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COMPARING ALGORITHMIC COMPLEXITY OF 

RECURSIVE AND INDUCTIVE ALGORITHMS  
 

Mark Burgin  
Department of Computer Science 
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Los Angeles, CA 90095 
 
 
 
 
 

You can make your model  
more complex and more faithful to reality,  

or you can make it simpler and easier to handle. 

James Gleick “Chaos” 
 
 
 

Abstract: The main goal of this paper is to compare recursive algorithms such as 

Turing machines with such super-recursive algorithms as inductive Turing machines. 

This comparison is made in a general setting of dual complexity measures such as 

Kolmogorov or algorithmic complexity. To make adequate comparison, we reconsider 

the standard axiomatic approach to complexity of algorithms. The new approach 

allows us to achieve a more adequate representation of static system complexity in the 

axiomatic context. It is demonstrated that for solving many problems inductive Turing 

machines have much lower complexity than Turing machines and other recursive 

algorithms. Thus, inductive Turing machines are not only more powerful, but also 

more efficient than Turing machines. 
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1. Introduction 

Today complexity has become an important and, at the same time, one of the most 

popular notions in science and society. It is a frequent word in present days' scientific 

literature, in various fields and with diverse meanings, appearing in some contexts as a 

precise concept, while being a vague idea in other texts. The reason is that people 

study and create more and more complex systems. This is especially true for such 

fields as information technology and software development.  

As it is written in [34], recently Bill Gates, in a Microsoft internal memorandum, 

implicitly admitted of past complexity sins and introduced plans to redirect 

development efforts toward providing better systems. Paul Horn, the IBM vice 

president of research, confessed the complexity sins of the computer industry and also 

proposed an ambitious program for cleansing the sins [28]. 

The situation is reflected in the ironic Seventh Law of Computer Programming: 

Program complexity grows until it exceeds the capabilities of the programmer 

who must maintain it. 

To cope with such situations, we need a developed theory of complexity, which 

explains why and how complexity emerges and how to solve problems that involve 

very complex systems. This is especially true for computers, networks, and their 

software. 

At the same time, there is no generally accepted, formalized, and unique definition 

of complexity. Complexity has proved to be an elusive concept. Different researchers 

in different fields are bringing new philosophical and theoretical tools to deal with 

complex phenomena in complex systems. “What is complexity?” is a basic question of 

Gell-Mann [22].  

Here we use the following informal definition of system complexity.  

Definition 1. The complexity of a system R is the amount of resources necessary 

for (used by) a process P that involves R.  

Remark 1. Some think that the complexity of the system is independent of any 

process, unless the system includes the process. Others justly assume that the 

complexity of a problem is also a subjective matter. For instance, we can consider a 

problem related to some system R: to build R, to test R, to increase the power of R and 

so on. Two people having different models or views of the system, different 
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algorithms for dealing with such systems, and even different will to solve the problem 

in question will have different ideas of the complexity of solving this problem. 

Waxman [47] gives the following example. A problem with a car not starting might be 

very complex for a high-qualified mathematician, but not for the corner mechanic. On 

the other hand, solving a system of five linear equations with five variables will be 

simple for the mathematician and very complex for the corner mechanic. In other 

words, with respect to the process of repairing, the car is a complex system for the 

high-qualified mathematician, a simple system for the mechanic. At the same time, 

with respect to the process of solving, the system of five linear equations with five 

variables is a complex system for the mechanic, a simple system for the high-qualified 

mathematician. 

There are different kinds of system involvement in a process.  

P may be a process in the system R. For example, R is a computer, P is an 

electrical process in R, and the resource is energy.  

P may be a process that is realized by the system R. For example, R is a computer, 

P is a computational process in R, and the resource is memory. 

P may be a process controlled by the system R. For example, R is a program, P is 

a computational process controlled by R, and the resource is time. 

P may be a process that builds the system R. For example, R is a software system, 

P is the process of its design, and the resource is programmers. 

P may be a process that transforms R. P may be a process that utilizes R. P may 

be a process that models the system R. P may be a process that predicts behavior of the 

system R. 

In cognitive processes complexity is closely related to information, representing 

specific kind of information measures. 

Processes use different kinds of resources:  

Natural resources consumed by a process P: time, space, information, 

energy/power, minerals, etc. 

Social resources consumed by a process P: people involved, their time, efforts, 

expertise, knowledge, etc. 

Artificial resources consumed by a process P: system time, system space, data, 

knowledge, memory, system units, system actions, etc. 
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If it is impossible to solve a problem with given resources, we assume that it has 

infinite complexity with respect to this resource. The halting problem, being restricted 

to recursive algorithms, is an example of a problem with infinite complexity since we 

know that it has no solution.  

In general, complexity is a relative characteristic, which depends on considered 

processes and related resources. For instance, there are systems that are simple for 

usage but complex for study. There are computations that demand little memory (one 

resource) but take a lot of time (another resource) to finish. 

Definition 1 implies that complexity is always complexity of doing something and 

as a result, must be attributed as an essential characteristic to both the system and the 

process being performed. Thus, it is also an essential characteristic of an algorithm 

that can be used as the basis of a process. As here we study algorithms, only measures 

of algorithm complexity are considered. However, it is possible to extend the 

constructions of such measures to complexity of arbitrary processes and through 

processes to arbitrary systems. Different processes may demand different complexity 

measures. At the same time, even one process or system may be characterized by 

several complexity measures.  

All these peculiarities of complexity measures show that to measure complexity, 

we need many different measures. This corresponds to the real situation, in which 

researchers utilize a variety of such measures. It is useful to separate this variety into 

three categories: static, dynamic, and processual complexity measures. 

We consider two classes of algorithms. Recursive algorithms are algorithms 

equivalent with respect to their computing power to Turing machines. Super-recursive 

algorithms can do more than Turing machines. The main goal of this paper is a 

comparison of recursive algorithms such as Turing machines with such super-

recursive algorithms as inductive Turing machines. This comparison is made in a 

general setting of dual complexity measures such as Kolmogorov or algorithmic 

complexity. To make adequate comparison, we reconsider the standard axiomatic 

approach suggested by Blum [3] and developed further in [4, 6, 7, 11, 14, 26]. The 

new approach allows us to achieve a more adequate representation of static system 

complexity in the axiomatic context. This provides means for demonstrating that for 

solving many problems inductive Turing machines have much lower complexity than 
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Turing machines and other recursive algorithms. Thus, inductive Turing machines are 

not only more powerful, but also more efficient than Turing machines. 

 

 

 

2. Direct Complexity Measures: An Axiomatic Approach 

Static complexity measures of algorithms are functions of the form c: A → N 

where A = { Ai; i ∈ I} is a class of algorithms (programs or automata/machines) and N 

is the set of all natural numbers. Such measures are direct as they estimate algorithms, 

programs or machines. We introduce several axioms to distinguish definite classes of 

complexity measures and to characterize their properties.  

 Very often, one algorithm A can be a part/component of another algorithm B. 

This relation between algorithms is denoted by A ⊆ B. 

Compositional Axiom. If A ⊆ B, then c(A) ≤ c(B). 

Let B = { Bj ; j ∈ J}  be a class of algorithms. 

Computational Axiom. The function c(A) is total and computable in B. 

Recomputational Axiom. For any number n, it is possible to compute all indices 

i such that c(Ai) = n. 

Reconstructibility Axiom. For any number n, it is possible to build all algorithms 

A from A for which c(A) = n. 

The difference between Reconstructibility Axiom and its weak version, 

Recomputational Axiom, is that it is not always possible to build an algorithm having 

its index. For instance, it is possible to enumerate all Turing machines by a standard 

procedure and get the sequence l = {T1 , T2 , … , Tn , …} . Then we define the new 

enumeration by the following rule. Taking the sequence l, we form two sequences, 

preserving the same order. We put all machines that always give the result in the first 

sequence and all other machines in the second sequence. Then a Turing machine T has 

the index 2i + 1 if it occupies the place number i in the first sequence and has the 

index 2i if it occupies the place number i in the second sequence. For this 

enumeration, it is possible to build a recomputable complexity, which is not a 

reconstructible one.  
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Cofiniteness Axiom. The set c-1(n) is finite for all numbers n from N. 

It is usually assumed that any finite set is recursively computable and even 

decidable. When a finite set X is given by a list, then this is true. However, this 

assumption is not valid in a general case when a finite set can be defined by a 

description. For instance, let us take the set X of all indices of those Turing machines 

that have the length of their description less than 1000 and that do not terminate on 

some input with the length less than 1000. This set is finite, but it is not recursively 

computable (enumerable). 

Let X* be the set of all words in the alphabet X and l(x)denotes the length of a 

word x. 

Definition 2. A partial function f: X* → N+ tends to infinity (we denote it by f(x) 

→ ∞, or f(x) → ∞ when x → ∞) if for any number m from N+ there is a number k such 

that f(x) > m when l(x) > k. 

Definition 3. A partial function f: X* → X* tends to infinity (we denote it by f(x) 

→ ∞) if the partial function l(f(x)) tends to infinity. 

Lemma 1. If a function c(A) satisfies the Cofiniteness Axiom and the set A is 

infinite, then this function tends to infinity. 

Definition 4. a) A function Sc: A → N is called an axiomatic static complexity of 

algorithms from A if it satisfies the Compositional Axiom. 

b) An axiomatic static complexity is called reconstructible (computable, 

recomputable, weakly reconstructible, cofinite) if it satisfies the Reconstructibility 

(Computational, Recomputational, Weak Reconstructibility or Cofiniteness, 

respectively) Axiom. 

Remark 2. Such approach to complexity of algorithms/programs reflects the 

condition that static complexity depends on structural features of algorithms/programs. 

Remark 3. When all algorithms from A have indices (are enumerated by natural 

numbers), it is possible to consider a function Sc: I → N (a function Sc: N → N ) 

instead of the function Sc: A → N. If we have some complexity function c: A → N 

and an enumeration of algorithms q: A → N, then we can build the function Sc: N → 

N by taking Sc = c ° q-1. We also call this function an axiomatic static complexity of 

algorithms from A. 
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Remark 4. A function c(A) can satisfy the Cofiniteness Axiom, but still can be 

non-computable (as well as Sc(i) ) even in such powerful class as the class R of 

recursive algorithms, in particular, the class of all Turing machines. However, there 

exist such functions c(A) that the corresponding function Sc(i) is inductively 

computable [5, 11]. 

Remark 5. It is possible to use Definition 4 for determining complexity of any 

system. 

Not all of axiomatic static complexity measures in the sense of [4, 6, 7, 14] and 

not all sizes of machines introduced in [3] are axiomatic static complexities. However, 

differences between the new definition and the old ones are natural because as some 

experts argue (cf., for example, [19]), the traditional axiomatic approach is too general 

to describe only complexity, corresponding measures include many other functions.  

At the same time, all existing examples of static complexity measures satisfy the 

Compositional Axiom and thus, represent axiomatic static complexities. Let us 

consider some of them. 

Example 1. Let A consists of algorithms generated by a Turing machine W with 

two input tapes. One tape is used for data, while the content of the second tape is 

considered as a program for computation. Each program for the machine W is an 

algorithm from A. Then the length l(p) of this program p is a computable, 

reconstructible, cofinite static complexity for algorithms from A. 

Example 2. Let A consists of all programs written in some programming 

language (e.g., Java or FORTRAN). Then the length l(p) of a program p as number of 

characters or as number of words in p is a very popular static complexity, which is 

computable, reconstructible, and cofinite. 

Both these measures satisfy even a stronger form of the Compositional Axiom. 

Additive Compositional Axiom. If A, C ⊆ B, then c(B) ≥ c(A) + c(C). 

Remark 6. Additive Compositional Axiom is not necessarily satisfied when 

algorithms/programs allow nesting. The following example demonstrates how nesting 

violates this axiom. 

Example 3. Let us consider the following program B: 

B() 
{ sol = 1; 
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 A: if sol > 0 then { 
  C: sol = sol + sol; 
 } 
} 
Thus, we have the program B and its parts A and C. Let us consider such static 

complexity as the length l of a program that is measured in the number of symbols in 

the program. Here B has 23 letters (36 non-whitespace characters), A has 19 letters (27 

nonwhitespace characters), and C has 9 letters (12 non-whitespace characters), and 23 

< 19 + 9 (36 < 27 + 12). Consequently, l(B) < l(A) + l(C). This violates Additive 

Compositional Axiom. 

However, this axiom can be true with additional conditions on programs A and C. 

Restricted Compositional Axiom. If A, C ⊆ B and A and C are disjoint, then c(B) 

≥ c(A) + c(C). 

Strong Compositional Axiom. If A, C ⊆ B, then c(B) > max {c(A), c(C)}. 

Software metrics give different examples of axiomatic static measures of 

complexity. 

Example 4. When the length of a source line of code is bounded (and this is true 

for all programming languages as compilers demand this restriction), then the software 

metric “number of source lines of code” (SLOC) (cf. [49]) is a finite computable 

reconstructible static complexity. 

Example 5. Describing a program formally as a sequence of operators and 

operands, we see that the length of program N(P) [25] is also a static complexity 

measure, namely, the length l(P) of a program. For a programming language in which 

the numbers n1 of the unique operators and n2 of the unique operands are finite, N(P) 

is a cofinite reconstructible static complexity. However, some languages (at least, 

potentially) operate with infinite alphabets of operands, for example, with all real 

numbers. There are also theoretical models in which there are infinitely many unique 

operators. In such cases, N(P) is not a finite complexity measure. If the sets of 

operands and operators are computable, then this measure is also computable. 

Example 6. When it is defined, the volume V(P) of the program P [25] is always 

a cofinite reconstructible static complexity. 

Example 7. Representing a program P formally as a structure of operators and 

operands, we can demonstrate that the cyclomatic number C(P), i.e. the number of 
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cycles in P [41], is a computable reconstructible static complexity. However, this 

measure does not satisfy Cofiniteness Axiom as, for instance, it is possible to build 

infinitely many programs with only one cycle.  

Example 8. Representing a program P formally as a structure of operators and 

operands, we can demonstrate that N(P) + V(P) is a static direct complexity measure. 

Example 9. Representing a program formally as a structure of operators and 

operands, we can demonstrate that N(P) + C(P) is a static direct complexity measure. 

It is necessary to remark that some nice properties of the traditional definition of 

axiomatic static complexity measures are lost in the suggested approach. For example, 

axiomatic static complexities are not closed with respect to enumerations. It means 

that when we enumerate algorithms and take the induced function on these numbers, 

the new function does not necessarily satisfy the Composition Axiom. The reason is 

that static complexity reflects structural properties of algorithms/programs, while 

enumerations, in general do not reflect structural features of algorithms/programs. 

Example 10. Let the class A = T consists of all Turing machines. Each Turing 

machine T has a description/coding c(T). Then the length l(c(T)) of this description 

c(T) is a static complexity measure for Turing machines. 

Definition 5. A class A = { Ai; i ∈ I} of algorithms is called constructible if there 

is a set B of primitive algorithms and all algorithms from A are built by combining 

algorithms from B. 

Definition 6. The set B is called a base of A.  

For instance, all programs in procedural programming languages, such as 

ALGOL, FORTRAN, COBOL, C++, and Java, are built from a system of operators or 

instructions. 

It is usually assumed that the base B is finite and when a finite number of 

elements from B are used, it is possible to construct only a finite number of algorithms 

from A. 

Proposition 1. For a constructible set A of algorithms with a finite base, 

Compositional Axiom implies Cofiniteness Axiom. 

We prove this statement by induction. 



 10

Corollary 1. Any computable reconstructible axiomatic static complexity on a 

constructible set A of algorithms is an axiomatic static complexity measure in the 

sense of [4, 6, 8]. 

Corollary 2. Any computable reconstructible cofinite axiomatic static complexity 

on the set R of recursive algorithms is a size of machines in the sense of [3]. 

Let us assume that A = R. 

Lemma 2. If g(x) and h(x) are total computable functions, g-1(x) and h-1(x) are 

recursively  computable  multifunctions  (relations),  and for  any  number n both  sets 

g-1(n) and h-1(n) are finite, then there is a computable increasing function f(x) such that 

it tends to infinity and f(g(x)) ≤ h(x) for almost all x. 

Proof. We informally describe an algorithm for computation of such a function 

f(x). Then by the Church-Turing Thesis (cf., for example, [42]), f(x) is a recursively 

computable function. 

An algorithm for computation of f(x): 

1. Compute h(ε) where ε is an empty word. It is possible to do this because h(x) is 

a recursively computable function. 

2. If h(ε) = r, find all elements x1, x2, … , xn for which h(xi) ≤ r and choose from 

these values h(xi)  the least number p = h(xj) for some xj. It is possible to do this 

because h-1(x) is a recursively computable multifunction and for any n, the set h-1(n) is 

finite. 

3. Find the largest element xj for which p = h(xj). It is possible to do this because 

h(x) is a recursively computable function. 

4. Find the largest value (say t) of all values g(x) with x ≤ xj. It is possible to do 

this because g(x) is a recursively computable function. 

5. Define f(k) = p for all k ≤ t. 

6. Find the least number q > p such that q = h(xj) for some xj. Then go to the step 

3 with q instead of p, continuing this process with u instead of t in step 4 and the 

condition t < k ≤ u instead of the condition k ≤ t and with q instead of p in step 5. 

In such a way, we build the necessary increasing function f(x). By Lemma1, both 

functions g(x) and h(x) tend to infinity. So, by its construction, the function f(x) also 

tends to infinity. 
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Corollary 3. If g(x) and h(x) are total recursively computable functions, g-1(x) and 

h-1(x) are computable multifunctions (relations) and for any number n, both sets g-1(n) 

and h-1(n) are finite, then there is a recursively computable increasing function f(x) 

such that f(g(x)) ≤ h(x) and f(h(x)) ≤ g(x) for almost all x. 

Lemma 2 and Corollary 3 imply the following result. 

Proposition 2. For any axiomatic static complexities c(A) and b(A) that satisfy the 

Computational, Recomputational, and Cofinite axioms, there is a recursively 

computable total increasing function f(x) such that f(c(A)) ≤ b(A) and f(b(A)) ≤ c(A) for 

almost all A from R. 

Lemma 3. If g(x) and h(x) are total computable functions, g-1(x) and h-1(x) are 

recursively computable multifunctions (relations)  and  for any  number  n,  both sets 

g-1(n) and h-1(n) are finite, then there is a recursively computable increasing function 

r(x) such that r(g(x)) > h(x) for all x. 

Proof. Let us take the function r(n) = max { h(x) ; ∃ z such that g(z) = n and for all 

y, the equality g(y) = g(z) implies y < z , and x ≤ z } + 1. This function r(n) is an 

increasing function. In addition, using conditions from the lemma, we can build an 

algorithm of computation for this function r(n). 

At first, using computability and finiteness of g-1(x), we find all xj such that g(xj) = 

n. Then we take the largest of them z. Then we can compute the function r(n) = max { 

h(x) ; x ≤ z } + 1.   

 By the Church-Turing Thesis (cf., for example, [42]), r(x) is a computable 

function and by its construction r(g(x)) > h(x) for all x. 

Corollary 4. If g(x) and h(x) are total recursively computable functions, g-1(x) and 

h-1(x) are recursively computable multifunctions (relations) and for any n, both sets g-

1(n) and h-1(n) are finite, then there is a recursively computable strictly increasing 

function r(x) such that r(g(x)) > h(x) and r(h(x)) > g(x) for all x. 

Lemma 3 and Corollary 4 imply the following result. 

Proposition 3. For any axiomatic static complexities c(A) and b(A) that satisfy the 

Computational, Recomputational, and Cofinite axioms, there is a recursively 

computable total strictly increasing function r(x) such that r(c(A)) > b(A) and r(b(A)) > 

c(A) for all A from A. 

Proposition 3 implies corresponding results from [3, 6, 26]. 
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3. Dual Complexity Measures: An Axiomatic Approach 

While direct complexity measures characterize algorithms/machines/programs, 

dual complexity measures are related to problems solved by these 

algorithms/machines/programs and to results of their functioning. As a rule, the 

problem that is considered for algorithms is building (computing) some word or 

making a decision whether a given element belongs to a given set.  

The complexity of a problem often differs from the complexity of its solution. 

Simple problems, i.e., problems that have short descriptions, may have only complex 

solutions, i.e., they demand long proofs or a lot of computations. Moreover, as proved 

by Juedes and Lutz [30] many important problems that have hard solutions (those that 

are P-complete for ESPACE) have low problem complexity, that is, their Kolmogorov 

complexity or algorithmic information is rather low.  

There was an attempt to build a universal dual complexity measure, which does 

not depend on a specific class of algorithms. However, this goal has not been 

achieved. One reason was that it turned out that the original definition was not 

sufficient for solving some mathematical and practical problems. For example, such 

universal measure was not appropriate for formalization of the concept of randomness 

and for the development of algorithmic probability theory and information theory. The 

second reason for impossibility to achieve this goal (and for necessity of constructing 

relative dual measures) was the discovery of super-recursive algorithms. Before it 

happened, all believed that Turing machines or other universal models of recursive 

algorithms give an absolute class for algorithms and computation. This discovery 

changed the existing situation. The third reason for impossibility to build a universal 

dual complexity measure was that actually computer scientists have already used 

several distinct dual measures. As a result, the universal approach was discarded and 

dual measures have been introduced and studied for some specific classes of 

algorithms. Later an axiomatic approach to dual complexity measures has been 

elaborated. 

Dual complexity measures are properties of objects that are constructed and 

processed by algorithms, as well as of problems that are solved by these algorithms. 

On the other hand, it is possible to interpret these measures as properties of classes of 

algorithms. Here we consider only static dual complexity measures for algorithms. 
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Let A = { Ai ; i ∈ I} be a class of algorithms,  A be an algorithm that works with 

elements from I as inputs and Sc: I → N be a static complexity measure of algorithms 

from a class A. Elements of I are usually interpreted as programs for the algorithm A. 

In addition, developing the theory of Kolmogorov complexity, researchers assume for 

simplicity that I consists of natural numbers in a form of binary sequences. These 

numbers can be indices enumerating algorithms from A or codes of these algorithms 

(cf., for example, [27]). In what follows, we consider only computable recomputable 

cofinite complexities. 

Definition 7. Given a complexity measure Sc: I → N, an algorithm A from A, and 

that the codomain (set of all outputs) Y  is a subset of the domain (set of all inputs) X  

of algorithms from A, the dual to Sc with respect to A complexity measure is denoted 

by ScA
o: Y → N and is defined as 

ScA
o(x) = min { Sc(p); p ∈ I and A(p) = x}. 

Naturally when there is no such p that A(p) = x, the value of ScA
o at x is undefined. 

When Sc(x) measures information in the word/text x, the dual complexity measure 

ScA
o(x) estimates minimal information necessary to compute/build x by the algorithm 

A. 

If Lo
A(x) is the dual to the length l(p) of program/algorithm description p 

complexity measure, i.e., Sc(p) = l(p), with respect to a algorithm A, then 

Lo
A(x) = min { l(p); p ∈ I and A(p) = x}. 

Let M and T be some algorithms. 

Proposition 4. If M(x) > T(x) for almost all x and M(x) is an increasing function, 

then Lo
T(x) ≥ Lo

M(x) for almost all x for which both Lo
M(x) and Lo

T(x) are defined. 

The most interesting case is when A is a universal algorithm V for the class A. Let 

c: A → X* be some coding of algorithms from A. 

Definition 8. An algorithm W is called universal for the class A if for any A ∈ A 

and any x given the pair p = (c(A), x) as its input, the result of W is equal to the result 

of A applied to x. 

Examples of universal algorithms are a universal Turing machine and a universal 

inductive Turing machine [11]. 



 14

The dual complexity measure that corresponds to a universal algorithm gives an 

invariant characteristic of the whole class A. 

Definition 9. Given complexity measure Sc: I → N, an algorithm A from A, and 

that the codomain (set of all outputs) Y  is a subset of the domain (set of all inputs) X  

of algorithms from A, the dual to Sc with respect to the class A is denoted by 

Sco
A: Y → N and is defined as 

Sco
A(x) = min { Sc(p); p ∈ I and W(p) = x}. 

Naturally when there is no such p that W(p) = x, the value of ScA
o at x is 

undefined.  

Because algorithm W is universal for the class A, this condition is equivalent to 

the condition that there is no such algorithm A from A and such p that A(p) = x. 

In other words, Sco
A(x) = ScV

o(x) for a universal algorithm W for the class A. 

However, it is possible that A has several universal algorithms. In such a case, the 

function of Sco
A(x) is not defined uniquely. Nevertheless, as Theorem 3 shows, the 

definition of Sco
A(x) is invariant with respect to certain transformations.  

When Sc(x) measures information in the word/text x, the dual complexity measure 

Sco
A(x) estimates minimal information necessary to compute/build x by algorithms 

from the class A. 

Proposition 5. For any algorithm A, any axiomatic static complexities Sc(x) and 

Sb(x), and an increasing function f(z), the condition f(Sc(p)) ≤ Sb(p) for almost all p ( 

f(Sb(p)) > Sc(p) for all p ) implies the condition f(Sco
A(x)) ≤ Sbo

A(x) for almost all x ( 

f(Sbo
A(x)) > Sco

A(x) for all x ). 

Indeed, if Sbo
A(x) = s, then there is q∈ I such that Sb(q) = s and A(q) = x. By 

assumption, for almost all such q, we have  f(Sc(q)) ≤ Sb(q). By the definition, if 

Sco
A(x) = Sc(r) and A(r) = x, then Sc(r) ≤ Sc(p) for all p ∈ I such that A(p) = x. In 

particular, we have Sc(r) ≤ Sc(q). Consequently, f(Sco
A(x)) = f(Sc(r)) ≤  

f(Sc(q)) ≤ Sb(q) = Sbo
A(x) because f(z) is an increasing function.  

Inequality f(Sbo
A(x)) > Sco

A(x) is proved in a similar way. 

Proposition 5 is proved. 

Remark 7. If we can choose different algorithms from A to build the element x, 

the dual measure with respect to the class A is defined in a different way. 



 15

Definition 10. Given complexity measure Sc: I → N, an algorithm A from A, and 

that the codomain (set of all outputs) Y  is a subset of the domain (set of all inputs) X  

of algorithms from A, the dual to Sc with respect to the class A with selection is 

denoted by Sco
A: Y → N and is defined as 

Sco
SA(x) = min { Sc(p); p ∈ I, A ∈ A,  and A(p) = x}. 

Naturally when there is no such algorithm A from A and such p that A(p) = x, the 

value of ScA
o at x is undefined. 

Lemma 4. Sco
SA(x) ≤ Sco

A(x) ≼ Sc(x). 

In general, both functions Sco
SA(x) and Sco

A(x) are defined for all elements x from 

the domain ∪A∈AC(A). In particular, when all algorithms from A have a common 

codomain X, then both functions Sco
SA(x) and Sco

A(x) are defined for all elements x 

from X. For example, when A is the set of all partial recursive functions, both 

functions Sco
SA(x) and Sco

A(x) are defined for all natural numbers. This is a 

consequence of the following more general result. 

Let the class A contains an identity algorithm E that computes the function e(x) = 

x. 

Theorem 1. Sco
A(x) is a total function on N+ (on the set of all words in some 

alphabet). 

Dual complexity measures are usually interpreted as complexity of problem 

solution with the help of algorithms from A. More exactly, the problem under 

consideration is construction or computation of a word x by means of algorithms from 

A. 

The first developed form of dual complexity measures was the, so-called, 

Kolmogorov or constructive or algorithmic complexity.  

Traditionally the theory of Kolmogorov complexity has been developed top down: 

from larger classes to smaller classes of algorithms that were more relevant to 

computational problems. At first, as the history of the subject tells us, Kolmogorov 

complexity C(x) was defined and studied independently for the class of all recursive 

algorithms by three mathematicians: Solomonoff [45], Kolmogorov [32], and Chaitin 

[16]. Later another name algorithmic complexity has been also used for this measure.  
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The original Kolmogorov complexity of a word x is taken equal to the size of the 

shortest program (in number of symbols) for a universal Turing machine U that 

without additional data, computes the string and terminates. To formalize this, we 

define Kolmogorov complexity for a class R of recursive algorithms such that R has a 

universal algorithm. For example, in the class of all Turing machines, a universal 

Turing machine is a universal algorithm. 

Definition 11. The Kolmogorov complexity C(x) of an object/word x is defined as 

C(x) = min { l(p);  U(p) = x} 

where l(p) is the length of the word p and U is a universal algorithm in the class 

R. 

This measure is called absolute Kolmogorov complexity because Kolmogorov 

complexity has another form, which is called relative. 

Definition 12. The Kolmogorov complexity C(x | y) of an object/word x relative to 

a given word y is defined as 

C(x | y) = min {l(p);  U(p, y) = x } 

where l(p) is the length of the word p and U is a universal algorithm in the class 

R. 

Kolmogorov complexity C(x) of a word x in some sources is denoted by K(x), 

while C(x | y) is denoted by K(x | y) . 

Absolute Kolmogorov complexity is a particular case of relative Kolmogorov 

complexity, namely: 

K(x) = K( x | Λ) = min {l(p);  U(p,Λ) = x } 

The aim of introducing Kolmogorov complexity was to ground probability theory 

and information theory, creating the new approach based on algorithms. This goal was 

achieved. The new theories became very popular, although they did not substitute 

either the classical probability theory, which was grounded before by the same 

Kolmogorov [31] on the base of measure theory, or Shannon’s information theory. 

However, an attempt to define in this setting an appropriate concept of 

randomness was unsuccessful. It turned out that the original definition of Kolmogorov 

complexity was not relevant for that goal. To get a correct definition of a random 

infinite sequence, it was necessary to restrict the class of utilized algorithms. That is 

why Kolmogorov complexity under different names was defined and studied for 
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various classes of subrecursive algorithms. For example, researchers discussed 

different reasons for restricting the power of the device used for computation when the 

minimal complexity is estimated.  

When Kolmogorov complexity is defined for the class of Turing machines that 

compute symbols of a word x, we obtain uniform complexity KR(x) studied by 

Loveland [39]. 

When Kolmogorov complexity is defined for the class of prefix functions, we 

obtain prefix complexity K(x) studied by Gasc [20], Levin [36], and Chaitin [17]. 

When Kolmogorov complexity is defined for the class of monotonous Turing 

machines, we obtain monotone complexity Km(x) studied by Levin [35]. 

When Kolmogorov complexity is defined for the class of Turing machines that 

have some extra initial information, we obtain conditional Kolmogorov complexity 

CD(x) studied by Sipser [44].  

Let t(n) and s(n) be some functions of natural number variables.  

When Kolmogorov complexity is defined for the class of recursive automata that 

perform computations with time bounded by some function of a natural variable t(n), 

we obtain time-bounded Kolmogorov complexity Ct(x) studied by Kolmogorov [32] 

and Barzdin [2].  

When Kolmogorov complexity is defined for the class of recursive automata that 

perform computations with space (i.e., the number of used tape cells) bounded by 

some functions of a natural variable s(n), we obtain space-bounded Kolmogorov 

complexity Cs(x) studied by Hartmanis and Hopcroft [26]. 

When Kolmogorov complexity is defined for the class of multitape Turing 

machines that perform computations with time bounded by some function t(n) and 

space bounded by some function s(n), we obtain resource-bounded Kolmogorov 

complexity Ct,s(x) studied by Daley [16]. 

All of these kinds of complexity are dual complexity measures. The generalized 

Kolmogorov complexity introduced and studied in [4, 6, 7] gives a general setting for 

all of them. 

However besides different kinds of the generalized Kolmogorov complexity, there 

are other dual complexity measures. As an example of another kind of a dual 
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complexity measure, we can take Boolean circuit complexity, which is also a 

nonuniform complexity measure [1]. 

There are two direct and two dual complexity measures for such automata as 

Boolean circuits. 

Definition 13. The cost or size c(A) of a Boolean circuit A is the number of gates 

it has.  

This is a direct static complexity measure of Boolean circuits. 

Let f be a Boolean function. 

Definition 14. The Boolean cost c(f) of f is the size of the smallest circuit 

computing f: 

c(f) = min { c(A) ; A defines the function equal to f } 

This is a dual complexity measure. 

Definition 15. The depth of a Boolean circuit is the length of the longest path in 

the graph of this circuit.  

This is a direct static reconstructible complexity measure of Boolean circuits. 

Definition 16. The Boolean depth d(f) of f is the depth of the minimal depth 

circuit computing f: 

d(f) = min { d(A) ; A defines the function equal to f } 

This is a dual complexity measure. Thus, we see that not all dual complexity 

measures are the Kolmogorov complexity or some its kind. There are other examples 

of dual complexity measures. 

Due to its applications to problems of cryptography and network security, 

communication complexity has become one of the most popular types of complexity 

measures (cf. [29, 33]). Usually communication complexity is considered for the 

following situation. Two computers (persons) C1 and C2 are working together and 

solving the same problem. The problem taken for this purpose is computation of some 

finite function f: X1 × X2 → Y. As a rule, f is a Boolean function with m variables. At 

the beginning of the process, the input from X1 is given to C1 and the input from X2 is 

given to C2. 

These computations, which include communication, are performed by (according 

to) algorithms Pi that are called communication protocols and describe a distributed 

computational processes of two computers C1 and C2 . The goal is for one of the 
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computers to compute f(x1, x2) with the least amount of communication between them. 

In contrast to computational complexity, here we are not concerned about the number 

of computational steps or the size of the computer memory used. Communication 

complexity tries to quantify the amount of communication required for distributed 

computation.  

It is supposed that both computers have unlimited computational resources. As a 

result, they can, for example, always succeed by having C1 send its whole n-bit string 

to C2, allowing C2 to compute the function, but we are interested in finding better 

ways of calculating f with less than n bits of communication.  

Definition 17. The communication complexity cc(P) of a communication protocol 

P is defined as the length of communicated word or, in other words, the maximal 

number of bits exchanged during the computational processes defined by Pi for all 

pairs of inputs. Inputs are taken from some finite sets X1 and X2 .  

This is a direct static complexity measure 

Definition 18. The communication complexity cc(f) of a function/problem f is 

defined as: 

cc(f) = min { cc(P) ; P computes the function f } 

It is possible to represent any finite function by a table and then to represent this 

table as a word. In this context, the communication complexity cc(f) is a dual 

complexity measure on the set A of all protocols. 

There are also other approaches leading to dual complexity measures. For 

example, Gell-Mann [21] introduced the concept of crude complexity of a system. It is 

possible to find many other examples of direct and dual complexity measures in [6, 10 

- 14]. 

Let ScA
o(x) and ScB

o(x) be dual to Sc complexity measures with respect to classes 

A and B, respectively. If A ⊆ B, then any algorithm universal for B is also universal 

for A. We assume that such an algorithm is taken for building dual complexity 

measures with respect to A and B. This implies the following results. 

Theorem 2. If A ⊆ B and ScA
o(x) is defined for x, then ScB

o(x) is defined for x 

and ScB
o(x) ≤ ScA

o(x). 
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Corollary 5. If A ⊆ B and ScA
o(x) is defined for all x, then ScB

o(x) is defined for 

all x and ScB
o(x) ≤ ScA

o(x) for all x. 

Dual complexity measures with respect to the class A, i.e., determined by a 

universal algorithm, have invariance properties, defining minimal resources that are 

necessary in A to build/compute objects from Y. The set Y contains such objects that 

can be computed by algorithms from A. 

Let H and G be two sets of functions. 

Definition 19. A function f(n) is called (asymptotically) H-optimal in H if there is 

such h∈H that f(n) ≤  h(g(n)) for any  g ∈G and (almost) all n∈N . 

If there is such h∈H that f(n) ≤  h(g(n)) for almost all n∈N, we denote this 

relation by f(x) ≼H g(x). In the case, when H consists of such functions that add some 

constant to the argument, for example, f(n) = g(n) + c, we write simply f(x) ≼ g(x) or 

g(x) ≽ f(x). This relation is basic for the theory of Kolmogorov complexity [38]. 

Lemma 5. Relations g(x) ≽ f(x) and f(x) ≼ g(x) mean that there is a constant 

number c such that f(x) ≤ g(x) + c for all x. 

Let H = H(h) = { hk(n)= h(h(n)+k),  k∈N } and A be a class of algorithms with a 

universal algorithm U. 

Theorem 3 [4]. For any axiomatic static complexity measure Sc(p) on A and for 

some recursively computable function h(n), there is a H(h)-optimal dual measure 

Sco(x).  

Proof. Let A be some algorithm from the class A. At first, we consider dual 

complexity measures Lo
A(x) and Lo(x) dual to the length l(p) of program/algorithm 

description p with respect to A and to general class A of algorithms that work with 

words or natural numbers, respectively. These measures are defined by the formulas: 

Lo
A(x) = min { l(p); p ∈ I and A(p) = x} and Lo(x) = min { l(p); p ∈ I and U(p) = x} 

where U is a universal algorithm in A. 
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If Lo
A(x) = l(p) for some x and A(p) = x, then U( (c(A), p)) = x. By the definition, 

l((c(A), p)) = l(p) + kA where kA is some natural number. Then by the definition of 

Lo(x), we have Lo(x) ≤ l((c(A), p)) = l(p) + kA = Lo
A(x) + kA for any x. 

By Proposition 3, we have Sco(x) ≤ h(Lo(x)) ≤ h(Lo
A(x) + kA ) as f is an increasing 

function. At the same time, Lo
A(x) ≤ h(Sco

A(x)). Consequently, Sco(x) ≤ h(h(Sco
A(x)) + 

kA ). This inequality means that Sco
A(x) is a H(h)-optimal dual measure. 

Theorem 3 is proved. 

Corollary 6 [16, 32]. Algorithmic complexity C(x) is an optimal dual complexity 

measure. 

The result of Theorem 3 spares a researcher and a student: 

1) to prove optimality for different versions of Kolmogorov complexity; 

2) to prove optimality for other specific dual complexity measures. 

Optimality for Kolmogorov complexity and its versions is additive. However, 

there are other kinds of optimality, which depend on the measure Sco(x). It is possible 

to find an example of such measures in [39]. In this book, instead of the length l(x) of 

the word x representing some number n, this number n is taken as a direct static 

measure Sc(x) of x, i.e., Sc(n) = n. As a result, for the corresponding dual complexity 

measure Sco(x), we have a different type of optimality. Namely, Sco(x) ≤ kA ⋅Sco
A(x) 

for any Turing machine A. 

Definition 20. f(n) ≼H(h) g(n)  (f(n) ≼a
H(h) g(n)) if there is a function h∈H such 

that f(n) ≤  h(g(n)) for all n∈N (almost all n∈N ). 

Definition 21. Functions f(n) and g(n) are called (asymptotically)  H(h)-

equivalent if f(n) ≼H(h) g(n) and g(n) ≼H(h) f(n) (f(n) ≼a
H(h) g(n) and (g(n) ≼a

H(h) f(n))). 

Theorem 4 [4]. Any two (asymptotically) H(h)-optimal functions are 

(asymptotically) H(h)-equivalent. 

This means that optimal dual measures are in some sense invariant. 

Theorems 3 and 4 imply existence and uniqueness of optimal/invariant measures 

for many dual complexity measures: Kolmogorov complexity, uniform complexity, 

prefix complexity, monotone complexity, process complexity, conditional 

Kolmogorov complexity, time-bounded Kolmogorov complexity, space-bounded 

Kolmogorov complexity, conditional resource-bounded Kolmogorov complexity, 
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time-bounded prefix complexity, resource-bounded Kolmogorov complexity, etc. We 

do not need to prove these theorems for each case separately because it is sufficient 

only to check conditions from theorems 3 and 4 and then to apply these theorems. 

However, not all properties of optimal dual measures are good. For example, it 

has been proved that Kolmogorov complexity, which is an optimal dual measure for 

all recursive algorithms, is not itself a recursive function [50], although it can be 

computed by an inductive Turing machine [5]. 

 

 

 

4. Algorithmic and Communication Complexity of Recursive Algorithms 

In the study of dual complexity measures, it is possible to make the following 

reductions. Algorithms work with words in some alphabet X. We can codify all 

symbols from X by finite strings consisting of two symbols 1 and 0. This allows us to 

consider only algorithms that work with words in the alphabet {1, 0}. In addition, it is 

practical in some cases to interpret such binary words as representations of 

nonnegative integer numbers and assume that the algorithms work with such numbers. 

At first, we find some properties of complexity measures Lo
A(x) dual to the length 

l(p) of program/algorithm description p with respect to a general class A of algorithms 

that work with words or natural numbers. We assume that A has a universal algorithm 

V. Then we have: 

Lo
A(x) = min { l(p); p ∈ I and V(p) = x}. 

Let the class A contains an identity algorithm E that computes the function e(x) = 

x. 

Corollary 7. Lo
A(x) is a total function on N+ (on the set of all words in some 

alphabet). 

The dual to the length of program/algorithm description complexity measure 

CR(x) with respect to a class R of recursive algorithms (Turing machines, partial 

recursive functions, etc.) is Kolmogorov or algorithmic complexity [31]. For 

simplicity, we consider only such class R as the class T of all Turing machines and 

denote CR(x) by C(x). 
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Corollary 8 [32]. C(x) is a total function on N+ (on the set of all words in some 

alphabet). 

Let us suppose that the class A is infinite and contains only such algorithms that 

give as the result only one word or one number. In addition, we assume, without loss 

of generality, that all algorithms from A are working with natural numbers that are 

represented by words in the alphabet {1, 0}. 

Lemma 6. For any number n there is some number z such that for all elements x 

that are larger than z, the values Lo
A(x) are larger than n. 

Proof.  The number of those elements x for which Lo
A(x) is less than or equal to a 

given number n is less than or equal to 2n because there are at most 2n programs 

having the length less than or equal to n and the universal inductive Turing machine W 

computes only one word with one program. Consequently, for all elements y that are 

larger than some element z, the values Lo
A(y) are larger than n. 

Lemma 6 implies the following result. 

Theorem 5. Lo
A(x) → ∞ when l(x) → ∞. 

Proof. Since the number of elements x for which Lo
A(x) is less than or equal to a 

given number n is finite by Lemma 3, so as n tends to infinity, the function Lo
A(x) does 

the same. 

Corollary 9 (Kolmogorov). C(x) → ∞ when l(x) → ∞. 

Theorem 6. For any dual complexity Sco
A(x) for which the direct measure ScA(x) 

satisfies Computational, Recomputational, and Cofinite axioms, we have Sco
A(x) → ∞ 

when l(x) → ∞. 

Proof. By Proposition 5, there is a computable total strictly increasing function 

f(x) such that f(Sco
A(x)) > Lo

A(x) for all x. If Sco
A(x) does not tend to infinity, it must 

be bounded. Then the function f(Sco
A(x)) is bounded. So, it cannot be larger than the 

function Lo
A(x) that tends to infinity. This contradiction concludes the proof of 

Theorem 6. 

Let A be an enumerable class of recursive or subrecursive algorithms that contains 

a universal algorithm. 

Theorem 7. Lo
A(x) is an inductively computable function, namely, it is 

computable by some inductive Turing machine of the first order. 
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It is known (cf. [50]) that the function C(x) is not recursively computable. At the 

same time, we have the following result implied by Theorem 7 that shows one more 

time the advantages of inductive Turing machines. 

Corollary 10 [4]. C(x) is an inductively computable function, namely, it is 

computable by some inductive Turing machine of the first order. 

This result also follows from the theorem of Kolmogorov that states that C(x) is a 

limiting recursive function (cf. [50]). 

Traditionally (cf., for example, [49]), researchers in Kolmogorov complexity also 

consider the function mC(x) = min {C(y); y ≥ x}, which bounds C(x) from below.  

Taking some class R of recursive algorithms, we consider the function mSco
A(x) = 

min { Sco
A(y); y ≥ x}, which bounds Sco

A(x) from below. Let us find some properties 

of this function. 

Lemma 7. mSco
A(x) is a total increasing function. 

Corollary 11 (Kolmogorov). mC(x) is a total increasing function.  

Lemma 8. mC(x) → ∞ when l(x) → ∞. 

Let us assume that mSco
A(x) satisfies Recomputational and Cofiniteness axioms. 

Lemma 9. If Sco
A(x) is recursively computable, then mSco

A(x) is recursively 

computable. 

Proof. We suppose that Sco
A(x) is recursively computable and informally describe 

an algorithm of computation of such a function f(x) that is equal to mSco
A(x). By the 

Church-Turing Thesis (cf., for example, [42]), f(x) is a computable function. 

An algorithm for computation of the function f(x) = mSco
A(x): 

1. Compute Sco
A(x). It is possible to do this because Sco

A(x) is a recursively 

computable function. 

2. Let Sco
A(x) = p for some number p. Compute the set X = ∪ t≤p Sc-1(t). It is 

possible to do this because Sc(x) is a recomputable and cofinite function. 

3. Let X = { x1, x2, … , xn }. Take the subset Y of all elements from X that are 

larger than or equal to x. 

4. Let Y = { y1, y2, … , ym }. Compute all values Sco
A(y1), Sco

A(y2), … , Sco
A(ym). 

It is possible to do this because Sco
A(x) is a recursively computable function. 
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5. Choose the least of these values, say, Sco
A(yi). Then by the definition, mSco

A(x) 

= Sco
A(yi). 

Lemma 9 is proved. 

Theorem 8 [50]. If h is an increasing computable function that is defined in a 

decidable set V and tends to infinity when l(x) → ∞, then for infinitely many elements 

x from V, we have h(x) > C(x). 

Theorem 9. For any cofinite computable recomputable static complexity Sc(x), its 

dual measure Sco(x) with respect to R is not recursively computable. 

Proof. Let Sco(x) be a recursively computable function. Then by Lemma 9, 

mSco(x) is also a recursively computable function. 

By Propositions 2 and 5, there is a recursively computable function f(x) such that 

f(Sco(x)) ≤ lo(x) = C(x)  for almost all x. Then f(mSco(x)) ≤  f(Sco(x)) ≤ C(x) for almost 

all x and f(mSco(x))  is an increasing computable function of x as the composition of 

two recursively computable functions is a recursively computable function. 

At the same time, by Theorem 8, there are infinitely many elements x for which 

f(mSco(x)) > C(x). This contradiction completes the proof. 

Corollary 12 [30]. C(x) is not a recursively computable function. 

Corollary 13. The function mSco(x) is not recursively computable. 

Corollary 14 (Kolmogorov). The function mC(x) is not recursively computable. 

Noncomputability of Kolmogorov complexity allows one to prove 

noncomputability of communication complexity cc(f). 

Theorem 10 [24]. Communication complexity cc(f) is not a recursively 

computable function in a general case. 

To prove this result, we consider two computers (persons) C1 and C2 that are 

solving a problem f and are represented by universal Turing machines. The problem 

taken for this purpose is computation of x. Thus, we denote the problem by x. 

At the beginning of the process, x is given as input to C1 and nothing is given to 

C2 , while it is C2 , which has to compute x. That is why the value cc(x) determines the 

minimal number of bits that allow C2 to compute x. By the definition, this number is 

equal to C(x). 
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As C(x) is not a recursively computable function, cc(f), which in this case 

coincides with C(x), is also not a recursively computable function. Theorem 10 is 

proved. 

However, inductive computations realized by inductive Turing machines allow 

one to compute different dual complexity measures in many interesting cases. 

Let A be an enumerable class of recursive (subrecursive) algorithms that contains 

a universal algorithm and Sc(x) be a computable recomputable cofinite static 

complexity. 

Theorem 11. Sco
A(x) is an inductively computable function, namely, it is 

computable by some inductive Turing machine of the first order. 

Corollary 15. mSco
A(x) is an inductively computable function, namely, it is 

computable by some inductive Turing machine of the first order. 

Corollary 16 (Kolmogorov). mC(x) is inductively computable;  

The same is true for communication complexity. Let us assume that any problem f 

under consideration can be solved by some recursive algorithm (Turing machine) A. 

Theorem 12. Communication complexity cc(f) is an inductively computable 

function, namely, it is computable by some inductive Turing machine of the first 

order. 

Proof utilizes the Church-Turing Thesis and is based on the assumption, which is 

usually made in studies of communication complexity, that all protocols are recursive 

algorithms. 

Remark 8. For some classes of distributed computation problems, cc(f) is a 

recursively computable function. For example, let us consider two computers 

(persons) C1 and C2 that are solving the problem f and are represented by universal 

Turing machines. The problem taken for this purpose is computation of x. However, in 

contrast to the situation in theorem 10, x is given as input to C2 and C2 has to compute 

x. In this case, cc(x) is identically equal to 0. 

Remark 9. It is interesting to study computability of the communication 

complexity cc(f) in the case when protocols are inductive or other super-recursive 

algorithms.  
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5. Algorithmic Complexity of Inductive Turing Machines 

The dual to the length of program/algorithm description complexity measure C(x) 

with respect to a class SR of super-recursive algorithms (inductive Turing machines, 

limiting partial recursive functions, grid automata, etc.) is called super-recursive 

Kolmogorov complexity. Here is its explicit definition. 

Definition 22. The super-recursive Kolmogorov complexity SRC(x) of an 

object/word x is defined as 

SRC(x) = min { l(p);  U(p) = x} 

where l(p) is the length of the word p and U is a universal algorithm in the class 

SR. 

As any class of super-recursive algorithms contains some class of recursive 

algorithms, Theorem 1 implies the following result. 

Proposition 2. SRC(x) is a total function on N (on the set of all words in some 

alphabet). 

Here we limit ourselves to such super-recursive algorithms as the class IT of all 

inductive Turing machines of the first order. 

Let Sc be a static complexity measure. 

Definition 23. The dual to Sc inductive complexity ISco(x) of an object/word x is 

defined as 

ISco(x) = min { Sc(p);  U(p) = x} 

where U is a universal inductive Turing machine of the first order. 

A particular case of dual complexity measures is inductive Kolmogorov 

complexity, while ILo(x) is an inductive counterpart of the measure Lo(x). 

Definition 24. The inductive Kolmogorov complexity IC(x) of an object/word x is 

defined as 

IC(x) = min { l(p);  U(p) = x} 

where l(p) is the length of the word p and U is a universal inductive Turing 

machine of the first order. 

Corollary 17 [9]. IC(x) is a total function on N (on the set of all words in some 

alphabet). 
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In what follows, we assume, without loss of generality, that all considered 

inductive Turing machines are working with natural numbers that are represented by 

words in the alphabet {1, 0}. 

As we will see the function IC(x) is essentially smaller than the function C(x). 

However, IC(x) also tends to infinity as Lemma 6 implies the following result. 

Proposition 3. IC(x) → ∞ when l(x) → ∞. 

However, IC(x) grows slower than any total increasing inductively computable by 

inductive Turing machines of the first order function. 

Theorem 13. If f is a total strictly increasing inductively computable by inductive 

Turing machines of the first order function, then for infinitely many elements x, we 

have f(x) > IC(x). 

Proof.  Let us assume that there is some element z such that for all elements y that 

are larger than z, we have f(x) ≤ IC(x). Because f(x) an inductively computable 

function, there is an inductive Turing machine T of the first order that computes f(x). It 

is done in the following way. Given a number x, the machine T makes the first step, 

producing f1(x) on its output tape. Making the second step, the machine T producing 

f2(x) on its output tape. After n steps, T has fn(x) on its output tape. Since the function 

is inductively computable by inductive Turing machines of the first order, this process 

stabilizes on some value fn(x) = f(x), which is the result of computation with the input 

x. Taking the function h(m) = min { x ; f(x) ≥ m }, we construct an inductive Turing 

machine M of the first order that computes the function h(x). 

The inductive Turing machine M contains a copy of the machine T. Utilizing this 

copy, M finds one after another the values f1(1), f1(2), ... , f1(m + 1) and compares these 

values to m. Then M writes into the output tape the least x for which the value f1(x) is 

larger than or equal to m. Then M finds one after another the values f2(1), f2(2), ... , 

f2(m + 1) and compares these values to m. Then M writes into the output tape the least 

x for which the value f2(x) is larger than or equal to m. This process continues until the 

output value of M stabilizes. It happens for any number m due to the following 

reasons. First, f(x) is a total function, so all values fi(1), fi(2), ... , fi(m + 1) after some 

step i = t become equal to f(1), f(2), ... , f(m + 1). Second, f(x) is a strictly increasing 

function. This implies that fi(m + 1) > m. In such a way, the machine M computes 

h(m). Since m is an arbitrary number, the machine M computes the function h(x). 
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Since for all elements y that are larger than z, we have f(y) ≤ IC(y), there is an 

element m such that IC( h(m)) ≥ f(h(m)) and  f(h(m))  ≥ m as f(x) is a strictly increasing 

function and h(m) = min { x ; f(x) ≥ m }. By the definition, ICT( h(m)) = min { l(x) ; 

T(x) = h(m) }. As T(m) = h(m), we have ICT( h(m)) ≤ l(m). Thus, l(m) ≥ ICT( h(m)) ≽ 

IC( h(m)) ≥ m. However, it is impossible that l(m) ≽ m. This contradiction concludes 

the proof of Theorem 13. � 

Theorem 14. The function IC(x) is not inductively computable by inductive 

Turing machines of the first order.  

Proof.  Let us suppose that the function IC(x) is inductively computable by 

inductive Turing machines of the first order. It means that there is an inductive Turing 

machine M of the first order such that M(x) = IC(x) for all x. We define the function 

mIC(x) = min { IC(y) ; l(y) ≥ l(x) }. This function has the following properties: 

1. mIC(x) is a total increasing function;  

2. mIC(x) → ∞ when l(x) → ∞. 

Indeed, since IC(x) is a total function, mIC(x) is also a total function. By its 

definition, mC(x) is increasing. In addition, as IC(x) → ∞ when l(x) → ∞, the same is 

true for the function mIC(x) . 

Inductive computability of IC(x) allows us to build an inductive Turing machine 

H of the first order such that it computes mIC(x). 

By the properties of inductive Turing machines, they can include Turing machines 

as submachines/subprograms. The machine H includes three such submachines: G, M0 

, and D. They perform the following functions. 

The machine G, given a word x and a number k, generates all words z for which 

l(x) + k ≥  l(z) ≥ l(x) is true. The machine M0 has infinite number of input and output 

tapes. Given n words x1, x2, … , xn , the machine M0 simulates n steps of computation 

of the machine M with these words x1, x2, … , xn as its inputs. The results of these 

computations, i.e., the content of the output tape of M for each x1, x2, … , xn , are 

written in the output tapes of  M0 . The functioning of the machine D is described as a 

part of the functioning of H. General methods of the theory of Turing machines (cf., 

for example, [42]) allows us to build this Turing machine. 

Having these subprograms, the machine H works in the following manner: 
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1. The variable t is made equal to 1 and 0 is written in the output tape of H. 

2. The machine M0 simulates 1 step of computation of the machine M with the 

word x as its input, eventually changing the content of the output tape of H. 

3. The variable t is made equal to k + 1 where k is the previous value of t, in other 

words t:= t + 1. 

4. The machine G, given a word x and the number t, generates all words x1, x2, … 

, xn for which l(x) + t ≥  l(z) ≥ l(x) is true.  

5. Given n words x1, x2, … , xn , the machine M0 simulates n steps of computation 

of the machine M with these words x1, x2, … , xn as its inputs. The results of these 

computations, i.e., the content of the output tape of M for each x1, x2, … , xn , are 

written in the output tapes of  M0 . 

6. The machine D takes all current outputs of the machine M0 , i.e., the natural 

numbers m1, m2, … , mn that are written in the output tapes of M0 and which are the 

results of M(x1), M(x2), … , M(xn) after n steps of computation.  

7. The machine D selects the least of them (say mi) in the lexicographical order 

and compares it to the previous output of the machine H, writing in the output tape of 

H the least of these two numbers, and goes to the step 3. 

The machine M0 computes values of the function IC(x). So, after some step of 

computation the output of M0 will be equal to IC(x). After another step it will be equal 

to IC(x1) and so on. By the definition of the measure IC(x) and Proposition 3, there is 

only a finite number (say d) of such words z that IC(z) ≤ IC(x) for the given element x. 

For each word z, the process of computation of M0(z) stabilizes after some step. So, the 

output of the machine H with the input x also stabilizes after some step. It means that 

H computes the function mIC(x). 

As it is demonstrated, mIC(x) is a monotone function that tends to infinity when 

l(x) tends to infinity. Besides by the definition mIC(x) ≤ IC(x) for all x. This 

contradicts Theorem 13 and thus, concludes the proof of Theorem 14. � 

However, inductive Turing machines of the second order have greater computing 

power. 

Theorem 15. The function IC(x) is computable in the class of inductive Turing 

machines of the second order.  
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Proof. Let us consider an inductive Turing machine T of the first order. For 

simplicity, we assume that its working alphabet consists of two symbols 1 and 0. As it 

is possible to codify any system of symbols as words in such an alphabet, this 

assumption does influence the generality of the proof.  

Then it is possible to find an inductive Turing machine M of the second order 

such that it computes the function ICT(x).  

Indeed, we can build the memory E of the machine M in the following way. It is 

structured as three linear tapes: the input, output, and working tape. In addition, the 

working tape has connections between its cells of the type r. Namely, the cell with the 

number x is connected by r to the cell with the number y if and only if T(x) = y. As T is 

an inductive Turing machine of the first order, memory E and M is the machine of the 

second order. 

Assuming that words in the alphabet {1, 0} denote natural numbers, we define 

functioning of M by the following rules. 

1. M reads the number x written in its input tape and the head of M goes to the 

first cell of the working tape. 

2. If there is a connection of the type r from this cell to another cell c, M compares 

the number of c with the number x.  

3. If the number of c is equal to the number x, then M writes 1 on its output tape 

and does not change it forever. By the definition, ICT(x) = 1. 

4. If the number of c is not equal to the number x, then M writes 1 on its output 

tape and its head goes to the second cell of the working tape. 

5. If there is a connection of the type r from this cell to another cell c, M compares 

the number of c with the number x.  

6. If the number of c is equal to the number x, then M writes 2 on its output tape 

and does not change it forever. By the definition, ICT(x) = 2. 

Continuing this process, the machine M computes the function ICT(x). 

Taking a universal inductive Turing machine U as T, we obtain the statement of 

Theorem 15. 

Theorem 16. For any cofinite computable recomputable static complexity Sc(x), 

its dual measure ISco(x) is not inductively computable by inductive Turing machines 

of the first order. 
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Proof. Let ISco(x) be an inductively computable by inductive Turing machines of 

the first order function. Then as it is demonstrated in the proof of Theorem 14, 

mISco(x) is also an inductively computable by inductive Turing machines of the first 

order function. 

By Propositions 2 and 5, there is a recursively computable function f(x) such that 

f(ISco(x)) ≤ ILo(x) = IC(x)  for almost all x. Then f(mISco(x)) ≤  f(ISco(x)) ≤ IC(x) for 

almost all x and f(mISco(x))  is an increasing inductively computable function of x as 

the composition of a total recursively computable function and an inductively 

computable by inductive Turing machines of the first order function is an inductively 

computable by inductive Turing machines of the first order function. 

At the same time, by Theorem 13, there are infinitely many elements x for which 

f(mSco(x)) > IC(x). This contradiction completes the proof of Theorem 16. � 

We can prove a stronger statement than Theorem 13 that allows us to get more 

exact comparison of complexity of recursive and inductive algorithms and 

computations. To do this, we assume for simplicity that inductive Turing machines are 

working with words in some finite alphabet and that all these words are well ordered, 

that is, any set of words contains the least element. It is possible to find such 

orderings, for example, in [42]. 

Theorem 17. If h is an increasing inductively computable by inductive Turing 

machines of the first order function that is defined in an infinite inductively decidable 

by inductive Turing machines of the first order set V and tends to infinity when l(x) → 

∞, then for infinitely many elements x from V, we have h(x) > IC(x). 

Proof.  Let us assume that there is some element z such that for all elements x that 

are larger than z, we have h(x) ≤ IC(x). Because h(x) an inductively computable by 

inductive Turing machines of the first order function, there is an inductive Turing 

machine T of the first order that computes h(x). Taking the function g(m) = min { x ; 

h(x) ≥ m and x ∈ V }, we construct an inductive Turing machine M of the first order 

that computes the function g(x). 

As V is an inductively decidable by inductive Turing machines of the first order 

set, there is an inductive Turing machine H of the first order that given an input x, 
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produces 1 when x ∈ V, and produces 0 when x ∉ V. It means that H computes the 

characteristic function cV(x) of the set V. 

The inductive Turing machine M contains a copy of the machine H and a copy of 

the machine T. Utilizing the copy of T, the machine M computes the value h1(1) and 

compares it to m. Utilizing the copy of H, the machine M computes the value cV 1(1). If 

h1(1) is larger than m and cV1(1)  = 1, then M writes 1 into the output tape. Otherwise, 

M writes nothing into the output tape. After this, M finds the values h2(1) and h2(2) 

and compares these values to m. Concurrently, M finds the values cV2(1) and cV2(2). 

Then M writes into the output tape the least x for which the value h1(x) is larger than or 

equal to m and at the same time, cV2(x) = 1. This process continues. Making cycle i of 

the computation, M computes the values hi(1), hi(2), ... , hi(i) and compares these 

values to m. We remind here that hi(j) is the result of i steps of computation of T with 

the input j. Concurrently, M computes the values cV i(1), cVi(2), … , cV i(i). Then M 

writes into the output tape the least x for which the value hi(x) is larger than or equal to 

m and at the same time, cVi(x) = 1. Such cycle is repeated until the output value of M 

stabilizes. 

Each value cV i(x) stabilizes at some step t because cV (x) is a total inductively 

computable function. In a similar way, each value hi(x) stabilizes at some step q 

because h(x) is an inductively computable function defined for all x ∈ V.  Thus, after 

this step p = max {q, t}, the value hi(x) becomes equal to the value h(x). In addition, 

there is such a step t when a number n is found for which h(n) ≥ m. After this step, 

only such numbers x can go to the output tape of M that belong to V and are less than 

or equal to n. 

This happens for any given number m due to the following reasons. First, h(x) is 

defined for all elements from V total function, so those values hi(1), hi(2), ... , hi(m+ 1) 

for which the argument of hi belongs to V after some step i = r become equal to h(1), 

h(2), ... , h(m). Second, h(x) is an increasing function that tends to infinity. 

This shows that the whole process stabilizes and by the definition of inductive 

computability, the machine M computes g(m). Since m is an arbitrary number, the 

machine M computes the function g(x). 

To conclude the proof, we repeat the reasoning from the proof of Theorem 13. 

Since for all elements y that are larger than z, we have f(x) ≤ IC(x), there is an element 
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m such that IC( g(m)) ≥ h(g(m)) and  h(g(m))  ≥ m as h(x) is an increasing function and 

g(m) = min { x ; h(x) ≥ m }. By the definition, ICT( g(m)) = min { l(x) ; T(x) = g(m) }. 

As T(m) = g(m), we have ICT( g(m)) ≤ l(m). Thus, l(m) ≥ ICT( h(m)) ≽ IC( h(m)) ≥ m. 

However, it is impossible that l(m) ≽ m. This contradiction concludes the proof of the 

theorem. 

Remark 10. Although Theorem 13 can be deduced from Theorem 17, we give 

here an independent proof because it demonstrates another technique, which displays 

essential features of inductive Turing machines. 

Corollary 18. If h is a total increasing inductively computable by inductive 

Turing machines of the first order function that tends to infinity when l(x) → ∞, then 

for infinitely many elements x, we have h(x) > IC(x). 

Corollary 19. If h is an increasing inductively computable by inductive Turing 

machines of the first order function that is defined on an infinite recursive set V and 

tends to infinity when l(x) → ∞, then for infinitely many elements x from V, we have 

h(x) > IC(x). 

Since the composition of two increasing functions is an increasing function and 

the composition of a recursive function and an inductively computable function is an 

inductively computable function, we have the following result. 

Corollary 20. If h(x) and g(x) are increasing functions, h(x) is inductively 

computable by inductive Turing machines of the first order and defined on an infinite 

inductively decidable by inductive Turing machines of the first order set V, g(x) is a 

recursive function, and they both tend to infinity when l(x) → ∞, then for infinitely 

many elements x from V, we have g(h(x)) > IC(x). 

Corollary 21. The function IC(x) is not inductively computable by inductive 

Turing machines of the first order. Moreover, no inductively computable by inductive 

Turing machines of the first order function f(x) defined for an infinite inductively 

decidable by inductive Turing machines of the first order set of numbers can coincide 

with IC(x) in the whole of its domain of definition. 

In addition to the function IC(x), we also consider the function mIC(x) = min { 

IC(y); l(y) ≥ l(x) }, which was introduced in the proof of Theorem 14. This function 

has the following properties. 
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Theorem 17 and Corollary 10 imply the following result. 

Theorem 18. For any increasing recursive function h(x) that tends to infinity 

when l(x) → ∞ and any infinite inductively decidable by inductive Turing machines of 

the first order set V, there are infinitely many elements x from V for which h(C(x)) > 

IC(x). 

Corollary 22. In any infinite inductively decidable by inductive Turing machines 

of the first order set V, there are infinitely many elements x for which C(x) > IC(x). 

Corollary 23. In any infinite recursive set V, there are infinitely many elements x 

for which C(x) > IC(x). 

Corollary 24. In any inductively decidable by inductive Turing machines of the 

first order (recursive) set V, there are infinitely many elements x for which ln2(C(x)) > 

IC(x). 

If ln2(C(x)) > IC(x), then C(x) > 2IC(x). At the same time, for any natural number k, 

the inequality 2n > k⋅n is true almost everywhere. This and Corollary 24 imply the 

following result. 

Corollary 25. For any natural number k and in any inductively decidable by 

inductive Turing machines of the first order (recursive) set V, there are infinitely many 

elements x for which C(x) > k⋅IC(x). 

These inequalities allow one to obtain corresponding results on complexity of 

super-recursive algorithms from [10] and [46]. 

Corollary 26. There are infinitely many elements x for which C(x) > IC(x). 

Corollary 27. For any natural number a, there are infinitely many elements x for 

which lna(C(x)) > IC(x). 

Corollary 28. There are infinitely many elements x for which ln2(C(x)) > IC(x). 
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6. Conclusion 

All these results show that inductive Turing machines are much more efficient 

than any kind of recursive algorithms with respect to Kolmogorov/algorithmic 

complexity and many other dual complexities of algorithms. Informally, it means that 

in comparison with recursive algorithms, super-recursive programs for solving the 

same problem are shorter, have lower branching (i.e., less instructions of the form IF A 

THEN B ELSE C), make less reversions and unrestricted transitions (i.e., less 

instructions of the form GO TO X) for infinitely many problems solvable by recursive 

algorithms. 

In addition, connections between communication complexity and Kolmogorov 

complexity imply that communication complexity becomes much less for many 

problems if we use inductive computations instead of recursive computations. 

It is also demonstrated that inductive Turing machines can compute Kolmogorov 

complexity for recursive algorithms. This greater power of inductive Turing machines 

has many implications for practical problems of programming. For instance, Lewis 

[35], using boundaries that are set by the theory of algorithmic complexity, 

demonstrates limits of software estimation. Inductive Turing machines are able to 

make estimations that are inaccessible for conventional Turing machines. It is possible 

because inductive Turing machines are more powerful and have lower algorithmic 

complexity in comparison with conventional Turing machines. 

All this is true for inductive Turing machines of the first order. An interesting 

problem is to compare efficiency and complexity of inductive Turing machines of 

different orders.  
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