publicly available for download at udise.in. We use annual data from years 2005-2014. The census includes variables such as total enrollment numbers by standard (grade) and type of institution (public or government vs. private), and information about the school, including infrastructure (i.e. latrines), number of teachers (and their education levels), number of students who repeat a grade, etc. The DISE collects enrollment numbers (not rates), and while it is purportedly a census of schools, there are some well-known issues with both completeness and quality of the data. ${ }^{2}$

We use NSS and DISE data starting in 2005 to remain consistent with the ASER data (which starts in 2005). There is no NSS Schedule 10 data between 2013-2014 so the last year of NSS data is 2012. We restrict all analysis to children ages 6 to 16 since RTE is binding from ages 6 to 14 . We include children aged 14-16 as RTE stipulates that children must be be entitled to free education until the completion of elementary education even after the age of 14 . Table 1 displays the means of all variables of interest by three time periods: pre-RTE (2004-2008), during RTE transition (2009-2010) and post-RTE (2011-2014).

[^0]
3 RTE and Changes in Enrollment

To investigate the changes in educational outcomes before and after RTE, we show a series of figures that graph β_{t} from the following regression:

$$
\begin{equation*}
S_{i j t}=\alpha+\beta_{t} \cdot \text { year }+\gamma \mathrm{X}_{i}+\delta_{j}+\epsilon_{i j t} \tag{1}
\end{equation*}
$$

where β_{t} is a vector of the coefficients for each year, X_{i} is a vector of child age and sex fixed effects, and δ_{j} is a vector of district fixed effects. Regressions are clustered at the district level, and 95% confidence intervals are shown as bars in the figures. The omitted year is 2008. In the DISE data (which we have at the state level), we include state fixed effects and cluster at the state level and do not include individual characteristics $\left(X_{i}\right)$. For the DISE enrollment Figure 1 (Panel C), we simply graph the total numbers of students enrolled in each year.

Figure 1 Panel A shows the estimates of the average rates of attending school in the NSS, while Panel B shows average enrollment rates as measured in the ASER data. It is worth noting that these two variables are not measuring the exact same thing: from 2004-2008, 85% of children ages 6-16 in the NSS report attending school as their primary activity, while 93% of children ages 6 - 16 report being currently enrolled in school in ASER. In addition, enrollment (in ASER) is likely to have a lagged effect, because children will report being enrolled in school even if they no longer attend, until the new school year begins.

The NSS data shows a clear increase in the rate of attending school after 2008 (5 percentage points in 2010), which is sustained until 2012 without much of a pre-trend before 2008. ASER data shows a much smaller increase (1 percentage point in 2010), though there is a similar increase between 2006 and 2007, prior to the enactment of RTE. Using the raw DISE data, panel C shows total enrollment numbers per 10,000 students by year in India. As in ASER, there appears to be an increase in enrollment numbers in 2010, though enrollment is increasing sharply before RTE is implemented, so the effect of RTE (separate from
underlying trends) is less clear. In Figure A1 we restrict the NSS and DISE sample to rural areas only (to be consistent with the ASER data), and the results for the NSS look fairly similar while the DISE enrollment increase is smaller in the rural sample.

Figure A2 shows the same plots, broken up roughly by primary and secondary age children. Panels A and B separate by age, while Panel C separates by grade, due to data constraints in the DISE. In all three panels, it is clear that the increases in schooling in Figure 1 appear to be driven by the older children (ages 13-16 or upper primary). In Figure A3 we show that the increase in enrollment seems to be driven by private schools but the underlying trends (increase in private and decrease in government enrollment) make it difficult to attribute this change to the RTE. In Figure A4 we plot the enrollment changes by quartile of enrollment in 2008. The largest increases are coming from areas that had lower enrollment in 2008.

Table A1, Panel A shows the enrollment results for each dataset from a regression identical to the one above, but with a single "post-2008" dummy replacing the vector of year fixed effects. In all three data sets, enrollment increases significantly after 2008. Enrollment increases from approximately 1-1.5 percent (ASER and DISE) to 7 percent (NSS) in the post-RTE period. Panel B shows results by gender using the NSS and ASER data. In both datasets, the magnitude of the change in enrollment is larger for girls (Panel B).

4 RTE and Changes in Test Scores and School Quality

Next, we examine the potential effect of RTE on test scores in Figure 2. Interestingly we see both math and reading scores drop sharply in 2011, two years post-RTE. The scores drop again in 2012 and then remain at that lower level through 2014, the last year in our data. The results in Panel C of Table A1 suggest that math test scores drop by about 25% of a standard deviation, and reading drops by about 10% of a standard deviation post-RTE. This is a large effect, comparable in magnitude to some of the most successful educational interventions in this context (Banerjee et al., 2007). The timing of the effect comes after the
increase in enrollment, which is not surprising, since test scores might represent a stock of knowledge gained in the previous year(s). One might be worried that the test scores results are being driven by a changing composition of students taking the test. Figure 2 includes only children who are currently enrolled in school, but Figure A5 in the Appendix includes all children (currently and never enrolled and dropped out). Both figures are surprisingly similar suggesting that compositional changes in children are not driving the decrease in test scores.

To understand these changes in enrollment and test scores, we turn to the aspects of schooling that might be associated with RTE. If enrollment is increasing and school capacity is not, this might crowd classrooms and increase student-teacher ratios. RTE at least nominally required schools to decrease pupil-teacher ratio in primary schools to less than 40 (less than 30 in most schools), and to provide infrastructure such as gender-specific toilets and libraries (KPMG, 2016). In Figure 3, we show estimates from regressions using DISE data on four measures of school quality/infrastructure: number of schools with girls toilet facilities, student-teacher ratios, teacher education (high school and below vs above high school), and the number of student repeaters. Again we graph the coefficients on the year dummies with their respective confidence intervals. All regressions include state fixed effects and are clustered at the state level. In Panels A-C, broadly speaking, school quality seems to be improving over time by all three measures. It is not clear how much of this improvement is due to RTE, since all three measures are trending "better" both before and after RTE, but it at least appears that RTE does not reduce school quality to the extent that we can measure it. This is consistent with Muralidharan et al. (2017) who also show substantial improvements in input-based measures of school quality during this period in India.

5 Discussion \& Conclusion

The changes in enrollment, test scores, and school quality measures should be interpreted cautiously. Though some changes appear to coincide with the passage of RTE, this paper is
not designed to provide causal estimates of the law on educational outputs.
However, if we assume at least some of the test score drop is due to RTE, our results present a bit of a puzzle. Enrollment seems to be increasing moderately over this time, while test scores are decreasing. The natural explanation for this would be overcrowding: more students increase classroom size and this decreases learning. However Figure 3 (Panels A and B), show that the student-teacher ratio is decreasing during this period so schools are hiring more teachers and teacher education is increasing. To the extent that we can measure infrastructure and resources per student, they seem to be getting better, not worse.

There are several alternative explanations that could help to explain this pattern. First, a large component of the RTE was designed to subsidize the entry of historically disadvantaged students into private schools. This might have changed the composition of students in both public and private schools (Hsieh and Urquiola, 2006), and this change could have led to changing pedagogical strategies in some private schools with large influxes of lower-ability students (Neilson, 2017; Bau, 2017). In addition, the influx of out-of-school students into schools could have caused negative peer effects in government schools. In Figure A6 we show the test score decline by public (government) and private schools using the ASER data. We observe that the decrease is happening in both types of schools, though it is larger in government public schools. Muralidharan et al. (2017) argue that teacher absenteeism actually worsens with decreased pupil-teacher ratios in India, and indeed, in Figure A7 we see a modest increase in teacher absenteeism over this time period. ${ }^{3}$

The other aspect of RTE that seems most likely to have lowered test scores is the lack of testing and universal promotion of students in primary school. We observe that the overall number of repeaters is decreasing quite significantly during this time period (Panel D, Figure 3). It is possible that this "social passing" leads to decreased learning for students who are not prepared for upper-level courses, worsening the problem of instructional mismatch in Indian classrooms (Muralidharan et al., forthcoming; Duflo et al., 2011; Bau, 2017). It is

[^1]also possible that the lack of high-stakes testing itself decreases the incentives for learning for both teachers and students (Banerjee and Duflo, 2018).

These explanations are not exhaustive, nor are they mutually exclusive. Whatever the reason, it is clear that test scores have declined sharply in India since 2011, two years after the passage of RTE. We leave it to future research to conduct a more careful study of the mechanisms that may have caused this decline and how much is related to RTE.

References

Banerjee, Abhijit and Esther Duflo, "Learning's not about enrolment, latrines in school. We're failing children on massive scale," The Indian Express, December 2018.
_ , Shawn Cole, Ester Duflo, and Leigh Linden, "Remedying education: Evidence from two randomized experiments in India," Quarterly Journal of Economics, 2007, 22 (3), 1235-1264.

Bau, Natalie, "School Competition and Product Differentiation," 2017. mimeo.
Duflo, Esther, Pascaline Dupas, and Michael Kremer, "Peer Effects, Teacher Incentives, and the impact of tracking: evidence from a randomized evaluation in Kenya," American Economic Review, 2011, 101, 1739-1774.

Hsieh, Chang-Tai and Miguel Urquiola, "The effects of generalized school choice on achievement and stratification: Evidence from Chile's voucher program," Journal of Public Economics, 2006, 90, 1477-1503.

KPMG, "Assessing the impact of Right to Education Act," Technical Report, KPMG India March 2016.

Muralidharan, Karthik, Abhijeet Singh, and Alejandro Ganimian, "Disrupting education? Experimental evidence on technology-aided instruction in India," American Economic Review, forthcoming.
_ , Jishnu Das, Alaka Holla, and Aakash Mohpal, "The fiscal cost of weak governance: Evidence from teacher absenceinIndia," Journal of Public Economics, 2017, 145, 116 - 135.

Neilson, Christopher, "Targeted vouchers, competition among schools, and the academic achievement of poor students," 2017. mimeo.

Shah, Manisha and Bryce Millett Steinberg, "Workfare and Human Capital Investment: Evidence from India," 2015. NBER Working Paper 21543.
_ and _ , "Drought of Opportunities: Contemporaneous and Long-Term Impacts of Rainfall Shocks on Human Capital," Journal of Political Economy, 2017, 125 (2), 527-561.

The Hindu, "India joins list of 135 countries in making education a right," The Hindu, April 2010.

This Figure shows β_{t} from an OLS regression of Equation 1 on two measures of enrollment (NSS and ASER) and raw enrollment numbers (DISE). "Attends school" is equal to one if the child lists attending school as his or her primary activity, and zero if he or she lists another primary activity. "Currently Enrolled" is equal to one if the child reports being enrolled in school, and zero if he reports having dropped out or never enrolled. "Number enrolled" is the average of the total number of students enrolled. NSS and ASER regressions contain district, age, and sex fixed effects and are clustered at the district level. 2008 is omitted base year. 95% confidence intervals are shown for ASER and NSS regressions. Source: ASER 2005-2014, NSS Rounds 62, 64, 66 and 68 (2005-2012), DISE 2005-2014

Figure 1: RTE and Enrollment: A Snapshot from 3 datasets

This Figure shows β_{t} from an OLS regression of Equation 1 with their respective 95% confidence intervals. Math score and read score range from 0-4. 2008 is omitted base year. All regressions contain district, age, and sex fixed effects and are clustered at the district level.
Source: ASER 2005-2014
Figure 2: RTE and Test Scores of the Currently Enrolled

This Figure shows β_{t} from an OLS regression of Equation 1 with their respective 95% confidence intervals. 2008 is omitted base year. All regressions contain state fixed effects and are clustered at the state level.
Source: DISE 2005-2014
Figure 3: RTE and School Quality Measures

Table 1: Summary Statistics from 3 Data Sources

| | Pre-RTE | | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2004-2008 | Transition
 $2009-2010$ | | | Post-RTE
 2011-2014 | | | | | |
| | Mean | SD | Obs | Mean | SD | Obs | Mean | SD | Obs |
| ASER | | | | | | | | | |
| Enrolled | .927 | .260 | $2,139,648$ | .936 | .245 | $1,075,007$ | .936 | .245 | $1,902,958$ |
| Math Score | 2.70 | 1.26 | $2,021,299$ | 2.71 | 1.27 | $1,010,941$ | 2.42 | 1.29 | $1,637,007$ |
| Read Score | 2.79 | 1.38 | $2,031,465$ | 2.87 | 1.32 | $1,017,423$ | 2.70 | 1.43 | $1,641,179$ |
| Teacher Absence | .120 | .196 | 11,642 | .130 | .208 | 25,886 | .147 | .227 | 55,628 |
| NSS | | | | | | | | | |
| Attends School | .847 | .360 | 225,966 | .907 | .291 | 107,403 | .927 | .260 | 104,485 |
| DISE | | | | | | | | | |
| Enrollment (10,000) | 524.8 | 690.8 | 136 | 554.6 | 720.2 | 68 | 579.3 | 773.2 | 136 |
| Student-Teacher Ratio | 28.4 | 11.1 | 136 | 26.0 | 10.1 | 68 | 22.1 | 9.4 | 136 |
| Girls' Toilet (10,000) | 1.63 | 2.72 | 136 | 2.73 | 3.63 | 68 | 3.64 | 4.79 | 136 |
| Teacher Lower (10,000) | 6.71 | 7.50 | 136 | 7.16 | 8.05 | 68 | 7.23 | 8.24 | 136 |
| Teacher Higher (10,000) | 8.31 | 10.7 | 136 | 10.4 | 12.9 | 68 | 14.1 | 17.0 | 136 |
| Repeaters (10,000) | 32.2 | 50.0 | 136 | 23.8 | 39.3 | 68 | 9.6 | 22.7 | 136 |

This table shows summary statistics of the main outcome variables used in this paper from three data sources. "Teacher lower" is the number of teachers with less than a high school diploma. "Teacher higher" is the number of teachers with at least a high school diploma. Enrollment, Girls' Toilets, Teacher Lower, Teacher Higher, and Repeaters are the total number in each category, in a given state, in 10,000s. The Right to Education Act was passed in 2009, though not fully implemented until 2010. Source: ASER 2005-2014, NSS Rounds 62, 64, 66 and 68 (2005-2012), DISE 2005-2014

A Appendix Tables and Figures

This Figure replicates Figure 1 using NSS and DISE data using only the rural sample. Source: NSS Rounds 62, 64, 66 and 68 (2005-2012), DISE 2005-2014

Figure A1: RTE and Rural Enrollment

This Figure shows β_{t} from an OLS regression of Equation 1 with their respective 95% confidence intervals on two measures of enrollment by age group (NSS and ASER) and raw enrollment numbers by primary/upper primary enrollment (DISE). "Attends school" is equal to one if the child lists attending school as his or her primary activity, and zero if he or she lists another primary activity. "Currently Enrolled" is equal to one if the child reports being enrolled in school, and zero if he reports having dropped out or never enrolled. "Number enrolled" is the average of the total number of students enrolled. NSS and ASER regressions contain district, age, and sex fixed effects and are clustered at the district level. 2008 is omitted base year. 95% confidence intervals are shown for ASER and NSS regressions.
Source: ASER 2005-2014, NSS Rounds 62, 64, 66 and 68 (2005-2012), DISE 2005-2014
Figure A2: RTE and Enrollment by Age: A Snapshot from 3 datasets

This Figure shows β_{t} from an OLS regression of Equation 1 on government vs. private school enrollment (ASER) and raw government vs. private school enrollment numbers (DISE). The ASER regression contains district, age, and sex fixed effects and are clustered at the district level. 2008 is omitted base year. 95% confidence intervals are shown for the ASER regression coefficients.
Source: ASER 2005-2014, DISE 2005-2014
Figure A3: Private vs. Government School Enrollment

This Figure shows β_{t} from an OLS regression of Equation 1 on two measures of enrollment (NSS and ASER) by enrollment quartile in 2008. The regressions contain district, age, and sex fixed effects and are clustered at the district level. 2008 is omitted base year. 95% confidence intervals are shown for the regression coefficients.
Source: ASER 2005-2014, NSS Rounds 62, 64, 66 and 68 (2005-2012)
Figure A4: Enrollment by 2008 Enrollment Quartiles

This Figure replicates Figure 2 using all children including those who are currently enrolled, dropped out and never enrolled. Source: ASER 2005-2014

Figure A5: RTE and Test Scores for All Children

This Figure shows β_{t} from an OLS regression of Equation 1 on test scores for students in public (government) and private schools. Students in other types of schools (such as madrasas) are omitted. The regressions contain district, age, and sex fixed effects and are clustered at the district level. 2008 is omitted base year. 95% confidence intervals are shown for the regression coefficients. Source: ASER 2005-2014

Figure A6: RTE and Test Scores, by School Type

This Figure shows β_{t} from an OLS regression of Equation 1 on teacher absenteeism from the ASER school surveys. 95% confidence intervals, clustered at the district level, are shown as bars. The survey was not conducted in 2006 or 2008.2007 is omitted base year as there is no ASER 2008 school data. Regression contains district fixed effects. Source: ASER School Data 2007, 2009-2014

Figure A7: RTE and Teacher Absenteeism

Table A1: Enrollment and Test Scores Pre- and Post-RTE

Panel A: Enrollment All Children 6-16			
Dep. Var: Source:	Attends School NSS	Enrolled ASER	$\begin{aligned} & \operatorname{Ln}(\text { Enrollment }) \\ & \text { DISE } \end{aligned}$
Post-2008	$\begin{gathered} .0645^{* * *} \\ (.0021) \end{gathered}$	$\begin{gathered} .0145^{* * *} \\ (.0013) \end{gathered}$	$\begin{gathered} .0073^{* * *} \\ (.0194) \end{gathered}$
Observations Mean DV	$\begin{gathered} 437,854 \\ .877 \end{gathered}$	$\begin{gathered} 5,117,613 \\ .932 \end{gathered}$	$\begin{aligned} & 340 \\ & 14.1 \end{aligned}$
Panel B: Enrollment by Gender			
Dep. Var: Source:	Attends School NSS	Enrolled ASER	Ln(Fem. Enrollment) DISE
Post-2008	$\begin{gathered} .0547^{* * *} \\ (.0022) \end{gathered}$	$\begin{gathered} .0105^{* * *} \\ (.0012) \end{gathered}$	$\begin{gathered} .0965^{* * *} \\ (.0190) \end{gathered}$
Post-2008 X Girl	$\begin{gathered} .0209^{* * *} \\ (.0023) \end{gathered}$	$\begin{gathered} .0087^{* * *} \\ (.0008) \end{gathered}$	
Observations Mean DV	$\begin{gathered} 437,854 \\ .877 \end{gathered}$	$\begin{gathered} 5,117,613 \\ .932 \end{gathered}$	$\begin{gathered} 340 \\ 13.4 \\ \hline \end{gathered}$
Panel C: Test Scores			
Dep. Var: Source:	Math Score ASER	Read Score ASER	
Post-2008	$\begin{gathered} -.217^{* * *} \\ (.010) \end{gathered}$	$\begin{gathered} -.070^{* * *} \\ (.009) \end{gathered}$	
Observations Mean DV	$\begin{gathered} 4,669,247 \\ 2.60 \end{gathered}$	$\begin{gathered} 4,690,067 \\ 2.77 \end{gathered}$	

This table shows coefficients from an OLS regression of schooling outcomes on a dummy for post-2008. Panel A shows measures of enrollment or school attendance from three seperate data sources. "Attends school" is equal to one if the child lists attending school as his or her primary activity, and zero if he or she lists another primary activity. "Enrolled" is equal to one if the child reports being enrolled in school, and zero if he reports having dropped out or never enrolled. "Log Enrollment" is the natural logarithm of the total state enrollment of children in primary and upper primary school. Columns 1 and 2 contain district, age, and sex fixed effects, and are limited to children aged 6-16. Column 3 contains state fixed effects. Panel B shows enrollment by gender. Columns 1 and 3 are identical to Panel A, but add an interaction of post- 2008 with female. Column 3 reports the log of total female enrollment by state. The dependent variables in Panel C are test scores, where math and read score range from 0-4. The Right to Education Act was passed in 2009, though not fully implemented until 2010. Standard errors, clustered at the district level for all regressions except Panel A column C and Panel B column C, clustered at the state level, are shown in parentheses. * 10% significance ${ }^{* *} 5 \%$ significance ${ }^{* * *} 1 \%$ significance.
Source: ASER 2005-2014, NSS Rounds 62, 64, 66 and 68 (2005-2012), DISE 2005-2014

[^0]: ${ }^{1}$ This is the same definition as in Shah and Steinberg (2015).
 ${ }^{2}$ For example, see https://blog.socialcops.com/intelligence/data-stories/ dise-education-data-failing-us/

[^1]: ${ }^{3}$ The data from this figure comes from the ASER school survey, which is available in fewer pre-RTE years and, while a large sample, is not representative of Indian schools.

