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A STRONG TEST OF THE VON LIEBIG HYPOTHESIS

PETER BERCK, JACQUELINE GEOGHEGAN, AND STEPHEN STOHS*

An implication of the von Liebig hypothesis is that crop production functions have

square isoquants. This paper presents a nonparametric test for square isoquants. The

procedure is used to test experimental data on com and wheat.
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A STRONG TEST OF THE VON LIEBIG HYPOTHESIS

In the 1840s von Liebig, an agricultural chemist, hypothesized his "law of the minimum"

for describing crop resPonse to inputs. An implication of this hypothesis is that crop

production functions exhibit square isoquants. His hypothesis has received critical re

evaluation by Perrin; Paris; Berek and Helfand; Llewelyn and Featherstone; and

Chambers and Lictenberg. I Perrin compared optimal fertilizer recommendations derived

from von Liebig and standard production theory. Paris used nonnested hypothesis tests

to test among five alternative production functions. His conclusion was that the von

Liebig model with Mitscherlich regimes best interpreted the experimental data. Berck

and Helfand showed how a micro-level von Liebig response could give rise to an

aggregated smooth production function. Llewelyn and Featherstone used the CERES

maize simulator to produce data to evaluate production functions and fmd evidence for

both a Mitscherlich-Baule formulation and a nonlinear von Liebig. Chambers and

Lichtenberg took a nonparametric approach, constructing an outer and inner

approximation to the data and then testing for the presence of yield plateaus and

nonsubstitutability of inputs. This paper presents a nonparametric estimation of

von Liebig response funet!ons and a test of the von Liebig nonsubstitution hypothesis.

The estimation does not require approximation and is free of assumptions about

functional form.

The von Liebig hypothesis is testable against the composite alternate hypothesis

of any other production function because any production function consistent with the von

Liebig hypothesis has right-angle (also called square) isoquants. Agronomic experiments

for nutrient response use incomplete block designs. These experimental designs include

many observations that differ in only the amount of one nutrient applied. Given the

position of the von Liebig expansion path relative to input-level combinations, the

experiments allow direct observation of multiple' points on the same isoquant. It is

reasonable to assume that such points will differ only by experimental error.2 Thus, the
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incomplete block designs of the agronomic experiments make it possible to directly test

the von Liebig hypothesis.

There are four sections of this paPer of which this is the frrst. In the next section,

the data and the experimental design that led to that data are described. In the third

section, the estimation and test methods are discussed. The fourth section includes the

results of estimation and testing and is the conclusion.

A Nonparametric Test: The Theory

The von Liebig hypothesis, when applied to experimental data from an incomplete block

design, can be tested with a set of restrictions on a regression of grain yield on dummy

variables. These tests depend upon the details of the construction of incomplete block

design experiments, which are described in the next subsection. They also depend upon

the nonsubstitution or square isoquant property of the von Liebig described next. Putting

together, in the fourth subsection, the nature of the experiments and the square isoquant

hypothesis, it is possible to characterize all possible orderings of predicted yields that are

consistent with theory. These orderings are finite, and the succeeding section shows how

to place an upper bound on the number of them. Finally, the testing methodology is

described.

Experimental Design

The agronomic experiments in question-and many others as well-were conducted

using an incomplete block design. A crop was grown on a number of experimental plots

using different combinations of inputs. In the designs considered here, there were two

inputs-water and nitrogen-that were applied in up to five different levels for a total of

25 different possible combinations of treatments. More generally, there would be two

inputs applied at n different levels for up to a total of n
2

different possible combinations.

In input space those n
2

points would make a regular grid pattern-n colwnns of n points

each or n rows ofn points each. When all points in the grid represent input levels used in
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the experiment, the experimental design is said to be complete. If some input

combinations are not included in the data~ the design is called incomplete. The

agronomic experiments that provide the data for the estimations described below utilize

an incomplete block design with only 13 different treatments. That is, 13 combinations

of two nutrients were applied to experimental plots and the yields from those plots were

measured.

Figure 1 illustrates a grid for the case of an incomplete block design where the

13 solid squares represent the included data points. Quantities of the two inputs-water

and nitrogen-are on the axes. A mean output level-yield of wheat for instance-also

corresponds to each of these points but is not shown. The data used for this paper are

from incomplete designs, so the case of complete designs will be treated only

parenthetically.

Application to Wheat and Corn Production Experiments

The data for this paper come from the appendix of Hexem and Heady and reflect

experiments in several Western states to measure crop response to water and nitrogen

over a variety of soil and climate conditions. Among the crops they chose, we have

limited ourselves to those that are determinate in their flowering-wheat and com-since

it is these crops that are believed to follow von Liebig's law of the minimum. An

experiment recorded either one or two years of production data on a particular type of

crop and place (e.g., com in Mesa, Arizona, in 1971). Generally, 44 plots were part of

each experiment allowing for some input combinations to be replicated twice and others

four times.

Null hypothesis

The null hypothesis in this study is that yields are detennined by input levels and a

normal error teIDl. Estimation under the null hypothesis is achieved by simply regressing

the observed yields on 13 dummy variables--one for each of the 13 different input
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combinations. The error term from this regression is the experimental error and should

be normally distributed. The von Liebig hypothesis will be shown in the next section to

be a restriction on the values that the dummy variables may take.

The von Liebig Hypothesis

Von Liebig hypothesized that agricultural production would be determined by a limiting

nutrient. This hypothesis l treated in historical detail by Paris, implies that the

agricultural production function should have isoquants with square comers located on the

expansion path. With inputs Xl and Xl' plateau level P, and output Y, the formal

representation of the generalized von Liebig production function (Paris and Knapp) is

given by

(1)

where u is an error term and f is an increasing continuous function. Consider an isoquant

through an input combination point, x* = (x,*, x2*), where Y = f,(XI*) = f2(x2*) S p.3

From equation (1), it is immediate that output is unchanged by adding XI or x
2

(but not

both). Any point ''to the right of' or "above" X* has the same output as x* and is on the

same isoquant. Thus, a representative isoquant consists of a horizontal leg to the right of

and a vertical leg above a right-angle comer at x*. After adding sufficient quantities of

both inputs, the plateau is eventually reached (which could be interpreted as a right-angle

isoquant in a higher dimension). Once the plateau is reached, increasing either input

leaves output unchanged.

The expansion path is the set of cost-minimizing input combinations. Since all

isoquants have "comers," any isoquant will intersect an isocost line (with strictly positive

prices) at the comer of the isoquant. The expansion path consists of the set of all such

comers. By the assumption that production is nondecreasing in inputs, the expansion

path must not slope downward. There is no reason, in general, for the expansion path to
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be linear though~ of course, it is for the special case where both f,( ) and fl ) are linear.

In figure 1~ the expansion path is the dark line beginning at the origin and going through

points A and B and ending in an arrow at the top right of, the graph. The lighter vertical

and horizontal lines are isoquants or parts of isoquants. On the expansion path and

nearest the origin are square isoquants with a comer at (1/3~ 1) and then at (1,2). A little

farther up the expansion path is the horizontal leg of the isoquant intersecting the

expansion path at (2, 3). Three further parts of isoquants are shown higher up the

expansion path. The path shown is a stylized representation of the collection of all

expansion paths that pass between the data points in the order depicted. The limited

number of input-level combinations offers no information about the exact position of an

expansion path between data points.

An upward-sloping expansion path and its associated isoquants contain all of the

restrictions imposed by the von Liebig hypothesis. In terms of the data points, the

predicted output level at a point is the same as at another point if they are on the same

isoquant and higher if on a higher isoquant. Thus, drawing an expansion path is

equivalent to ordering the predicted grain yields of the experimental treatments. For

instance, in figure 1, the input combinations (3, 5) and (5, 5) have equal output and

output greater than the input combination (4, 4). To each possible expansion path, there

is an ordering of the predicted outputs. The least restrictive statistical model that

preserves the ordering is a restricted regression of yield on dummy variables. There is

one dummy for each level of output, and the regression is run with restrictions on the

dummy variables that assure the ordering is Preserved. In the example given above, there

would be one dummy variable for the yield level achieved by points (3, 5) and (5, 5) and

a second dummy variable restricted to have a lower value for the point (4, 4). When two

expansion paths lead to the same ordering and, hence, to the same restrictions on the

dummy variables, the paths cannot be distinguished by the existing data and are
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observationally equivalent. Below, it is shown that there is a small and fmite number of

orderings induced by the expansion paths.

Orderings andExpansion Paths

A fmite set of stylized paths (the paths through the circles in figure 1), along with the

implied rules for dummy assignment, generate the set of all possible restrictions on the

dummy variables consistent with the von Liebig hypothesis. The steps are (1) defIning

the set of stylized paths, (2) showing the correspondence between stylized paths and the

division of observed input combinations into those neither below nor above the

expansion path, and (3) deriving the dummy-variable restrictions from the sets of input

combmations neither below nor above the paths.

In our graphical representation, figure 1, a stylized expansion path is symbolically

depicted as a series of five steps from the origin. Each step is either up or to the right or

both and takes the path to a higher dashed diagonal line. The paths connect the circles

that are between, above, or below data points represented by black squares. A stylized

path divides the observed input combinations into those that are not above the expansion

path (lying on a horizontal leg of an isoquant) and those that are not below the expansion

path (lying on a vertical leg of an isoquant).

The set of stylized paths leads to all the possible divisions of observed input

combinations consistent with the theory. To see this, consider an arbitrary expansion

path that does not exactly coincide with any data points. A path through the open circles

nearest the subject path on each diagonal that it crosses produces the same separation of

the data ·points into points not above or below the expansion path as the subject path

would. An expansion path through an observed input combination is treated as

producing two classifications of the observed input combinations: The point on the path

is treated alternatively as not above or below. The division of the points produced by

treating the path as not above is the same as is produced by the stylized path through the

open circle below the data point. Treating the point as not below produces the division
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that is the same as the path that goes through the circle above. Thus, the set of stylized

paths gives rise to the complete set of divisions of observed input combinations into

those not above or below some expansion path.

Now consider a specific division of points into those not above or below a

stylized expansion path. Those above are on vertical arms of an isoquant and those

below, on horizontal arms. Where two input combinations are on the same vertical (or

horizontal arm), they are restricted to have the same value for their dummy variable. In

the example in figure 1, such groups of input combinations are in the same rectangle.

For instance, the points (1, 3) and (1, 5) have the same predicted output because they are

on the same vertical leg. Where an input combination lies on an isoquant that intersects

the stylized expansion path above a diagonal and another combination lies on an isoquant

that intersects that expansion path below that diagonal, the dummy value for the upper

input combination is restricted to be greater than or equal to the value for the lower path.

In figure 1, the group labeled 1 has its dummy restricted to a value less than the groups

labeled 2/3 and 3/2 for this reason. Groups of input combinations, such as those labeled

2/3 and 3/2, that have the same intersection with the stylized path can have either

ordering of the dummy variables. A slight perturbation of the path would result in

group 3 having a higher output than two, and a perturbation in the other direction would

reverse the inequality. Groups 4 and 5 show the case where a perturbation of the path

makes the dummy associated with group 5 greater than or equal to that of group 4. Since

we cannot know a priori which is the case, both dummy level orderings are feasible for

the classification shown.

Finally, we comment on the case where a path goes directly through a data point

and there are points both above and to the right of that point. In that case, treating the

path as below the point will rank the horizontal leg of the isoquant as having a greater or

equal dummy variable to the vertical leg. Similarly, treating the path as above the point

will restrict the vertical legs dummy level weakly above that of the horizontal leg. Thus,
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the use of weak inequality constraints on the dummy variables accounts for the

possibility of equality of the two legs of an isoquant when a path goes directly through a

data point.

The set of all these stylized paths (those that go through the open circles on the

diagonals), together with the dummy assignment rules just enumerated, generates the set

of all the dummy-variable restrictions which are consistent with the maintained

hypothesis of a von Liebig production function.

Bounding the Number ofFeasible Dummy Configurations

An upper bound on the number of dummy configurations that are observationally

equivalent to some path with square isoquants can be obtained by the method of

backwards induction, illustrated in figure 2. The induction relies on the principle that,

from any circular node in the tree, the number of possible dummy-variable assignments

from that point forward in the tree depends only upon classification of data points above

and to the right of the circle in question.

The initial step in the induction is a move forward at Step 5 from one of the two

circular nodes. In either case, a forward move has no impact on the assignment of

dummy levels since there are no more data points to classify above and to the right of

these circles. Hence, there is only a single (null) dummy-variable assignment forward

from either of these nodes.

Now assume we are at an arbitrary circular node before Step 5 and, by inductive

hypothesis, suppose that the upper bounds on the number of forward dummy assignments

are valid at all successor nodes. Each circle has at most three successors, which may be

vertically up, diagonally up to the right, or horizontally right from the current circle. So

a bound on the number of dummy configurations fOlWard from the current node is the

sum of the bounds for successor nodes. This is subject to the proviso that the bound for a

diagonal move that splits horizontal and vertical isoquants is adjusted by doubling the

count of possible forward dummy configurations in that direction.
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First, consider a move up from the current node. Any dummy assignments to

input-level combinations below or to the left of the cWTent node are unaffected by this

move. All input-level combinations lying to the right of the segment between the ClUTent

node and its vertical successor are grouped into horizontal legs of square isoquants. This

grouping is unique for a vertical move. Further, the assignment of dummy-variable

levels to the horizontal isoquant groupings is unambiguously increasing. Thus, the upper

bound on the number of dummy configurations going forward from the current node to

its vertical successor equals the bound on the number of possible dummy configurations

forward from the vertical successor.

Second, consider a move directly to the right of the current node. Analogous to

the vertical successor case, the effect of such a move is to group all input-level

combinations that lie on vertical lines above the segment of the path between the current

node and its horizontal successor into vertical legs of square isoquants. Again, the

assignment of dummy levels to the isoquant groupings is unambiguously increasing

along the portion of the path from the current node to the horizontal successor. So the

upper bound on the number of dummy configurations for a move from the current node

to its horizontal successor is the bound on the number of possible dummy configurations

forward from the horizontal successor.

The final case is a diagonal move up to the right from the current node. If this

move does not terminate on a circle diagonally between two input-level combinations in

the incomplete block design, the same line of reasoning employed above applies: The

upper bound on the number of forward dummy configurations is given by the bound at

the diagonal successor. In this case, the data point below the terminal circle and all data

points on a horizontal ray to its right are grouped into a horizontal leg of a square

isoquant. Similarly, the data point above the terminal circle is grouped with any data

points vertically above it into a vertical leg of a square isoquant.
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If a diagonal move terminates at a circle between two input-level points, both

possible orderings of the monotonicity constraint need to be considered. The grouping of

points into horizontal and vertical isoquant legs is, unique, but the assignment of dummy

levels to these isoquant legs is not. Since either the horizontal or the vertical leg may be

assigned the higher dummy level, there is a doubling of the bound on the number of

possible forward dummy configurations in this case, achieved by doubling the fOlWard

bound on the diagonal successor node.

Adding, upper bounds over horizontal, vertical, and diagonal successors, including

the doubling for the diagonal case where warranted, completes the inductive step for the

current node. For illustration, consider the lower node at Step 3, labeled 3/7. The label

reflects that this node has 3 successor nodes, and there is an upper bound of 7 possible

dummy assignments forward from this node which are observationally equivalent to

some von Liebig expansion path. The three successors respectively have upper bounds

of 1, 2 and 2 possible paths forward. In calculating bound on possible dummy

configurations at the current node, we sum 1 + 2*2 + 2 = 7 possibilities. The

multiplication by 2 reflects two possible orderings of dummy levels over the horizontal

and vertical isoquants depending on the curvature of the path between the lower node

labeled 3/7 and its diagonal successor labeled 2/2.

In contrast the lower node labeled 2/2 requires no such adjustment for splitting a

path since a diagonal move to the lower node labeled 1/1 does not create any ambiguity

in assigning dummy levels (i.e., the node at nitrogen and water level 5 is unambiguously

assigned a higher dummy level).

Applying this counting principle across the entire incomplete block design

establishes an upper bound of 172 on the number of feasible dummy configurations as

verified by the counts given in Figure 2 (with the final count of 172 given in the lower

left comer of the figure). Thus, any expansion path leads to the same inequality and
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equality constraints on the observations as does one of the t 72 constructed dummy

configurations.

As illustrated in figure 3, it is possible for several different paths to map to the

same dummy-variable configurations. Paths one through four (labeled PI through P4)

are identical through the third step (circle) along the expansion path up to the right from

the origin. Beyond this point, the four paths diverge (so, for instance~ paths one and two

branch diagonally up to the right in the fourth step while paths three and four move up

vertically). It is clear that the implied assignments of dummy levels 6 through 8 (as

shown in the figure) are unchanged over these four different paths. For this reason, 172

is an upper bound on the number of dummy configurations rather than an exact count.

Starting with the method to place an upper bound on the number of dummy

variables, an algorithm was developed based on the backwards induction principle to

produce an exhaustive list of the 172 dummy configurations, which are observationally

equivalent to some von Liebig expansion path. Duplicate dummy configurations were

then pared from the exhaustive list to obtain a unique set of 82.

Testing Methodology

The first step in our testing procedure was to perform unrestricted regressions using

dummy-variable assignments to each of the 13 input levels in the incomplete block

design for each of the 12 experimental data sets tested. Regardless of the form of the

underlying production function~ the residuals at this stage are only due to experimental

error.

By the constructive argument presented previously, any expansion path for a

von Liebig production function is observationally equivalent to one of the 82 dummy

variable configurations in our set. If the von Liebig hypothesis is valid, then one of these

82 dummy configurations must fit the data within experimental error. Subject to the

assumption that observed residuals from the unrestricted regressions were distributed
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N(O, 0'2), we used a quadratic programming approach to perronn restricted regressions

for each of the 82 possible dummy-variable configurations consistent with the von Liebig

model for each of the 12 experimental data sets.

Statistical tests were then perronned comparing the unrestricted and restricted

models under each of the 82 possible dummy configurations. The tests employed were

the t-test for difference in levels of output along an isoquant and the likelihood ratio test.

The t-test may be construed as a measure of squareness, as it directly reflects relative

output levels implied by the von Liebig structure under any particular dummy

configuration. The likelihood ratio test can be interpreted as a test of fit, measuring the

loss of fit when von Liebig restrictions are added to the unrestricted regression of output

on input levels.

The t-test for any particular dummy configuration compares output levels at

adjacent input combinations along the leg of an isoquant. Differences are computed

bet\veen the levels of output at pairs of input combinations that lie on the same isoquant.

Under an assumption of normally distributed error term, if the (null) von Liebig

hypothesis is valid, the expected mean difference in output for such pairs is zero. A

standard t-test is employed to calculate this measure of squareness.

The likelihood ratio test compares the magnitude of the sum of squared residuals

under the unrestricted and restricted cases. A large increase in residuals when restrictions

are imposed is indicative that the von Liebig hypothesis is not valid for the dummy

configuration in question. As suggested by Varian, rejection of the null hypothesis for a

particular dummy configuration implies that the perturbation of observed levels of output

required to satisfy the von Liebig alternative is not statistically plausible. In other words,

the von Liebig hypothesis is too strong an assumption for the data to fit the posited

dummy configuration. If some of the 82 results do not lead to rejection of the null

hypothesis, there are candidate dummy configurations that are consistent with the von

Liebig hypothesis, from the standpoint of fit.
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In defense of employing two distinct testing approaches, note that the tests are

correlated but not equivalent. For instance, it is possible to conceive of a case where the

model fits well, resulting in a small increase in residual sum of squares for the restricted

model, but a slight upward slope in output along the hypothesized von Liebig isoquants

results in too many positive signs. Similarly, it is possible to have a large loss of fit

when the von Liebig restrictions are imposed without having a lopsided sign distribution.

Of course, if a particular dummy configuration results in large increases in residuals

across the legs of isoquants under the restricted model, significant loss of fit and

squareness will both be reflected in test results.

Conclusion

A representative summary of results is shown in figure 4. Points in the figure represent

the value of the likelihood ratio statistic, shown on the horizontal scale, and the

calculated t-statistics for squareness, on the vertical scale.

Label A in the figure illustrates points that lie outside the rejection regions for the

fit and squareness hypotheses. The corresponding dummy configurations are consistent

with both fit and squareness. Label B illustrates points that satisfy squareness but not fit.

Label C points correspond to dummy configurations that do not satisfy fit or squareness.

Since the number of independent pairs of points lying along the same isoquant

varies over dummy configuration, the range of such pairs employed in calculating t

statistics varies from 10 to 20. The critical boundaries in the figure represent a two-tailed

5% rejection limit assuming 9 degrees of freedom, resulting in cutoffs of ±2.262 for the

. t-statistic. These values are consetVative with respect to the significance level of the test

as t-statistics using more data points will be tested at a lower significance level. With

this critical region, in all 12 experiments, there were at least some dummy configurations

that satisfied the squareness criterion.

The LR statistic has a Chi square distribution with degrees of freedom given by

the number of restrictions in the restricted regression. This number varies from 5 to 12
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over the 82 dummy configurations employed, and the cutoff value of 21.03 shown in

figure 4 represents the 5% Chi square tail value assuming 12 degrees of freedom. Again,

the 50/0 significance level is consenrative. In 4 of the 12 experiments, the fit measure was

consistent with the von Liebig hypothesis while, in the remaining 8 experiments, none of

the 82 von Liebig dummy configurations resulted in values of the LR statistic that

satisfied the fit criterion.

Table 1 reports the smallest values of the likelihood ratio for those dummy

configurations that satisfy the squareness criterion for each of the 12 experiments. In no

case was the squareness hypothesis rejected because of a significantly large positive or

negative value of the mean difference in output levels along an isoquant.

The evidence presented here suggests that, at the level of aggregation represented

by Hexem and Heady's experimental plots, the von Liebig hypothesis does not

consistently explain the results. While four of the experiments showed results for which

there was some dummy configuration consistent with the von Liebig hypothesis, in the

remaining eight cases, we reject the hypothesis due to lack of fit.
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Footnotes

*Peter Berek is professor of and Stephen Stohs is a graduate student in

Agricultural and Resource Economics and Policy at the University of California at

Berkeley; Jacqueline Geoghegan is assistant professor of Economics at Clark University.

IThere are many users of von Liebig production functions including Cate and

Nelson; Feinennan, Bresler, and Dagan; Lanzer and Paris; Letey and Dinar; Seginer;

Wang and Lowenberg-DeBoer; Warrick and Gardner; and Paris and Knapp.

2yarian explores the general construction of isoquants when there is observational

error. His work does not take advantage of the special nature of right-angle isoquants

and block experimental designs.

3Berck and Helfand use Y = min(ao + alxl + Ul, bO + blx2 + U2,P + U3), where u

is the error term.
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Table 1. Minimum Likelihood Ratio Statistic for Path with Square Isoquant

Table Number Likelihood Ratio

6.06 14.4

6.13 7.0

6.16 28.1 *

6.19 63.6*

6.22 85.8*

7.01 37.7*

7.03 10.8

7.05 57.5*

7.07 3.1

7.09 33.0*

7.11 64.7*

7.13 21.5*

Note: Table Number is the number of the table in the Appendix to Hexem and Heady

that presents the data for the experiment. Likelihood Ratio is computed. See text. The

asterisk indicates rejection for poor fit.

-18-



Nitrogen .. .... ..
'@, , ,

7, .. .., ..
5 .. .. ..

" " ....
G '@ Step 5IS, ... ..... 5 .. 6 ..... .. ... ..

4 .... .... ... "... 3/2 ... ..
~ IS!.. .. 4

"
3 ..

".. ,
... ,
t\ ~ ... Step 4.. 2/3" ,

... ,
2 .. ,... ... .... ... .. .. ,.. ..

b. b., ..
1.. ..

.. ..
1

.. ... ....... .. ,.. ..
"<!t....Step 1 @ ',Step 2 $ .... Step 3

.. , ...... .. ..
1 2 3 -1 5 Water

Figure 1. A feasible production expansion path
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Figure 2. Bounding the number of dummy configurations by backwards induction
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Figure 4. LR fit statistic versus t-statistic for Tb7.03
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