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Abstract 

Human agents confront internal computational limitations and 
external constraints of the task environment when problem 
solving. To find optimal solutions under time and material 
constraints, the agent must adapt their behavior by using 
various strategies such as offloading (i.e., using external 
materials to aid their performance). We designed a novel tower 
building task to investigate adaptive use of strategies under 
constraints. The task worked as designed: Participants found 
the optimal solution most often on the least difficult scenario 
and least often on the most difficult scenario. Surprisingly, 
offloading led to no significant differences in performance. On 
the most difficult scenario, some participants found the optimal 
solution using a prospective, concurrent, or retrospective 
strategy based on experience with the constraints of the task 
environment. This study shows how optimality can be 
understood as a trend over time and investigated in tasks that 
allow multiple attempts. 

Keywords:  adaptivity, optimization, strategies, problem 
solving, constraints 

Introduction 
Optimal problem solving is studied across various disciplines 
with foundations in economics (Pingle, 1992; Pingle & Day, 
1996; Simon, 1955; Smith et al., 1982) and with more recent 
work in cognitive science (Hawkins et al., 2012; Howes et 
al., 2014; Howes et al., 2016; Jain et al., 2022; Lewis et al., 
2014; Lieder & Griffiths, 2020). An important subtopic is 
problem solving under constraints. The constraints of a task 
environment (e.g., time, materials) impact the strategies by 
which a person solves a problem, and in turn affects their 
ability to find an optimal solution. The current study 
investigates optimal problem solving under time and material 
constraints using a novel tower building task. It also evaluates 
the role of offloading in potentially supporting optimal 
problem solving. Lastly, it documents the different strategy 
progressions people use over multiple attempts on the same 
difficult problem.  

Prior Research 
Foundational research on optimality begins with classic 
economic theories of maximization (Smith et al., 1982). The 
goal of maximization is to find the highest-value solution 
given the defined costs and benefits of a task environment. 
Maximization assumes unlimited resources in terms of both 
time and computational capabilities to arrive at a solution. 

Simon (1955) pointed out that a limitation of maximization 
is that the human problem solver is bounded in their 
computational capabilities. He proposed bounded rationality, 
claiming the computational capabilities of the human agent 
are constrained both internally by their computational 
limitations (i.e., their ability to conduct mental calculations) 
and externally by their experience with a task environment. 
Thus, it is often not possible to exhaustively search for the 
best solution. Instead, humans must satisfice, determining a 
preset threshold (i.e., aspiration level) and stopping once they 
arrive at such an outcome (Simon, 1955). 

 Satisficing, too, is limited in its assumption that people 
terminate problem solving after arriving at a predefined 
threshold (Payne et al., 1988). If the constraints of the task 
environment allow it, people may seek to adjust their original 
threshold, and aim instead for an optimal outcome as opposed 
to settling for a satisfactory one (Bhui et al., 2021). The 
current study investigates whether and how people adapt their 
behavior under varying time and material constraints to find 
the optimal solution.  

Conlisk (1988, 1996) considered the question of 
optimization under constraints from an economics 
perspective. He argued that searching for relevant 
information and finding the optimal solution are both costly 
activities, describing these activities as optimization costs. He 
claimed that traditional economic theories are insufficient 
because they do not account for these costs, which are central 
to the decision outcome (Conlisk, 1988). From an AI 
perspective, Boddy and Dean (1994) considered the design of 
intelligent agents that perform in time-constrained 
environments. They argued that management of an agent’s 
limited computational resources is crucial for optimal 
decision making. They proposed algorithms for the proper 
allocation of these resources during planning and problem 
solving. 

A very different approach to problem solving under 
constraints comes from distributed cognition, which proposes 
sharing the task’s cognitive load between the agent and the 
environment (Hutchins, 1995). Similarly, Tversky (2011) 
reviews the benefit of visualizing meaning in the external 
world. Utilizing the world as a source of searchable 
information can aid people in their ability to solve problems. 
For example, Zahner and Corter (2010) found evidence for 
the importance of external visual representations in problem 
solving. Across a variety of tasks, lower performers tended to 
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rely on the resources of the external environment, compared 
to higher performers. 

Use of the external world as a problem solving aid is 
sometimes referred to as cognitive offloading. Offloading is 
when people utilize external resources (e.g., paper, pen) to 
distribute their cognitive load during problem solving (Risko 
& Gilbert, 2016). It is an effective strategy in constrained 
problem solving environments, used most often in 
challenging or novel task environments where the agent has 
little experience with the specific constraints. The current 
study contributes to this literature, investigating the use of 
offloading on optimal performance during time-constrained 
problem solving. 

Recently, Lieder and Griffiths (2020) expanded on prior 
work on distributing resources during problem solving in 
their model of resource-rational analysis. This model 
proposes that allocating resources optimally enables the 
agent to find a solution. They propose that allocating 
resources effectively is based on planning. The specific type, 
and timing, of planning varies based on the agent and the 
constraints of the task environment (Lieder & Griffiths, 
2020).  

Lieder and Griffith's (2020) proposal is consistent with 
Simon’s (1955) original formulation of bounded rationality 
which called for adaptive mechanisms for handling the 
constraints of a task environment. Adaptation occurs when a 
person changes their behavior in response to obstacles during 
problem solving. For example, they may adjust their strategy 
based on their understanding of the task instructions or their 
experience with the task environment and its constraints. 
Crucially, time constraints may result in a person modifying 
their plan to find an optimal solution within the allotted time.  

The current study examines three forms of strategy 
adaptation. First, people may engage in prospective planning, 
expending time upfront to ultimately get closer to an optimal 
solution. In our study, participants considered the potential 
value associated with each outcome using pen and paper to 
try to find the optimal solution. Second, people may use 
concurrent planning, adapting their strategy as they gain 
experience with the affordances of a novel task environment. 
In our study, participants laid out blocks in front of them to 
help them visualize an optimal solution. Third, people may 
engage in retrospective planning, adjusting their plan only 
after spending their initial time finding an optimal solution. 
In our study, participants tended to calculate the value of the 
solution they previously found before proceeding. Each of 
these adaptive strategy progressions is used to aid the agent 
in their plan to find the optimal solution. 

Research Questions 
The current study examined optimal problem solving under 
time and material constraints. College undergraduates 
completed a novel tower-building task under three different 
scenarios. Each scenario had different time and material 
constraints, resulting in different optimal solutions. This 
study addressed five research questions: 

 

1. Does the optimality of problem solving decrease as 
the number of constraints to manage increases? 

2. Do people learn to perform more optimally across 
successive attempts on a scenario? 

3. Do people who choose to offload during problem 
solving (i.e., use paper and pen resources) find 
more optimal solutions than those who do not? 

4. Are people’s metacognitive ratings of scenario 
difficulty associated with the optimality of their 
performance? 

5. Across successive attempts on the most difficult 
scenario, C, do people exhibit different strategy 
progressions as they move toward more and more 
optimal solutions? 

Method 

Participants 
The sample consisted of 45 undergraduates from a public 
technical university in the American Southeast. Their mean 
age was 19.9 years (SD = 1.7). Participants were 
compensated with course credit for one hour of their time. 
The protocol was approved by the local IRB.  

Design 
The study had a within-subjects design. The first factor was 
scenario (A, B, C). The second factor was attempt (1, 2, 3): 
participants completed each scenario three times in 
succession. Thus, there were a total of nine attempts. The 
time (i.e., number of seconds provided for each attempt) and 
materials (i.e., number of blocks provided for each attempt) 
differed across the scenarios. (See below for details on these 
constraints.)  
    The primary dependent variable was the number of optimal 
solutions. This was aggregated for each scenario (i.e., the 
total number of the three attempts for which a participant 
found the optimal solution) and aggregated across all 
scenarios and attempts (i.e., the total number of the nine 
attempts for which a participant found the optimal solution). 
Scenario C had an additional dependent variable: overall 
benefit (out of 540, which was the highest score participants 
could achieve on this scenario).  
    We collected three additional measures via a strategy 
questionnaire. This instrument asked, for each scenario, what 
strategy a participant used and if their strategy changed over 
the duration of the scenario. It also asked participants to rate 
their perceived difficulty of the scenario on the scale of 1 
(“not difficult”) to 10 (“very difficult”). 

Materials 
We developed a novel task to investigate optimality of 
problem solving under time and material constraints. It 
consists of three scenarios. For each, participants were asked 
to build towers. Each tower was composed of three colored 
blocks; see Figure 1. The benefit of each tower was consistent 
across the entire task; left = 50, middle = 60, and right = 100. 
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Scenarios A and B also had costs associated with using each 
block; pink = 5, green = 10, and black = 20. Participants could 
build any number of each of these three block towers. The 
goal was to optimize the net benefit for each attempt of each 
scenario. The allotted time and number of blocks available 
for each scenario varied. Therefore, the optimal solution for 
each scenario varied, as did the difficulty of finding it.  
 

 
Figure 1. The three tower options and their associated point 

benefit, and also, the block costs. 
 
Scenario A. Scenario A was always completed first as it was 
intended to be the easiest one. Participants were given 30 
seconds for each attempt. The goal was to build the 
combination of the towers shown in Figure 1 resulting in the 
highest net benefit. The costs of blocks were denominated in 
terms of points. For example, the left tower of Figure 1 has a 
benefit of 50 points and a cost of 5 + 10 + 20 = 35 points. 
Thus, the left tower has a net benefit of 50 – 35 = 15 points. 
The middle tower has a net benefit of 40 points and the right 
tower a net benefit of 60 points. Thus, the optimal strategy is 
to build as many right towers as possible in the allotted time. 
Participants were unconstrained in this scenario. 
 
Scenario B. Scenario B was intended to be of moderate 
difficulty, and so participants were allotted 90 seconds for 
each attempt. Again, the goal was to build the combination of 
towers resulting in the highest net benefit. Here, participants 
were subjected to a temporal constraint: the costs of the 
blocks were denominated in terms of time: participants had 
to request blocks one at a time and had to wait the specified 
amount of time to receive each one (e.g., 10 seconds for a 
green block). Recall that the left tower of Figure 1 has a 
benefit of 50 points. It has a cost of 35 seconds, and thus 
choosing to build this tower yields a benefit of 50 / 35 = 1.43 
points/sec. The middle tower yields 3 points/sec and the right 
tower 2.5 points/sec. Thus, the optimal strategy is to build as 
many middle towers as possible during the allotted time. 
Scenario C. Scenario C was intended to be the most difficult. 
Participants were given 180 seconds for each attempt. This 
scenario had a material constraint: Participants were 
provided with exactly 10 blocks of each color with no costs 
associated with using the blocks. There were two tower 
combinations that achieved the highest possible net benefit 
(540) using these 30 blocks: (1) four middle towers and three 

right towers or (2) two left towers, four middle towers, and 
two right towers.  

Procedure 
Participants completed the task in-person in the lab, seated at 
a table. In front of them were 120 blocks (40 per color), a 
sheet displaying the three tower options and their associated 
benefits (see Figure 1), a sheet outlining the block costs (see 
Figure 1), and the offloading materials (i.e., blank paper, a 
pen, and markers of the same three colors as the blocks).  

The experimenter explained the benefits of the towers, the 
cost of using each block, and the overall goal for each 
attempt: to build the combination of towers resulting in the 
highest net benefit. Participants were told they could not take 
a tower apart once it had been built, and that they must let the 
timer expire for each attempt, even if they finished early. The 
experimenter also pointed out the offloading materials, which 
could be used at any point during the task.  

Each participant was then given the rules for scenario A. 
The experimenter set the timer, visible to the participant, and 
the participant began their first attempt. Once time elapsed, 
the experimenter recorded the number of each tower (i.e., left, 
middle, right) the participant chose to build. The towers were 
then disassembled, the blocks returned to the pile, and the 
timer was set for the second attempt. The participant 
completed two more attempts for scenario A.  

After completing scenario A, half of the participants (N = 
23) completed scenario B and the other half (N = 22) 
completed scenario C. The procedure was the same as for 
scenario A, other than the varying time and material 
constraints. Participants completed three attempts for their 
second scenario and then three attempts for their final 
scenario. They were not provided with feedback at any point 
during their nine attempts. Afterwards, they completed a 
questionnaire asking about their strategies and their 
perception of the difficulty of each scenario. Finally, 
participants completed a short demographics form and were 
debriefed. The study lasted approximately 45 minutes.  

Results 

Data Scoring and Strategy Coding 
We first coded whether or not (1 or 0) each participant found 
the optimal solution on each of their nine attempts. We scored 
each attempt on scenario C in greater detail by also 
computing the total benefit of the constructed towers (i.e., 
with reference to Figure 1). Possible scores for scenario C 
ranged from 0 to 540. An independent coder repeated this 
process to ensure accuracy; agreement was 100%.  
    We also coded the responses to the strategy questionnaire 
for data on scenario difficulty and participants’ strategies. For 
scenario C, the first author performed an initial coding of 
each participant’s strategies. A review of these 45 responses 
led to the identification of three strategy progressions toward 
the optimal solution: (1) offload with prospective planning 
by checking their math before their first attempt, (2) offload 
with retrospective planning by checking their math after the 
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first attempt, and (3) offload with concurrent planning by 
laying out the blocks into patterns before building. One of 
these three was assigned to each response based on the 
primary strategy the participant reported using. If none of 
these strategies were used, a 0 was assigned. Two 
independent raters coded the same 45 responses using a 
coding key developed by the first author. Overall agreement 
between all three coders was 82.4% and disagreements were 
resolved via discussion. 

Optimal Performance Under Time and Material 
Constraints 
Optimality of Performance by Scenario and Attempt The 
first and second research questions concerned optimality of 
human problem solving. The first asked whether optimality 
decreases as the number of constraints increases. The second 
asked if people learn to perform more optimally across 
successive attempts on a scenario. Again, performance was 
defined as whether or not a participant found the optimal 
solution for a given attempt. Average performance on the task 
was 5.3 out of 9 attempts solved (SD = 2.0).   

To address the first research question, we conducted a one-
way repeated measures ANOVA with factor scenario (A, B, 
C) and with dependent variable the number of optimal 
solutions across the three attempts. There was a main effect 
of scenario (F(2, 88) = 6.70, p = .002, η2 = 0.13). A series of 
post hoc paired t-tests revealed that participants produced 
more optimal solutions on scenario A (M = 2.1, SD = 1.9) 
than scenario C (M = 1.3, SD = 1.0) (t(44) = 3.83, p = .001, d 
= 0.72), and on scenario B (M = 1.9, SD = 1.0) than scenario 
C (t(44) = 2.59, p = .039, d = 0.52); see Figure 2. Performance 
on scenarios A and B was comparable (p = .911). 

 
Figure 2. Proportion of participants finding the optimal 
solution by scenario and attempt. Error bars are SEs. 

 
We addressed the second research question using a parallel 

one-way repeated measures ANOVA with factor attempt (1, 
2, 3) and with dependent variable the number of optimal 
solutions across the three scenarios. The prediction was that 
optimality would increase across the three attempts. This was 
in fact the case. There was a main effect of attempt (F(2, 88) 
= 4.31, p = .016, η2 = 0.09). A series of post hoc paired t-tests 

revealed that participants produced more optimal solutions 
on the third attempt (M = 2.0, SD = 0.8) compared to the first 
attempt (M = 1.6, SD = 0.8) (t(44) = 2.80, p = .023, d = 0.49). 
Performance on the second attempt (M = 1.8, SD = 0.9) was 
comparable to performance on both the first attempt (p = 
.896) and the third attempt (p = .078). 

Closer inspection of Figure 2 revealed that performance on 
scenario A remained relatively constant across its three 
attempts. This aligns with its intended design to be the easiest 
of the three scenarios. Scenario B performance tended to 
increase over its three attempts. This was designed to be the 
scenario of moderate difficulty, given that it imposed only a 
temporal constraint. Nevertheless, scenarios A and B had the 
same number of people who found the optimal solution on 
the third attempt. Scenario C was designed to be the most 
difficult given its material constraint. Like scenario B, 
performance increased over its three attempts, but it had the 
lowest overall performance. This supports our prediction that 
increasing constraints results in fewer people finding the 
optimal solution.  

 
Effects of Offloading on Optimal Performance The third 

research question asked whether people who chose to offload 
during problem solving (i.e., use paper, pen, and markers) 
performed more optimally than those who did not. We 
predicted that there would be a positive effect of offloading. 
Surprisingly, there was not. An independent samples t-test 
revealed that performance on scenario A was comparable for 
participants who chose to offload versus those who didn’t (p 
= .274). The same was true for scenario B (p = .449) and 
scenario C (p = .911); see Figure 3. 

 
Figure 3. Average number of optimal attempts for each 

scenario, grouped by use of offloading. Error bars are SEs. 
 

    We were surprised by these results as they are inconsistent 
with some prior studies (Risko & Gilbert, 2016). Still, recall 
Zahner and Corter (2010) found lower performers tended to 
rely on the resources of the external environment more than 
higher performers. These mixed findings across studies 
prompted further examination of the specific types of 
offloading participants engaged in on scenario C; see section 
Scenario C: Optimal Strategy Progressions. 
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Figure 4. Correlation between difficulty rating and the number of optimal attempts for scenario A (left), B (middle), and C 
(right). Note that the jitter plot spatially separates the points around each coordinate for ease of interpretation. 

 

Difficulty Ratings and Optimal Performance 
The fourth research question asked whether people’s 
metacognitive rating of the difficulty of a scenario is 
associated with the optimality of the solutions they generated. 
A one-way repeated measures ANOVA with factor scenario 
(A, B, C) on participants’ difficulty ratings revealed a main 
effect of scenario (F(2, 88) = 29.79, p  < .001, η2 = 0.41). A 
series of post-hoc paired t-tests found that, as expected, 
participants rated the difficulty of scenario A (M = 3.2, SD = 
2.1) as lower (i.e., less difficult) than both scenario B (M = 
4.7, SD =.8) (t(44) = 4.10, p = < .001, d = 0.62) and scenario 
C (M = 6.1, SD = 1.8) (t(44) = 7.27, p < .001, d = 1.10). 
Scenario B was also rated as less difficult than scenario C 
(t(44) = 3.86, p < .001, d = 0.58). These results corroborate 
our design goal of making scenario C the most difficult one. 

Next, we investigated the relationship between difficulty 
rating and performance (i.e., number of optimal solutions 
across the three attempts separately for each scenario). A 
correlational analysis revealed the expected significant 
negative relationship between difficulty ratings and number 
of optimal solutions on scenario A (r = -.63, p< .001) and on 
scenario B (r = -.31, p < .001), but not for scenario C (r = .12, 
p = .492); see Figure 4. 

Scenario C: Strategy Progressions 
The final set of analyses addressed the fifth research question: 
Across successive attempts on the most difficult scenario, C, 
do people exhibit different strategy progressions toward the 
optimal solutions? 

In total, 33 of the 45 participants found the optimal solution 
of 540 on at least one of their three attempts; see Figure 5. 

(Recall that two different tower configurations achieved that 
score.) Of these 33 participants, 27 of them found the optimal 
solution in a monotonic manner. The first group (N = 3) found 
an optimal solution on attempts 1 and 3, the second group (N 
= 11) found an optimal solution on attempts 2 and 3, and the 
third group (N = 7) found an optimal solution on attempt 3. 
A fourth group (N = 6) found an optimal solution on all three 
attempts. The remaining of the 33 participants (N = 6) 
behaved in a non-monotonic manner: They found an optimal 
solution on either attempt 1 or 2 but not on attempt 3.  

The first three groups are shown in black in Figure 5. 
Interestingly, they all used specific forms of offloading to 
find the optimal solution. These 21 participants were thus 
assigned to one of three strategy progressions. 

Participants (N = 3) who used Retrospective Planning and 
participants (N = 11) who used Prospective Planning found 
the optimal solution on two of the three attempts. Participants 
in each of these groups adapted their strategies, using either 
prospective or retrospective planning to check their math. 
Participants did this by looking at the sheet containing the 
tower benefits while using the provided pen and paper to try 
to find the optimal solution. Those who used prospective 
planning tended to mathematically calculate the optimal 
solution before building their towers (i.e., during the first 
attempt). Those who used retrospective planning tended to 
calculate the value of the towers they had already built, to 
determine their net benefit. They tended to do this after their 
first attempt. For both of these groups, their allocation of 
scarce resources (i.e., the time they spend checking their 
math) likely took up time where they would have otherwise 
been building towers, resulting in the two optimal attempts.  

Figure 5. All progressions toward the scenario C optimal solution. The first three are strategy progressions. 
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The third group (N = 7) found the optimal solution only 
once. Unlike the first two groups, these participants adapted 
their strategy by offloading with materials besides pen, 
markers, or paper. Instead, they laid out the blocks on the 
table in front of them before building the towers. Consistent 
with Tversky’s (2011) proposal, this may have helped 
participants visualize their tower combinations before 
building, since a tower could not be disassembled once it was 
built. We termed this Concurrent Planning since this strategy 
progression spanned all three attempts.  

The final two groups in Figure 5 did not utilize the three 
strategy progressions during their three attempts. The fourth 
group of participants (N = 6) found the optimal solution on 
all three attempts, without the use of offloading. This is 
consistent with Zahner and Corter’s (2010) finding that 
higher performers relied on external resources less than their 
lower performing counterparts.  

Discussion 
The goal of the current study was to investigate optimal 
problem solving under time and material constraints. The 
novel task developed for this study was inspired by theories 
of bounded rationality (Simon, 1955) and how optimization 
costs impact human problem solving (Conlisk, 1988).  

For each scenario, participants faced varying constraints 
with the goal of finding the optimal solution. The results 
showed that they found the optimal solution most often on 
scenario A, which was rated as the least difficult scenario. 
They found the optimal solution least frequently on scenario 
C, which was rated as the most difficult scenario. 
Surprisingly, use of general offloading did not help 
participants find the optimal solution. The correlations 
between the number of optimal solutions found and perceived 
difficulty ratings were significant for scenarios A and B, but 
not scenario C. We further investigated scenario C using 
participants’ responses on the strategy questionnaire. We 
documented three adaptive strategy progressions for those 
who found the optimal solution on scenario C: Prospective 
Planning, Concurrent Planning, and Retrospective Planning. 
These terms were used because each type of planning 
occurred at a clear timepoint during the scenario. Participants 
planned either prospectively (i.e., during attempt one), 
concurrently (i.e., throughout the scenario) or retrospectively 
(i.e., after attempt one).  

These strategies are dynamic in that they were used at 
different time points over the course of the scenario. This is 
unlike general offloading (Risko & Gilbert, 2016) which is 
typically described as static. In most of these problem solving 
environments, participants have one attempt to find a 
solution, and thus one opportunity to use offloading. In 
contrast, the problem solving environment used in the current 
study allowed participants three attempts per scenario. Thus, 
participants could learn from prior attempts and adjust their 
plan on successive attempts to find the optimal solution. 
Those who used one of the three strategy progressions 
described how their strategy changed over the three scenario 
C attempts. Importantly, this was often in response to their 

increasing understanding of the task environment and its 
constraints.  

Here, we propose that optimality may be better understood 
as a trend over time, and thus best investigated in studies that 
allow multiple attempts. Maximization (Smith, 1982) is used 
when the constraints are known and constant. The problem 
solver is assumed to have unbounded computational power, 
ensuring finding the solution with the highest net benefit.  
Satisficing (Simon, 1955) recognizes the bounds of human 
computational power. The problem solver stops their search 
once they meet a predefined threshold. Studies with goals of 
maximizing or satisficing tend to allow participants only one 
attempt to find a solution. The current study reveals that 
success at finding an optimal solution may be associated with 
experience with a task environment. Importantly, 
understanding of the most complex scenario improved over 
successive attempts, resulting in more participants finding the 
optimal solution on attempt three than attempt two, and on 
attempt two than attempt one; see Figure 2. Thus, 
investigations of optimal problem solving under constraints 
may be better suited for multi-attempt task environments. 
This might also promote research into adaptive use of 
strategies by examining how they change over time.   

We close with a puzzle about offloading. Consistent with 
Risko and Gilbert (2016), we predicted that offloading would 
aid participants in finding the optimal solution by distributing 
their internal cognitive computations into the external 
environment. This supports Simon’s (1955) proposal that 
human problem solving is bounded, both internally by 
computational limitations and externally by experience with 
the task environment. However, our study revealed that those 
who chose not to offload tended to outperform those who 
chose to offload; recall Figure 3. Furthermore, in scenario C, 
the most difficult scenario, none of the six participants who 
found the optimal solution on every attempt engaged in 
offloading. Nor did they did not use any of the provided 
materials during any attempt. This finding challenges 
Simon’s theory of bounded rationality. It raises the question 
of whether enough experience with a task environment can 
result in humans no longer being bound by that 
environment’s constraints. If this is true, offloading could 
potentially harm these individuals in terms of the time and 
effort it takes to utilize the external environment while 
problem solving (recall Zahner & Corter, 2010). 

Future studies should further address this proposal using 
multi-attempt studies where each attempt has identical 
constraints. This research program could corroborate whether 
people are able to find the optimal solution more successfully 
over time (i.e., multiple attempts) and provide additional 
evidence that expertise with certain task environments might 
enable the human problem solver to find optimal solutions 
without the use of offloading.  
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