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ABSTRACT 

Energy consumption in office buildings highly depends on occupant energy-use behaviors and            

intervening these behaviors could function as a cost-effective approach to enhance energy            

savings. Current behavior-intervention techniques extensively rely on occupant-specific        

energy-use information at the workstation level and often ignore shared appliances. It is             

because an occupant typically has full responsibility for her workstation appliances energy            

consumption and shares the responsibility of the shared appliances energy consumption.           

However, understanding energy-use behavior of both workstation and shared appliances is           

necessary for applying appropriate behavior-intervention techniques. Despite this importance,         

there is still no practical and scalable method to capture personalized energy-use information             

of workstation and shared appliances since the conventional methods use plug-in power            

meters that are extremely expensive and difficult to maintain over long period of time. To               

address this gap, we propose a comprehensive occupant-level energy-usage approach which           

utilizes the data from the internet of things devices in office buildings to provide information               

related to energy-use behavior of workstation and shared appliances of each occupant in an              

economical and feasible manner. In particular, we introduce an energy behavior index which             

quantitatively compares individual occupants’ energy-consuming data to identify high energy          

consumers and inefficient behaviors. Results from an experiment conducted in an office            

building equipped with internet of things devices demonstrate the feasibility of the proposed             

approach to classify occupants to different energy-usage categories. Our proposed approach           

along with appropriate behavior-intervention techniques could be used to impact occupant           

energy-use behaviors. 

 

 

Keywords 

Office buildings; Energy-use behavior; Energy Efficiency; Energy Intensity; Internet of things.  

 

Journal of Building Engineering​, January 2020, Vol. 27          ​  2   ​https://doi.org/10.1016/j.jobe.2019.10094 
       ​             ​https://escholarship.org/uc/item/07v2s2xm 

  

https://doi.org/10.1016/j.jobe.2019.100948
https://escholarship.org/uc/item/07v2s2xm


1. Introduction 

Office buildings are the largest subsector of commercial buildings and they are currently account                           

for more than 15% of energy usage in the United States [1,2]. ​While the energy efficiency of                             

building physical systems (e.g., HVAC&R, lighting, and water heating) has substantially been            

improved through technological advancements, energy savings through more energy-conscious         

behaviors are often ignored ​[3,4]​. Adopting energy-saving behaviors among occupants is widely            

accepted as one of the most economical and feasible approaches to reduce the energy              

consumption of office buildings ​[5–12]​. If occupants are educated to adopt appropriate            

energy-saving behaviors and practice such behaviors, it provides an opportunity for energy            

savings within all built environments ​[13]​. 

Current behavior intervention techniques typically collect data from individual         

workstations in an office building to understand personalized energy-use behaviors at the            

workstation level. However, compared to workstation appliances (e.g., personal computers)          

which typically account for up to 10% of total energy consumption in an office building ​[13,14]​,                

shared appliances such as HVAC systems and ceiling lights consume a significantly bigger             

portion of the energy ​[15]​; more than 38% and 25% of office buildings’ total energy               

consumption is typically consumed by HVAC and lighting systems, respectively ​[1,16–19]​. Thus,            

in order to impact occupant behaviors of shared appliances, energy–use behaviors of such             

appliances should be identified. In fact, without understanding comprehensive energy-use          

behaviors of occupants (i.e., energy usage of personal and shared appliances), there is a high               

possibility that behaviors are inappropriately interpreted and thereby modified incorrectly.          

However, the impact of occupants on shared appliances is relatively unexplored ​[20]​.  

Utilizing additional sensors (e.g., plug-in meters) to collect energy-use information of           

personal and shared appliances is foreseeably a costly and difficult data collection procedure             

[13,21]​. On the other hand, building/zone level energy data provided by existing metering             

devices includes information about the energy consumption of all appliances and systems            

[22–29] but since such devices typically provide low-temporal-resolution trend data, it is often             

difficult to directly associate their energy usage with individual occupants. In addition, such             

trend data could incorporate round-off errors during data analysis ​[5]​. On the other hand,              
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building-level commercial off-the-shelf (COTS) internet-enabled electric meters (as a hardware          

system of the internet of things -IoT ​[30,31]​) provide high-temporal-resolution energy data in             

real-time which could be utilized for understanding comprehensive energy-use actions of           

individual occupants. However, despite the advancement of such metering devices, there is still             

a gap in terms of the approach for associating individual occupants with such high-resolution              

energy-use data.  

In response, we propose a novel cost-effective and feasible approach, comprehensive           

occupant-level energy-usage (COLE), which utilizes the data of IoT devices to identify            

energy-related behaviors of workstation and shared appliances in office environments. The           

approach uses occupancy data provided by existing Wi-Fi networks (as the major subset of IoT               

hardware systems ​[30,32–34]​) to detect the first and last occupants in a daily working schedule.               

Then, the approach correlates the building-wide load data (provided by COTS internet-enabled            

meters) with the occupants’ entry and departure events to provide occupant-specific           

energy-consuming data. In particular, an energy-use behavior index (EBI) is introduced to            

quantitatively compare individual occupants’ energy consumption to identify high-energy         

consumers and inefficient behaviors. As the major contribution, this study benefits the            

conventional behavior-intervention efforts (which rely on workstation-level energy usage)         

through providing comprehensive energy-use behaviors of individual occupants.  

 

2. Related Work 

2.1. Behavior intervention in office buildings 

The vast majority of research on occupant energy-use behaviors has focused on intervening                         

energy-use behaviors to influence energy consumption in office ​buildings ​[13,35–43]​.                  

U​nderstanding energy-use behaviors requires occupant energy-use data which is a key element in                         

such studies to ascertain using an appropriate intervention technique. Depending on data sensing                         

approaches for collecting energy-use data, conventional intervention techniques could be divided                     

into two groups.  
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The first group includes studies that use additional newly-installed sensors (e.g., plug-in                       

meters) to collect personalized energy-use information at the workstation level. Gulbinas et al.                         

[44] collected energy-use data of individual occupants in a six-story commercial building                       

through plug-in sensors. Coleman et al. [42] utilized individual data loggers to collect consuming                           

information of individual occupants in offices. Likewise, Yun et al. [45] and Rafsanjani et al.                             

[46] tracked individual occupants’ energy usage in a university office. The individualized                       

energy-use data of such studies only allows to ​understand personalized energy-use behaviors at                     

the workstation level ​and no information regarding shared appliances is usually provided. In                      

addition, the cost and installation difficulty of deploying plug-in sensors negatively impact                       

large-scale implementation of such intervention methods. 

The second group of studies uses building/zone level energy consumption to calculate the                         

overall improvement achieved through an intervention techniqu​e. Staats et al. ​[47] provided                  

feedback to the occupants of a university building and achieved 6% reduction in total energy               

consumption. The behavior-modification study conducted by Carrico and Reimer ​[48] on           

twenty four office buildings showed an average reduction of 7% in the building energy              

consumption. Since the building-wide load data provides information of all appliances/systems           

of a building, such studies’ results could not directly represent the changes in the behavior of                

each occupant at workstation (personal) and non-workstation (shared) levels. Therefore, there           

is still a gap in a cost-effective method to provide the comprehensive energy-use information of               

each occupant in an office building. 

 

2.2. Non-intrusive occupant energy-use monitoring  

To address the data-sensing limitations associated with the conventional behavior-​intervention          

techniques (Section 2.1.), researchers has recently started to develop non-intrusive load                     

monitoring (NILM) techniques to deliver granular occupants’ usage information. NILM has                     

been utilized for more than two decades to utilize building-wide energy consumption for                         

monitoring energy-usage of individual appliances ​[28,49–53] and recently, through adding                   

occupancy information to conventional NILM approaches, the NILM concept has been extended                       

from individual appliances to individual occupants. In ​residential buildings, Shahriar et al. ​[54]                    
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used motion sensors for identifying residents’ presence and determined HVAC usage associated            

with occupancy presence. Likewise, Yoo et al. ​[55] and Paradiso et al. ​[56] linked occupancy               

information of residential settings with building energy usage to identify in-use appliances and             

correlate their usage with occupancy presence. In commercial buildings, Rafsanjani et al. ​[57]             

developed NILM-based methods to identify individual occupants’ energy-usage of workstation          

appliances usually utilized in office buildings. Despite the contribution made by these efforts to              

utilize NILM in tracking occupants’ usage, they are (1) mainly limited to residential buildings, (2)               

do not directly provide the information (such as energy-use efficiency) required for intervention             

techniques, and (3) do not provide occupant-specific usage of shared appliances.  

 

2.3. IoT-based occupant energy-use monitoring 

Recent technological advances in internet-enabled sensors/devices, electric circuits, and         

wireless communication provide the possibility of IoT implementation in every web-based           

environment including residential, commercial, and industrial settings ​[58–61]​. IoT utilizes          

low-cost COTS sensors to enable physical things to record/generate high-resolution real-time           

data on the internet ​[32,33]​. With regards to the occupants’ actions/usage, a growing number             

of recent studies have developed IoT-based approaches for sensing occupancy in the built             

environments. Jeon et al. ​[62] utilized particulate matter concentration and a point extraction             

algorithm to propose an IoT-based occupancy detection method in residential environments.           

Zou et al ​[63] developed a device free occupancy detection and crowd counting approach using               

Wi-Fi enabled IoT devices in commercial building. In addition, they ​[64] utilized such IoT devices               

to develop an occupant activity recognition approach for the commercial buildings. In the terms              

of occupant energy-usage, Fotopoulou et al. ​[31] proposed an energy-aware ecosystem which            

can support the development of IoT-based personalized energy management systems in           

commercial buildings. Rafsanjani and Ghahramani ​[65] demonstrated that how IoT          

infrastructure information displays occupants’ energy-use patterns in commercial buildings.         

Despite the efforts of such studies, there is still much research to be done to understand the                 

full potential of occupancy-related IoT applications. Specifically, the current research lakes to            

provide personalized energy-use information.  
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2.4. Occupant energy-use behavior at entry and departure events 

Previous studies ​[46,66–70] revealed that within office buildings, major energy-use actions           

typically occur at entry and departure events (i.e., start and end of working schedules). A               

building occupant usually stop by her workstation after entering to the building, and start              

consuming energy by changing the power status of her personal appliances (e.g., turn personal              

computer on). These appliances are then in-use during working hours and she turns those off               

before leaving the building (i.e., departure events). In addition, when she enters to the building               

as the first person or departure from the building as the last person, there is a possibility that                  

she controls over shared appliances (specifically HVAC systems, fans, or/and ceiling lights)            

besides her personal appliances ​[46]​. It is thereby expected that the ​energy-load changes             

observed in building-level energy data upon her entry/departure events as the first/last person,             

resulted from her energy-consuming behaviors.  

Accordingly, assessing the building-wide load data at such entry/departure events could           

present an opportunity to understand an occupant’s energy behavior of personal and shared             

appliances. Chen and Ahn ​[5] correlated the occupancy data of entry/departure events with             

building energy consumption and suggested that it is possible to identify the energy data of a                

single occupant from building-wide data. Rafsanjani et al. ​[57] demonstrated how personalized            

data at a workstation level could be extracted from building-wide data at entry/departure             

events. Despite such interesting studies, we still lack research in a method which could identify               

comprehensive energy usage at entry/departure events. This lake has mainly been resulted            

from low-temporal-resolution trend data (provided by conventional metering devices) which          

does not allow to properly associate the building energy usage with individual occupants. On              

the other hand, building-level COTS internet-enabled metering devices provide         

high-temporal-resolution energy data in real-time which can address the gap, but it has not              

been well addressed in the literature.  

In response, we propose the COLE approach which economically provide personalized            

energy-use behavior data through existing/COTS IoT devices of office buildings. In this            

approach, a building’s Wi-Fi networks (as an existing IoT device) identify the entry/departure             
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events and COTS internet-enabled building-level energy meters provide the building energy           

consumption. In addition, the approach uses the energy behavior index (EBI), for interpreting             

and comparing individual occupants’ data in a quantitative manner to classify occupants to (1)              

high, medium, and low energy consumer categories based on their energy-use intensity and (2)              

efficient and inefficient behaviors based on their energy-use efficiency. An experiment           

conducted in an office building equipped with the IoT devices demonstrates the COLE feasibility              

for associating the data of the devices to classify building occupants. The following sections              

provide the detailed information of the approach, EBI, experiment, and results.  

 

3. Comprehensive Occupant-Level Energy-Usage (COLE) Approach 

The COLE approach consists of three major steps: (1) detecting first entry and last departure                             

events in daily working schedule, (2) correlating building load data with the events, (3)                           

normalizing the correlated load data to identify personalized energy usage. Figure 1                       

demonstrates the framework of the approach.  
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Figure 1. ​Comprehensive occupant-level energy-usage (COLE) ​framework 

 

 

3.1. Detecting first entry and last departure events in daily working schedule 

In the first step, ​COLE uses ​occupancy data collected from existing Wi-Fi networks of a building                  

to identify who entered to the building as the first occupant as well as who left the building as                   

the last occupant. The major difficulty in detecting the entry/departure events of individual             

occupants in office buildings arises from overlapping of multiple events at the beginning/end of              

working days​. Given that, the resolution of occupancy detection is very important to properly              
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identify the events of an occupant of interest. In recent years, due to widely utilizing of                

Wi-Fi-enabled devices by occupants, Wi-Fi systems have predominately been utilized as a            

relatively new and cheap tool for occupancy detections in office buildings ​[71–79]​. Wi-Fi-based             

occupancy sensing utilizes MAC addresses of mobile devices to differentiate between building            

occupants which determines occupancy presence with a high level of accuracy even in a              

large-sized building ​[80,81]​. ​Thus, ​COLE utilizes ​a Wi-Fi based occupancy sensing             

methodology, where the entry/departure events of building occupants are detected based on            

passively tracking the Wi-Fi packets of the occupants’ smartphones. Then, this information            

identifies the first entry and last departure events and accordingly the first and last occupants               

in a daily working schedule.  

 

3.2. Correlating building energy load data with the events 

In the second step, COLE collects the building load data through internet-enabled COTS                         

metering devices of the building. Then, a time window captures the load data correlated with the                               

events of the first and last occupants in each day. For this reason, the load data before and after                                     

each event is captured and energy-load changes are identified. Comparing the energy-load                       

changes before and after an event could determines an occupant’s actions at the event. The size                               

of time window (​T ​SIZE​) which captures load data before and after of each event, is empirically                               

determined for a building.  

 

3.3. Normalizing the correlated load data 

To compare the behaviors of different building occupants and identify efficient and inefficient                         

behaviors, normalized energy-load data is generally utilized [20,66] . In this context, the                         

minimum and maximum values among all the correlated energy-load changes at the events of the                             

occupants of the building (where they are the first/last persons) are utilized for the normalization                             

process.  

Figure 2(a) shows an example of normalized energy-load data correlated with an                       

occupant’s events when he/she is the first/last person in a building; the data for the figure was                                 

collected during a preliminary experiment conducted by the research team over two weeks in a                             
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small office space with three occupants. In Figure 2(a), the box plots represent the range of                               

energy-load changes at the events. In addition, the horizontal axis shows four segments at his/her                             

entry/departure events; ​T​SIZE determines the size of each segment. The vertical axis also displays                           

the normalized energy-load changes; 0 and 1 on the vertical axis represent the minimum and                             

maximum values of energy-load changes correlated with the events of the three occupants,                         

respectively. In addition, the mean line on this axis shows the arithmetic mean of the normalized                               

data of the three occupants for when the office was occupied (i.e., Segment 2 and 3).  

It is noteworthy that as Figure 2(a) shows, only the absolute magnitudes of the                           

energy-load changes at the events are considered, regardless of they were positive (load                         

increases) or negative (load decreases). In other words, considering the fact that                       

occupancy-related load increases and decreases predominantly occurs at the beginning and end                       

of working days, respectively [46,82], we only focused on the magnitude of energy-load                         

changes. Figure 2(b) shows the distribution of data for the segments presented in Figure 2(a).  
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Figure 2. ​Example of normalized energy-load changes correlated with an occupant’s entry and 

departure events in two weeks: (a) box-plots of the data, (b) distribution of the data 

 

3.3.1. Energy Behavior Index (EBI) 

The EBI is defined as the perpendicular distance between the center of a distribution [83] and the                                 

mean line. Figure 3, as an example, shows the EBI for Segment 3 and 4 of the data presented in                                       

Figure 2(b); the plus and minus signs of the EBIs represent the position of the center of the                                   

distribution with reference to the mean line. Since the mean line shows the average value of                               

normalized energy-load changes of all the occupants at the events for when office is occupied                             
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(i.e., Segment 2 and 3), the EBI particularly allows to compare the data of an occupant with her                                   

peers’ data in a quantitative manner.  

 

 

Figure 3. ​Energy behavior index (EBI) for Segment 3 and 4 of data presented in Figure 2(b) 

 

 

Several energy-use behavior metrics (e.g., energy-use intensity, energy-use entropy, and                   

energy-use efficiency) [66,67,84–91] have been introduced to classify building occupants to                     

different categories such as low and high energy consumers; however, the literature lacks to                           

provide a metric for interpreting the behaviors occurring at the entry/departure events. In                         

response, COLE uses EBI to segment and classify building occupants based on their energy-use                           

intensity and energy-use efficiency at these events. Since energy-consuming data represents                     

energy-use intensity [66,67,84] and since EBI is constructed based on energy-consuming data                       

(see Figure 2), EBI directly displays energy-use intensity. In addition, considering the fact that                           

comparing individual occupant’s energy-load data correlated with the entry events (or departure                       

events) determines occupants’ energy use efficiency [3,46,92], EBI quantitatively compares the                     

load data before/after an event to assess the energy-use efficiency of occupants compared to her                             

peers. For this reason, we define a compiled EBI as the absolute value of horizontal distance                               

between the centers of the distributions of the entry events (or the departure event) when the                               

distributions overlay each other. Figure 4 displays the compiled EBI for the data presented in                             

Figure 3. It is noteworthy that due to the plus and minus signs of EBIs, the complied EBI of the                                       
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departure events is estimated by subtracting the EBI of Segment 4 from that of Segment 3.                               

Accordingly, for the entry events, the subtracting the EBI of Segment 1 from that of Segment 2.                                 

Figure 5 presents the pseudocode of the normalization process and estimation of EBI and                           

compiled EBI. 

 

 

Figure 4. ​Compiled EBI for data presented in Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nput ECi :   
Journal of Building Engineering​, January 2020, Vol. 27          ​  14   ​https://doi.org/10.1016/j.jobe.2019.10094 

       ​             ​https://escholarship.org/uc/item/07v2s2xm 

  

https://doi.org/10.1016/j.jobe.2019.100948
https://escholarship.org/uc/item/07v2s2xm


,    ,   ,romalized.EC ← ∅  n enter ← ∅  C BI  ← ∅  E   

,    ntry.compiledEBI← ∅  e eparture.compiledEBI← ∅  d  
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; ; ax.value ←maximum (EC )m ji ∈  j {1, , 3, }2  4 ∈   i {1, , …, n}2     
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romalized.EC  ←(EC in.value)/(max.value in.value)n ji ji − m − m  
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←center fCenterji (ji)  
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←(EBI EBI )  entry. compiledEBI i 2i −  1i  

←(EBI EBI )  departure. compiledEBI i 3i −  4i  
nd for  e  
nd function  e  
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 set of  energy.load changes for segment j of  occupant i          O ccupant i          S egment j EC ji : a i : o j : s  
normalized.EC  set of  normalized energy.load changes for segment j of  occupant i    ji : a  

 
Figure 5. ​Pseudocode of normalization process  

 

To demonstrate the feasibility of the proposed approach, we selected an office building                         

equipped with IoT devices to present the approach process and to explain how the approach                             

results could lead to classifying occupants to various categories based on their energy-use                         

intensity and efficiency. The following sections describe the experiment and results and discuss                         

how the results identify the energy usage of individual occupants.  

 

4. Experiment  

4.1. Test bed  

To illustrate the COLE functionality, an experiment was designed and conducted in an office                           

building during a six-week period in Summer 2018. Figure 6 presents the floor plan of the                               

building. Within the building, there were ten single-occupant workstations, one director room,                       

one meeting room, one copy/storage room, one kitchen, and one mechanical room. Each                         
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workstation included one desktop computer which was similar to the computers of other                         

workstations. In addition, there were several shared appliances including a variable air volume                         

(VAV) system, ceiling lights, fans, scanners, printers, coffee makers, a refrigerator, and a                         

microwave. All appliances within the building (except the VAV system) were manual switching                         

which allowed building occupants to control over a variety of end-users. In particular, the celling                             

lights of the main space (where the workstations were located) were on four separate circuits                             

with four separate switches. Also, two levels of brightness were set for all the ceiling lights of                                 

the building.   

In addition, the total number of occupants was ten in the building over the experiment                               

and they agreed to participate in this study. Due to the similarity of the workstation and shared                                 

appliances controlled over by occupants at the building, approximately similar energy-use data                       

might have expected at entry events as well as departure events.  

 

 

Figure 6. ​Floor plan of the office building  
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4.2. IoT devices and data collection 

Building-wide energy-load data with one-second interval resolution was collected by the                     

building meter. The building was renovated in 2018 and during the renovation, an advanced                           

internet-enabled meter was installed inside the main electrical panel of the building (see Figure                           

6) which covered all circuits, outlets, systems, and appliances of the building. The meter,                           

“TEDPro”, was designed for three-phase electrical service and commercially certified to provide                       

data within ​ ​± ​ ​1% of displayed value; the meter sampling rate was 1024 KHz. In addition, the                             

meter included two separate internet-enabled parts: one measuring transmitting unit and one                       

energy control center. Figure 7 shows the measuring transmitting unit which was installed inside                           

the electrical panel. This unit acted as a data logger and collected energy-load data in real-time                               

and sent the data through the building network to the energy control center installed at the                               

director room. The collected energy-load data included active power (kW), voltage (V), and cost                           

at one-second interval resolution.  

 

 

 

Figure 7. ​Measuring transmitting unit  

 

 

The energy control center received the data through the building network and a footprint                           

software [93] embedded in the energy control center was set to deliver the real-time load data to                                 

the desktop computer of the director of the building. This allowed the director to monitor the                               
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usage as well as to save the data on his/her desktop computer as CSV files. The director shared                                   

the CSV files with us.  

To collect Wi-Fi data, we used the data provided by the ​ceiling-mounted Wi-Fi access                         

point of the office building (see Figure 6). The access point supported IEEE 802.11 standard and                

recorded transmitted packets of Wi-Fi enabled devices at ​one-second interval resolution.             

Similar to the smart meter, the director was able to save daily data of the access point on his/her                                     

computer as CSV files (one file per day) and thereby, shared the data with us.  

 

4.3. Data analysis 

The data analysis process began by checking the accuracy of the energy-load data where we used                               

the voltage (V) information and a Kalman method [94] to identify and filter the noise. Then, we                                 

analyzed the active power (kW) information of the events, while focusing on the entry/departure                           

events. In this context, based on the collected energy-load and occupancy data as well as the                               

building director’s suggestion, we selected 30-min time intervals at the beginning and end of                           

each daily working schedule for data analysis step. In other words, the working hours of the                               

building were 9:00 a.m.-6:00 p.m. and we used the data in 8:45-9:15 a.m. and 5:45-6:15 p.m.                               

intervals for the data analysis.  

Accordingly, the Wi-Fi data of the 30-min intervals was checked and ten MAC addresses                           

which usually displayed in daily data was selected as the MAC addresses of the ten human                               

subjects of this study. It is worth mentioning that due to the privacy concern, we did not ask the                                     

occupants to share the MAC addresses of their smartphones with us, and did not collect                             

ground-truth occupancy data. However, before the experiment, we conducted a survey which                       

revealed that the occupants usually carried their smartphones every day and used the building                           

wireless network while working. The occupants also mentioned that they used other Wi-Fi                         

enabled devices (e.g. laptops) less often than their smartphones. Accordingly, we considered the                         

ten MAC addresses usually displayed in the Wi-Fi data with highest number of occurrences as                             

the addresses of the occupants’ smartphones and randomly assigned one of the MAC addresses                           

to one of the occupants; this allowed us to protect the occupants’ privacy.   
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Finally, the first connection of a day (in the 8:45-9:15 a.m. interval) among the MAC                             

addresses was identified and energy-load data was correlated to this event. Similarly, the last                           

connection of a day in the 5:45-6:15 p.m. interval was identified and load data was correlated to                                 

the event. Accordingly, this process was checked for all the working days during the experiment.                             

In addition, based on the data, building, and information/recommendations received from the                       

director of the building, ​T ​SIZE was empirically set on 210 seconds for the entry and departure                               

events of all the occupants in this study.   

 

5. Results and Discussion 

5.1. EBI results 

Table 1 lists the EBIs of the occupants. As the table shows, there was no data for the entry events                                       

of Occupant 7 which means this occupant never entered to the building as the first person during                                 

the experiment. Likewise, Occupant 3 and 10 never left the buildings as the last person during                               

the experiment.   

 

Table 1. ​Energy Behavior Index (EBI) for the occupants of the building 

Occupant 

EBI 

Entry Events  Departure Events 

Segment 1  Segment 2  Segment 3  Segment 4 

1  -0.153  0.011  -0.009  -0.093 

2  -0.153  0.046  0.126  -0.149 

3  -0.153  0.027  NA​**  NA​** 

4  -0.153  0.033  0.082  -0.123 

5  -0.153  0.093  0.108  -0.111 

6  -0.153  0.043  0.058  -0.077 

7  NA​*  NA​*  0.041  -0.056 

8  -0.153  0.035  0.037  -0.064 

9  -0.153  0.068  0.049  -0.095 

10  -0.153  0.031  NA​**  NA​** 
 

*​The occupant never entered to the building as the first person during the experiment. 

** ​The occupant never left the building as the last person during the experiment. 

Journal of Building Engineering​, January 2020, Vol. 27          ​  19   ​https://doi.org/10.1016/j.jobe.2019.10094 
       ​             ​https://escholarship.org/uc/item/07v2s2xm 

  

https://doi.org/10.1016/j.jobe.2019.100948
https://escholarship.org/uc/item/07v2s2xm


 

Table 1 demonstrates similar EBIs for Segment 1 of the occupants. These segments                         

present the energy-load changes for the unoccupied time right before the entry event of the first                               

person which means the segments present the background changes happened during night (due to                           

some in-use appliances such as the refrigerator). Since the workstation appliances (i.e., desktop                         

computers) left on by occupants typically go to sleep modes after a short time and the state of                                   

shared appliances (e.g., ceiling lights) left on at night is not typically changed during unoccupied                             

time, occupant energy actions have typically no effect on background energy-load changes right                         

before the first entry event. Therefore, the similar EBIs for Segment 1 could be expected for all                                 

occupants at a building which was also seen in our data.  

Segment 2’s EBIs represent the energy-load changes caused by the occupant who entered                         

the ​building as the first person. A larger EBI for an occupant, compared to his/her peers, might                  

suggest that he/she controlled over shared appliances more than the others. Consequently,            

Occupant ​5​ might have controlled over shared appliances more compared to the peers. 

Segment 3’s EBIs represent the energy-load changes caused by the occupant who left the                         

building as the last person. A larger EBI for an occupant, compared to his/her peers, might                               

suggest that he/she was more concerned about in-use appliances and turns in-use                       

appliances/systems off before leaving the buildings (energy-saving behaviors). Accordingly,                 

Table 1’s data could suggest that Occupant 2 followed the most efficient energy-saving behavior.  

Conversely, a smaller value of EBI of Segment 3 for an occupant might indicate that                             

he/she follows non-energy saving behavior. Table 1 shows that Occupant 1 has a very low EBI                               

compared to the peers. The minus sign of his/her EBI particularly demonstrates that the average                             

of his/her energy-load changes at departure events is lower than the average of energy-load                           

changes caused by the other occupants at entry/departure events. Consequently, it could be                         

interpreted that Occupant 1 typically followed non-energy saving behaviors over the experiment;                       

such results are significantly useful to find target occupants for behavior modification. Therefore,                         

a small value of Segment 3’s EBIs might be able to identify occupants who follow                             

non-energy-saving behaviors.  
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Segment 4’s EBIs represent the energy-load changes for the unoccupied time after                       

departure events of the last persons. The smaller values of EBI for this segment might suggest                               

that an occupant turned off all in-use appliances/system before his/her departure events (since                         

there are small energy-load changes after his/her departure events). Based on the Table 1 results,                             

it may suggest that Occupant 2 turned off all in-use appliances/systems before his/her departure                           

events. 

In addition, if the last person turns off all in-use appliances/systems, his/her energy-load                           

changes in Segment 4 could be expected to be close to those in Segment 1. Therefore,                               

approximately a similar EBI could be expected for Segment 1 and 4. Those segments’ EBIs for                               

Occupant 2 might therefore reveal how much he/she were careful to turn off in-use appliances                             

before his/her departure events. Therefore, (1) smaller values of Segment 4’s EBI and (2) the                             

similarity of EBIs of Segment 4 and 1, could demonstrate the energy efficient behaviors.  

Although the comparison between EBIs of Segment 1 and 4 could be helpful to identify                             

energy efficient/inefficient behaviors, such comparisons between the value of EBIs of Segment 2                         

and 3 could not provide valuable information. Rafsanjani et al. [46] statistically revealed that                           

office building occupants do not typically represent similar energy-load changes during occupied                       

times at entry and departure events, regardless of whether they follow energy-saving behaviors                         

or not. Therefore, comparing the EBIs of Segment 2 and 3 of an occupant could not lead to a                                     

correct interpretation regarding his/her energy-use behavior.  

 

5.2. Energy-use intensity 

Energy-use intensity generally measures the amount of energy an occupant using during working                         

hours and enables classifying building occupants to distinct categories of energy-consuming                     

levels, which are generally considered: high energy consumer (HEC) category, medium energy                       

consumer (MEC) category, and low energy consumer (LEC) category [20,67,84,89].                   

Understanding the differences between the three categories in a building depends to several                         

factors including the building type, envelope, systems, occupants’ duties, and working hours.                       

Accordingly, studies [95–99] highlighted that such categories are building-specific and thereby,                     

are needed to be determined on a case by case basis.  
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In this paper, based on our approach, case study, the current literature                       

methodologies/suggestions [20,67,84,89], and the discussion with industry professionals and the                   

building director, we finally considered a 20 percent range for HEC, 60 percent range for MEC,                               

and a 20 percent range for LEC. Figure 8 shows these categories for the occupants. Since the                                 

data of Segment 2 and 3 represent the amount of energy used/controlled by the occupants when                               

office was occupied, these segments demonstrate the energy-use intensity. In addition, since                       

there were no data for the entry events of Occupant 7 and the departure events of Occupant 3 and                                     

10 (see Table 1), no data points are provided for these events in Figure 8.   

 

 

Figure 8. ​EBI for the occupants: (a) Segment 2, (b) Segment 3 

(HEC: high energy consumers, MEC: medium energy consumers, LEC: low energy consumers) 

 

Figure 8(a) displays the energy-use intensity at entry events. Since occupants had similar                         

desktop computers at workstations, the results show that Occupant 1 controlled over the shared                           

appliances less compared to his/her peers which might suggest that this occupant did not follow                             

energy-saving behaviors regarding the shared appliances. Conversely, Occupant 5 had more                     

control over shared appliances at the entry events. Accordingly, since our approach particularly                         

investigates ​comprehensive energy-use behavior only at entry/departure events, Figure 8(a)                   

suggests that LEC and HEC at entry events indicates low and high control over shared                             
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appliances, respectively. Similarly, Figure 8(b) results in similar interpretation between                   

Occupant 1’s and 5’s behaviors (Occupant 5 controlled over shared appliances more than                         

Occupant 1).  

Several studies on energy-use behaviors at the workstation level (personal appliances)                     

[13,66,67] have indicated that energy-use intensity and accordingly, HEC, MEC, and LEC                       

categories do not necessarily reflect energy-saving and non-energy-saving behaviors but might                     

lead to other conclusions about occupants’ behaviors (such as appliance replacement/upgrade for                       

the HEC category). With this in mind, our work identifies HEC as the people who are concerned                                 

about building energy consumption. Accordingly, the identified LEC in our work could be                         

targeted for feedback prompting energy saving in office buildings.   

 

 

5.3. Energy-use efficiency 

By utilizing daily workstation-level data (collected through individual sensors), researchers                   

[66,67] have defined energy-use efficiency as a function to assess how often a person                           

unnecessarily consumes energy at her workstation. However, in this study, we used the compiled                           

EBI (see Figure 4) which we believe allowed to assess the occupant efficiency not only of                               

workstation appliances but also of shared appliances. As mentioned in Section 3.3.1., the                         

compiled EBI allowed to compare behaviors occurring before and after of an event; this                           

comparison has been demonstrated [13,46,92] to benefit in classify occupants to efficient and                         

inefficient behaviors. Table 2 lists the compiled EBIs of the occupants for the departure events.                             

Since the collected data presented similar EBIs for Segment 1 of the occupants (see Table 1) and                                 

since departure events are considered as the critical events to understand energy-use efficiency                         

[3,46,92], we focused on the departure events of our case study to investigate the functionality of                               

the compiled EBI.  

 

Table 2. ​Compiled EBI for departure events  

Occupant  Compiled EBI 

1  0.084 
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2  0.275 

4  0.205 

5  0.219 

6  0.135 

7  0.097 

8  0.101 

9  0.144 
 

 

Similar to the energy-use intensity, the differences between efficient and inefficient                     

behaviors are building-specific and should practically be determined. Given that, based on the                         

literature suggestion [66,67], the characteristics of the case study, and the industry                       

recommendations, we finally considered two equal quantiles for efficient and inefficient                     

behaviors in this study. In fact, the industry professionals pointed out that since the focus of this                                 

research is identifying behaviors and displaying the functionality of compiled EBI and since no                           

behavior-intervention technique has been implemented in this research, two equal quantiles                     

could properly fit the goals of this study. Accordingly, considering the smallest and largest                           

compiled EBIs are 0.084 and 0.275 (see Table 2), compiled EBI of 0.180 was considered as the                                 

boundary of efficient and inefficient behaviors. Figure 9 shows how these quantiles classify the                           

occupants.  
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Figure 9. ​Compiled EBI for the departure events 

 

 

Larger compiled EBI indicates more efficient behavior compared to peers and                     

accordingly, the figure suggests that Occupant 2 follows the most efficient behavior. In addition,                           

five occupants were tagged with inefficient behaviors that could be targeted for behavior                         

modification. Furthermore, while the results of energy-use intensity (see Figure 8-b) provide                       

distinct behaviors for Occupant 1 compared to Occupant 7, and 8, these occupants showed                           

approximately similar compiled EBIs. This reveals how efficiency of energy-use behaviors could                       

be distinct from the intensity of the behaviors. As literature suggests [13,66,67], we discussed in                             

Section 5.2., and per recommendations received from the industry professionals (during this                       

study), we believe that compared to energy-use intensity, studying energy-use efficiency results                       

in more proper interpretations regarding energy-use behaviors.  

In this study, considering that occupants have similar desktop computers (i.e., personal                       

appliances), similar energy-use behaviors at workstation-level could be expected. Given that, as                       

Figure 9 shows, the compiled EBI particularly reveals that the occupants’ energy-use behaviors                         

of shared appliances were considerably different (while the occupants had similar access/control                       

over shared appliances such as ceiling lights). This thereby highlights the importance of studying                           

comprehensive energy-use behaviors (i.e., energy use behavior of personal and shared                     
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appliances) of individual occupants in a built environment to modify inefficient behaviors;                       

however, this point has not been studied well in the literature [13,20,66,67,84,89]. When such                           

individualized behaviors are determined incorrectly, feedback outcomes result in negative                   

influences on energy-use behaviors [37,41,100]. 

 

5.4. Discussion of impact 

This study introduced the COLE approach which utilizes the data from existing Wi-Fi networks                           

and COTS internet-enabled electric meters of an office building to provide individual occupants’                         

energy-use intensity and efficiency information regarding personal and shared appliances. To                     

show the functionally of the approach, the energy-use behaviors of ten occupants in an office                             

building were tracked. ​Such small-sized office buildings (with up to twelve residents ​[101]​) are                 

the most common type of offices in the United States and worldwide ​[102,103] and offer the                

most ideal test beds for studying energy-use behaviors ​[13,104]​. Accordingly, the results            

properly ​revealed the capability of the approach to provide individualized energy-use                    

information at the occupant-level.  

While the literature [20,67,84,89] utilizing the data of entire working days to estimate                         

intensity and efficiency metrics for the individual occupants, we (through developing and                       

utilizing EBI and compiled EBI) revealed that the building-wide energy-use data at entry and                           

departure events could explain these metrics. In addition, even if this study only checked three                             

and two categories for energy-use intensity and efficiency, respectively, the proposed approach                       

could be extended to various categories for each metric. This particularly allows to understand                           

occupant usage in office environments with a reasonable accuracy and benefits ​to produce                        

better informed, contextually aware feedback. 

Conventional approaches predominantly utilize individual plug-in meters at workstations                 

to track personalized energy-use information in office buildings. While this provide                     

high-resolution data of workstation appliances, no information of shared appliances is provided.                       

On the other hand, COLE is able to provide occupant-specific information of shared appliances.                           

Accordingly, our proposed approach could be integrated with the conventional approaches in                       

order to address their limitation. This allows to collect information regarding shared and personal                           
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appliances in office buildings equipped with individual plug-in meters and offers a better                         

solution for a comprehensive energy behavior monitoring.  

Recently, researchers [62–64] have developed IoT-based occupancy-sensing approaches               

with the ultimate goal of enhancing energy saving of built environments. In particular, such                           

approaches are typically developed in a way to use Wi-Fi networks/systems for communication                         

layers ​and predominately attempt to collect data from existing or COTS internet-enabled sensors                         

in built environments. With these in mind, our study benefits into such approaches through                           

displaying (1) how Wi-Fi network information leads to tracking energy-use behaviors, (2) how                         

the information of the existing or COTS occupancy/energy sensors (with ​different degrees of                       

granularity) ​of a building could be utilized to understand individualized energy-use behaviors,                      

and (3) how energy-use intensity and efficiency metrics for individual occupants could be                         

developed based on total building energy consumption.   

As mentioned, the occupant privacy is considered as a major concern in implementing                         

such occupancy-related approaches. Accordingly, we did not collect the personalized                   

information of occupants to identify the users of MAC addresses. This could prevents providing                           

individualized feedback to individual occupants. To address this issue in a feedback mechanism,                         

we recommend the future studies to develop a web application (as part of a feedback                             

mechanism) and collect the smartphones MAC addresses of building occupants through the                       

application. In this content, an occupant enters her smartphone MAC address to the application                           

(without entering other personal information such as name and room number) and the application                           

generates a random unidentifiable code and assigns it to the occupant; this process is done in the                                 

back-end system of the feedback mechanism. Then, this code is used to track the occupant,                             

estimate her EBI and compiled EBI, and identify her behavior categories. Finally, tailored                         

feedback is provided to her through her unidentifiable code and the web application.                         

Accordingly, while this process allows to modify energy-use behaviors, it does not identify who                           

the owners of MAC addresses are which allows to protect the occupants’ privacy. In addition, by                               

identifying the MAC addresses of the permanent occupants of a building through the application,                           

the proposed approach could be implemented even in large-sized office buildings; a great portion                           
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of occupants in such buildings are temporary and their Wi-Fi connections/disconnections could                       

distort data analysis. 

 

6. Conclusion 

This paper proposed a novel approach that utilizes the information of existing or/and ​commercial                           

off-the-shelf internet of things devices of office buildings to deliver ​comprehensive energy-use                      

behaviors of individual occupants. The experimental results revealed the effectiveness of the                       

approach in utilizing the data of ​internet of things devices to assess individual occupants’                           

energy-use intensity and efficiency. Current behavior modification efforts extensively rely on                     

individual plug-in sensors which typically lead to understanding of occupant’s behaviors at a                         

workstation level. However, our approach utilizes building energy consumption for                   

comprehensive understanding of individual occupants’ energy-use behaviors of both workstation                   

and shared appliances. 

We believe that our proposed approach is scalable to a wide range of office buildings for                               

understanding personalized energy usage. In addition, this approach contributes to                   

occupancy-related ​internet​-of-things-based research via displaying how energy-use intensity and                 

efficiency of individual occupants could be extracted from the ​internet of things devices of a                             

building. Through utilizing the findings of this study, our future work focuses on developing an                             

internet​-of-things-based energy assistant tool which would be able to track individual occupants’                       

energy-use actions, to identify inefficient behaviors, and to drive energy-saving behaviors.  
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