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INTRODUCTION

Increasing chemical use, in conjunction with 
growing weed resistance and limited options for 

chemical weed control, has raised costs and depleted 
the bottom line for many rice producers in California. 
Many of the restrictions on farm chemical use can be 
traced to growing recognition of environmental exter-
nalities from chemicals used on the land and political 
pressure from environmental groups. For example, a 
recent district-court ruling banned the application of 
38 pesticides along Northwest salmon streams, and 
estimates of the economic impact of the decision vary 
wildly (Welch).1

Environmental groups such as Greenpeace oppose 
the adoption and diffusion of genetically modified 
(GM) food crops such as GM2 rice. This opposition is 
largely based on the uncertainty of potentially adverse 
health and environmental impacts of GM rice and the 
lack of labeling requirements for GM foods. This is a 
potentially ironic position for environmental groups 
to take, given the possible environmental advantages 
of GM crops over more conventional varieties that 
depend heavily on the use of multiple chemicals and 
applications that may prove more damaging than the 
corresponding GM regime. This issue is critical in 
California, where agriculture is intensive and a rela-
tively heavy user of chemicals.

The economic impact on growers from chemical-
use regulations depends critically on the number of 
substitution possibilities available for cost-effective 
weed control. The more options individual rice grow-
ers have to control weeds, the less severe will be the 
adverse impact of the regulations on grower profits. 
However, environmental activists, regulators, and the 
courts view a wide range of available chemicals that 
have varied environmental risks as undesirable.

In recent years, widespread adoption of GM crops 
such as herbicide-tolerant (HT) soybeans and canola 
and pest-resistant [e.g., Bacillus thuringiensis (Bt)] 
corn and cotton has provided growers with new pro-
duction alternatives that reduce chemical usage. But 
the new technologies are not without controversy as 
some consumers (especially in Western Europe) have 
expressed resistance to purchasing foods made from 
transgenic materials. In California, environmental 
groups and organic-rice farmers are also opposed to 
any cultivation of GM rice in the state.

This report examines these issues in the context of 
California rice production. In particular, we estimate 
the potential economic impacts of one alternative 
weed-management strategy, namely, cultivation of HT 
transgenic rice. Potential grower benefits, measured by 
net returns over operating costs per acre of first-year 
adoption, are calculated using a partial-budgeting 
approach3 based on a representative cost structure. 
Sensitivity analysis is then utilized to account for the 
heterogeneity in growing conditions across the state as 
well as uncertainty regarding yields, technology fees, 
and government assessments on transgenic seed. To 
augment these results, the partial-budgeting approach 
is applied to data from an independent three-year 
field trial designed to evaluate alternative herbicide 
regimes, including one transgenic rice cultivar. Po-
tential environmental benefits of the technology are 
also discussed.

The report proceeds as follows: The next section 
reviews available information on transgenic rice 
(also known as GM) and describes the potential 
impacts of grower adoption in California, including 
market-acceptance issues. We then describe our meth-
odology and present results for a typical California 

1 Welch reports that a U.S. Department of Agriculture study estimates damages to fruit growers in Washington and Oregon at 
$100 million per year while a U.S. Environmental Protection Agency study estimates the total impact to be less than $5 million 
in Washington, Oregon, and California with most of that borne by California rice farmers. These studies assumed a ban on a 
greater number of chemicals than was actually enacted.
2 We use the terms GM, herbicide-tolerant (HT), biotech, and transgenic rice in this report. Our empirical analysis is focused 
on HT rice but these results have implications for all GM crops in California and the biotech industry in general.
3 The partial-budgeting approach is a static methodology that breaks returns per acre into revenue and cost components for 
each production alternative (see the section on cost-approach methodology for more details).
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rice producer. Next, a range of estimated impacts 
based on alternative yield differentials and technology 
fees is presented, followed by a Monte Carlo analy-
sis. The subsequent section provides an economic 
analysis corresponding to the three-year field study. 

Environmental regulations for rice production and 
potential environmental impacts of the new technol-
ogy are then evaluated, and the final section discusses 
the limitations of our analysis and concludes.
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TRANSGENIC RICE AS A  
POTENTIAL COST-MANAGEMENT TOOL

In 2003, California rice growers harvested 495,000 
acres of rice, which yielded 39.6 million hundred-

weight (cwt), constituting about 16.5 percent of 
acreage and 20 percent of total rice production in the 
United States (Childs). The vast majority (96.2 per-
cent) of California’s rice is of the medium-grain variety 
while the southern U.S. states (Arkansas, Louisiana, 
Mississippi, and Texas) primarily produce long-grain 
varieties. Over the last several years, there has been 
no discernible trend in California acreage planted or 
in total volume of production.

World rice prices, on average, have been on a 
decreasing trend4 and, simultaneously, California 
growers have faced increasing production costs, 
especially in the area of weed management [U.S. De-
partment of Agriculture (USDA), Economic Research 
Service (ERS) 2002]. The top three weeds in California 
rice production are barnyardgrass, watergrass, and 
sprangletop while various other broadleaf plants, 
grasses, sedges, and cattails affect production [Gian-
essi et al.; California Rice Commission (CRC) 2003]. 
Interestingly, red rice, a weed of the same genus and 
species as domesticated rice, is not a major problem in 
California despite being the number one weed in Loui-
siana, Arkansas, and Missouri (Gianessi et al.). The 
combined effect of lower prices and higher production 
costs has put downward pressure on California rice 
grower returns and led to considerable research efforts 
to improve overall weed management through cultural, 
chemical, and other management means.

In California, both chemical (herbicide) and 
nonchemical (flooding, tillage, and management) 
techniques are used for weed control (CRC 2003). 
Recently, however, California rice production has 
experienced what has been called an “epidemic” 
of herbicide resistance, especially from watergrass, 
which has resulted in herbicide costs increasing to 
close to $200 per acre for some growers (Fischer 

2002).5 As such, technologies that allow for a small 
number of applications of chemicals where efficacy 
is not affected by the resistance problem, as would 
most likely be the case for HT rice, have the potential 
to significantly lower this component of rice produc-
tion costs.

There are currently no commercialized GM rice 
varieties anywhere in the world. However, many 
transgenic varieties are in the “development pipeline,” 
including HT, insect resistant (Bt), bacterial and fun-
gal resistant, and nutrient-enhancing “Golden Rice,” 
which produces beta-carotene, a substance that the 
body can convert to Vitamin A. A nontransgenic but 
genetically altered variety called Clearfield® IMI by 
BASF, a mutated HT variety, was released in the United 
States in 2002 (Williams, Strahan, and Webster). Ap-
proximately 200,000 acres of Clearfield® were planted 
across the Southeast in the 2003 growing season, 
accounting for about 8 percent of the seeded area in 
that region (Delta Farm Press).

Countries that are major rice producers and 
consumers, including China and Japan, are rapidly 
developing and testing GM rice varieties (Brookes and 
Barfoot). For instance, China has approved for envi-
ronmental release three insect-resistant rice varieties 
and four disease-resistant varieties and is developing 
HT, salt-tolerant, and nitrogen-fixing cultivars (Huang 
and Wang; Huang, van Meijl, and van Tongeren). Many 
of these varieties have the potential to be of value to 
producers through reduced disease or pest-control 
costs and to the environment through reduced use of 
chemicals, thereby reducing runoff and water pollu-
tion. China will likely be one of the first countries in 
the world to commercialize GM rice.

In the United States, the two most widely vis-
ible, potentially commercially viable transgenic rice 
cultivars are Roundup Ready® rice by Monsanto 
and LibertyLink® by Bayer CropScience (previously 

4 Average market prices for all rice types fell from $9.96 per cwt in 1996–97 to $4.22 per cwt in 2002–03. However, market 
prices have since risen to an average of $7.25 per cwt in 2003–04.
5 National average chemical costs for rice production that includes herbicides were $49.44 per acre in 2001, as compared to 
$79.11 in California, according to USDA, ERS data in Rice Production Costs and Returns, 2001–2002. The $200 figure was provided 
by Hill and is supported with calculations provided in this report.
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Aventis) (Gianessi et al.). Both are HT varieties—the 
former is resistant to Roundup® (glyphosate) and the 
latter to Liberty® (glufosinate ammonium), both non-
selective herbicides able to control a broad spectrum 
of weeds (Gianessi et al.). Glyphosate is currently 
registered for rice in California but not widely utilized 
while glufosinate is not registered [California Depart-
ment of Pesticide Regulation (DPR)]. As such, it is 
unlikely that local weeds have developed a natural 
resistance to these chemicals, unlike, for example, 
bensulfuron methyl (Agbios; Hill). In 1999, Liber-
tyLink® rice cleared biosafety tests by USDA’s Animal 
and Plant Health Inspection Service (APHIS) but is not 
commercially available at this time (Agbios).6

The primary direct effects of HT transgenic-rice 
adoption on the cost structure of California rice 
growers are reductions in herbicide material and appli-
cation costs and the likely increased cost of transgenic 
seed. An HT cultivar differs from conventional seed in 
that a particular gene(s) has been inserted into the rice 
plant that renders the species relatively unharmed by a 
particular active chemical ingredient, thus allowing ap-
plication of broad-spectrum herbicides directly to the 
entire planting area (Fernandez-Cornejo and McBride 
2002; Gianessi et al.). This has the potential to simplify 
overall weed management strategies and to decrease 
both the number of active ingredients (AI) applied to 
a particular acreage and the number of applications of 
any one herbicide, thus decreasing weed-management 
costs. Reduced chemical use provides the major cost 
saving for growers. Similarly, herbicide application 
costs per acre depend on the specific chemical(s) 
involved and the means of application.7 Typically, ap-
plication by ground is 60 to 80 percent more expensive 
than aerial applications (Boyd; Williams et al. 2001). 
For this study, other pest-management practices and 

fertilizer applications are assumed not to change with 
adoption of HT rice.

The cost of transgenic rice seed will be greater than 
that of conventional seed because companies that 
sell transgenic varieties typically charge a premium 
(referred to here as a technology fee) to recoup their 
research investment costs.8 Based on Roundup Ready® 
corn and soybeans (a single-gene technology currently 
on the market) as a reference point, the technology fee 
is approximately 30 to 60 percent of conventional seed 
costs per acre (Annou, Wailes, and Cramer; Gillam). 
Seed price premiums are in a similar range for Bt corn 
varieties (Benbrook). In addition to the technology 
fee, seed costs for transgenic rice will likely change 
as a result of the California Rice Certification Act 
(CRCA) of 2000 (California Assembly Bill AB 2622) 
signed by Governor Gray Davis in September 2000. 
With the full support of CRC,9 the CRCA provides 
the framework for a voluntary certification program 
run by the industry, offering assurances of varietal 
purity, area of origin, and certification of non-GM rice 
(CRC 2002a).

A second, mandatory provision of the CRCA 
involves classification of rice varieties that have 
“characteristics of commercial impact,” defined as 
“characteristics that may adversely affect the market-
ability of rice in the event of commingling with other 
rice and may include, but are not limited to, those 
characteristics that cannot be visually identified with-
out the aid of specialized equipment or testing, those 
characteristics that create a significant economic im-
pact in their removal from commingled rice, and those 
characteristics whose removal from commingled rice 
is infeasible” (AB 2622, p. 3). Under this legislation, 
any person selling seed deemed to have characteris-
tics of commercial impact, which would include any 

6 Bayer CropScience is currently projecting commercial release of the technology around 2007 (Mitten).
7 An additional consideration may be the water level at time of application. For example, herbicides that require drained fields 
may involve higher costs associated with draining and reflooding of fields at certain stages of growth. These costs are not likely 
to be substantial under most circumstances and were assumed away here.
8 At the retail level, the term “technology fee” typically refers to the “technology user agreement” associated with Monsanto’s 
practice of charging a fee per acre to growers of Roundup Ready® crops that is directly payable to the company. Other firms, 
including Bayer CropScience, do not directly charge growers but, rather, pass on the seed price premium through the seed dealer 
and/or the price of the associated herbicide. In this study, the technology fee can be regarded as the seed price premium.
9 CRC, established by California law, is composed of producers and handlers of rice. Its express purpose is developing and 
managing a national and international promotional campaign for the California rice industry and engaging in educational 
activities and research regarding the industry and its products.
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transgenic cultivars, must pay an assessment “not 
to exceed five dollars per hundredweight.” This fee 
is currently assessed at $0.33 per cwt with specific 
conditions for planting and handling divided into 
two tiers (AB 2622; CRC 2002b).10 In addition, the 
first handler of rice having these characteristics will 
pay an assessment of $0.10 per cwt (AB 2622). The 
$0.33 seed assessment is approximately 2.4 percent 
of average seed costs while the $0.10 fee represents 
1.5 percent of average output price.11 A portion of 
these assessments is likely to be passed to the grower, 
depending on the relative elasticities of supply and 
demand in the seed and milling markets.

In addition to generating cost savings, cultivation 
of HT rice will affect revenues as well. Net returns will 
be positively correlated with transgenic yield improve-
ments. HT crops are not engineered to increase yields; 
rather, they are designed to prevent yield losses arising 
from pest or weed infestation. As such, potential yield 
gains depend on the degree of the pest and/or weed 

problem and the efficacy of the HT treatment relative 
to the alternatives. Many adopters of transgenic 
corn, cotton, canola, and soybeans have experienced 
positive yield effects on the order of 0 to 20 percent 
(Marra, Pardey, and Alston; Gianessi et al.; McBride 
and Brooks; Fernandez-Cornejo and McBride 2000). 
However, under more ideal conditions, a yield drag 
may occur if the cultivar exhibiting the genetic trait 
is not the highest-yielding variety or if the gene or 
gene-insertion process affects potential yields (Elmore 
et al.). Field tests of LibertyLink® in California have 
generally found a yield drag of between 5 and 10 
percent relative to traditional medium-grain M-202 
varieties (Fischer 2002; McKenzie). Similar results 
were found for HT soybeans at the time of their intro-
duction (Elmore et al.; Benbrook). To the extent that 
a yield drag actually exists in the field, it is expected 
to quickly dissipate over time as a greater number of 
varieties with the HT trait become available.

10 Tier I rice currently includes A-201, A-301, Calmati 201, Akita Komachi, Calhikari 201, Calmochi 101, Calpearl, Hitomebore, 
Koshihikari, NFD 108, NFD 109, SP-2, Sasanishiki, Surpass, WRS-4431, Arborio, and Calriso. Tier II rice includes Black Japonica 
and Wehani (CRC 2002b).
11 Based on an output price of $6.50 per cwt.
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Another effect of GM rice cultivation on California   
growers’ returns is the potential development 

of price premia for conventional medium-grain rice 
varieties in world rice markets. Despite the predic-
tions and evidence of producer financial benefits 
from transgenic crops, there is demand uncertainty in 
world grain markets, especially in the European Union 
(EU) and Japan (Foster, Berry, and Hogan). Although 
challenged by many of the major transgenic-crop-
producing countries (the United States, Argentina, 
and Canada), the EU has prohibited imports of new 
GM crops.12 Many other countries have varying GM-
crop threshold labeling regulations, including China, 
Japan, the Republic of Korea, the Russian Federation, 
and Thailand (Carter and Gruere; Foster, Berry, and 
Hogan). These regulations have the potential to ensure 
that there is some demand for non-GM grain. Due to 
segregation requirements and the higher unit cost 
of production of non-GM crops, this introduces the 
potential for a price premium for non-GM rice. As a 
result, nonadopters may indirectly benefit from the 
introduction of transgenic rice.

There is good evidence that foreign regulations 
(especially in the EU) have affected export demand for 
transgenic crops, but there is mixed evidence of price 
premia for traditional non-GM grains. For example, 
after the United States started growing GM corn, EU 
(unprocessed) corn imports from the United States 
dropped from 2.1 million metric tons in 1995 to just 
under 22,000 metric tons by 2002 [USDA, Foreign 
Agricultural Service (FAS) 2003b]. Notably, however, 
the gap in U.S. corn sales to the EU was filled by Argen-
tina, a transgenic producer that only grows varieties 
approved by the EU (Foster, Berry, and Hogan). On 
the other hand, imports of U.S. corn byproducts to 
the EU have dropped only slightly since 1995 (USDA, 
FAS 2003b). The U.S. GM soybean export share in 
Europe has suffered as well, declining by more than 
50 percent since 1997 (Phillips and Corkindale). 
Price premia exist for non-U.S. corn in Japan and the 
Republic of Korea, traditional soybeans in Japan, and 
nontransgenic corn at elevators in the U.S., typically 

ranging from 3 to 8 percent (Foster, Berry, and Hogan). 
However, there is little evidence for price differentials 
between the GM and non-GM product in the canola 
market (Foster, Berry, and Hogan).

The global market for rice differs from the market 
for soybeans in that the majority of rice sold is for 
human consumption rather than for animal feed. As a 
result, the market-acceptance issue is likely to be a key 
determinant of the success of transgenic rice adoption 
in California (Brookes and Barfoot). As can be seen in 
Table 1, the export market for California rice accounts 
for approximately one-third to one-half of total annual 
production with Japan and Turkey as the major desti-
nations. California Japonica rice imported by Japan is 
channeled through a quota system that was negotiated 
at the Uruguay Round in 1995. Most of California’s 
rice exports are purchased by the Japanese govern-
ment and used for food aid and for other industrial 
uses, including food and beverage processing (Dyck; 
Fukuda, Dyck, and Stout). Only a small portion of this 
imported high-quality rice is released into the domes-
tic Japanese market (Dyck; Fukuda, Dyck, and Stout). 
Turkey is reportedly attempting to severely restrict im-
ports of transgenic crops through health regulations, 
despite importing corn and soybeans from the United 
States (a transgenic producer), while Japan requires 
labeling of 44 crop products that contain more than 
5 percent transgenic material as one of the top three 
ingredients (Foster, Berry, and Hogan; Carter and 
Gruere). Currently, several varieties of HT and viral-
resistant rice have entered the Japanese regulatory 
system for testing but have not yet been approved for 
food or feed use (USDA, FAS 2003a).

As an illustration of potential market resistance, 
Monsanto suffered setbacks in Japan in December 
2002 when local prefecture authorities withdrew 
from a collaborative study to develop a transgenic-
rice cultivar after being presented with a petition 
from 580,000 Japanese citizens (Rural UPdates!). 
In 2002, China imposed additional restrictions on 
transgenic crops, including safety tests and import 
labeling (Kahn). However, this action may be nothing 

MARKET ACCEPTANCE OF TRANSGENIC CROPS

12 The EU does allow three varieties of insect-resistant corn, one variety of herbicide-resistant corn, and all varieties of herbi-
cide-resistant soybeans (Foster, Berry, and Hogan).
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Table 1. Production and Export Demand for California Rice, 1999–2002

 1999 2000 2001 2002

California Rice Production (1,000 cwt)

Long Grain  340  639 1,001  448

   Percent of U.S. 0.2% 0.5% 0.6% 0.3%

Medium Grain 32,850 40,400 35,939 41,085

   Percent of U.S. 65.0% 67.9% 78.0% 78.7%

Short Grain 3,500 2,482  1,550 1,456

   Percent of U.S. 96.6% 95.4% 96.3% 96.0%

Total 36,690  43,521  38,490  42,989

   Percent of U.S. 17.8% 22.8% 18.1% 20.4%

California Rice Exports 

Total California Exports (1,000 cwt) 12,927 13,812 18,929 18,871

   Percent of California Production 35.2% 31.7% 49.2% 43.9%

   Percent of U.S. Rice Exports 14.5% 16.6% 20.0% 15.1%

Major Destinations (Percent of Total California Exports)

   Japan 74% 68% 59% 53%

   Turkeya 10% 12% 11% 15%

   Uzbekistan NA NA 6% 8%

   EU-15 (European Union) NA NA 4% NA

   Taiwan NA NA NA 13%

   Korea NA NA NA 6%

U.S. Rice Imports (1,000 cwt)

Total Imports 10,105 10,850 13,191 14,830

U.S. Rice Domestic Disappearance (Percent of Total Use)

Direct Food Use (Including Imports) 62.6% 62.1% 60.0% 60.2%

Processed Foods 22.2% 22.6% 24.5% 24.7%

Brewers’ Use 15.2% 15.3% 15.6% 15.1%

a  In August, 2003, the Turkish government ceased issuing import licenses for rice imports due to large domestic supplies.
NA = Not Available.
Notes: A subsequent policy enacted in April 2004 requires purchasers of domestic rice to obtain an import license.
Sources: USDA, ERS 2003a; University of California Agricultural Issues Center; USDA, FAS 2004.

more than a trade barrier to reduce soybean imports 
from the United States. In addition, China is worried 
that introducing biotech food crops may jeopardize 
trade with the EU. Nevertheless, China is not taking 
a back seat in transgenic crop research, as it has a 
major ongoing research program on biotech rice and 
other crops and is predicted to be an early adopter 
(Brookes and Barfoot).

There is also some skepticism in the United 
States with regard to GM crops. Aventis was sued in 
2000 over accidental contamination of taco shells 
by transgenic corn that was not approved for human 
consumption, resulting in an expensive food recall. 
The company subsequently decided to destroy its 
2001 LibertyLink® rice crop (approximately 5 million 
pounds) rather than risk its potential export to hostile 
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nations (Houston Chronicle). Kellogg Company and 
Coors Brewing Company have publicly stated that 
they have no plans to use transgenic rice in their prod-
ucts due to fears of consumer rejection, and several 
consumer and environmental groups favor labeling of 
foods made from transgenic crops (CropChoice News). 
For most food and beverage products manufactured 
by these companies, however, rice accounts for a small 
input cost share, resulting in little financial incentive 
to support GM crop technology. In May 2004, Mon-
santo announced that it was pulling out of GM wheat 
research in North America, partly due to consumer 
resistance. This has important implications for com-
mercialization of GM rice because both grains are 
predominantly food crops.

Many California rice farmers are concerned over 
the confusion regarding GM crops and do not want 
to jeopardize export market sales. This fear has been 

exacerbated by Measure D on the November 2004 
ballot in a major rice-producing county (Butte) that 
would have prohibited farmers from growing GM 
crops.13 A 2001 survey of California growers per-
formed by the University of California Cooperative 
Extension (UCCE) showed that, of the respondents, 
24 percent planned to use transgenic varieties, 37 
percent would not, and the remainder were undecided 
(UCCE 2001a). Of those growers who answered “no,” 
78 percent responded that market concerns were a 
reason. Nevertheless, if profitability at the farm level 
increases, it is likely that a subset of California produc-
ers will adopt the technology (Fernandez-Cornejo and 
McBride 2002; Marra, Pardey, and Alston; Fernandez-
Cornejo, Klotz-Ingram, and Jans). Presumably, those 
with the most significant weed problems and hence 
the highest costs would be the first to adopt.

13 The Butte County measure, along with similar measures in San Luis Obispo and Humboldt counties, were defeated. However, 
Marin, Mendocino, and Trinity counties currently ban growing GM crops.
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Cost-Approach Methodology

This study uses a partial-budgeting approach to 
estimate changes in net returns over operating 

costs for the average rice producer in California’s 
Sacramento Valley if the grower adopts transgenic 
HT rice. This approach has been used in a variety 
of ex ante studies for a number of transgenic crops 
(Annou, Wailes, and Cramer; Gianessi et al.; Fulton 
and Keyowski; Alston et al.). In addition to the basic 
analysis, we provide sensitivity analysis by varying 
yields, technology fees, and CRCA assessments us-
ing deterministic assumptions. We also use Monte 
Carlo methods to represent the stochastic nature of 
yields and output prices. We use returns over operat-
ing costs (not including overhead) as the measure of 
producer welfare.

We do not consider general-equilibrium market 
effects (potential price and quantity changes) that 
might occur with widespread technology adoption 
and domestic and foreign market acceptance. These 
effects could be estimated using marginal welfare 
models such as those in Lichtenberg, Parker, and 
Zilberman and in Sunding, assuming perfect substi-
tutability between transgenic and conventional rice 
in the eyes of consumers and utilizing predictions of 
adoption rates both within and outside California. 
Such an analysis is outside of the scope of this study, 
though the potential of these market effects to change 
both consumer and producer welfare should be noted. 
Instead, our analysis focuses on the decomposition of 
the marginal cost effects of a representative transgenic 
rice adopter in the short run, thus allowing for detailed 
comparisons between producers with heterogeneous 
cost components.

To illustrate the partial-budgeting approach used 
here, let πi represent expected per-acre returns over 
operating costs for the ith technology [i = conventional 
(C) or HT] at the time of adoption. Specifically, let

(1) πi = (Pi – c) Yi + GP – FC – SCi – HCi – ICi – CRCi,

where Pi is the farm-level price of type i rice; c is the 
yield-dependent cost of production per acre for both 

varieties; Yi is the per-acre yield of the ith rice; GP and 
FC are U.S. government payments and fixed costs per 
acre, respectively, and are not technology dependent; 
SCi, HCi, and ICi are seed costs, herbicide material and 
application costs, and interest costs per acre for the ith 
rice; and CRCi is additional assessments per acre due 
to the CRCA. Subtracting returns from conventional 
rice cultivation from those from HT rice, we obtain

(2) (πHT – πC) = (PHT – c)(YHT – YC) – (PC – PHT)YC  
– (SCHT – SCC) – (HCHT – HCC) – (ICHT – ICC) 
– CRCHT .

Equation (2) illustrates each of the aforementioned 
potential adoption impacts on the net returns of an HT 
grower. The (PHT – c)(YHT – YC) term on the right-hand 
side is the value from the yield effect, –(PC – PHT)YC is 
the effect of the price premium, and the remainder of 
the term is the cost effect of the technology.

To present the results, we first set the yield gain or 
loss, price premium, additional seed cost, and CRCA 
effects equal to zero as in Annou, Wailes, and Cramer 
so that only herbicide material and application costs 
and interest effects are captured. These results pro-
vide a base estimate of the economic rents associated 
merely with HT technology. Sensitivity analysis can 
then be conducted to predict the appropriation of 
these rents, as dictated by pricing and taxing schemes, 
or the aggregate levels of rents, in this case dictated 
by output price and yield structure. Heterogeneity of 
land, resources, and management ability can also be 
addressed in this manner.

We use two distinct methods to perform the sensi-
tivity analysis. First, we relax the assumptions of zero 
yield and seed cost effects by deterministically varying 
the yields of the HT cultivar and the technology fee of 
the transgenic seed, assuming both zero and full pass-
through of the additional CRCA assessments. This 
method provides a range of per-acre grower benefits 
in the presence of heterogeneity, as we suspect that 
eventual adopters tend to have greater weed pressure 
and thus would tend to experience significant yield 
gains from the technology. At the same time, other 
farmers may experience conditions closer to those in 

COST-APPROACH METHODOLOGY AND DATA
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the field trials and thus experience no yield advantage 
or even a slight yield drag. Furthermore, it accounts 
for appropriation of the rents in the presence of seed 
price premia and the CRCA.

The second approach is to specify probability dis-
tributions for several of the variables in the equation 
and use a Monte-Carlo-simulation analysis to obtain 
an empirical distribution of the benefits of the new 
technology. Unlike the deterministic analysis, we 
make no attempt to describe appropriation of the 
rents between parties (through seed pricing policies 
and assessments) but rather describe the distribution 
of the total surplus generated from adoption. As such, 
we identify the yield of the HT rice cultivar (YHT), the 
price of the HT cultivar (PHT), and the price premium 
of conventional rice over transgenic rice (PC – PHT) as 
stochastic variables, assume likely distributions based 
on trial data and past and current experience with 
transgenic crops, and take 10,000 draws from these 
distributions to estimate a confidence interval for the 
change in per-acre net returns from adoption in the 
presence of uncertainty.14

Cost Data 

UCCE produces detailed cost and return studies for a 
wide variety of crops produced in California, includ-
ing “Rice Only” and “Rice in Rotation.” The studies 
are specific to the Sacramento Valley region where 
virtually all California rice is produced. Figures on 
herbicide applications are based on actual use data as 
reported by DPR and UC Integrated Pest Management 
Guidelines (Godfrey et al.). The most recent study 
completed for rice is by Williams et al. (2001) and is 
used as the basis for this study.15

As the potential adoption of transgenic rice is un-
likely to significantly change farm overhead expenses 
on average, we focus on returns and operating costs 
per acre as reported in the sample-costs document. 
However, given weed-resistance evolution, changing 
regulations from DPR, and changes in the 2002 Farm 
Bill, the baseline (nontransgenic) cost scenario is 
adjusted here to account for changes in herbicide-use 

patterns, prices of herbicides and rice, and projected 
government payments. Using information from the 
1999 pesticide use report compiled by DPR, the 2001 
sample costs assume applications of bensulfuron and 
triclopyr, both broadleaf herbicides, on 25 and 30 
percent of the acreage, respectively, and applications of 
the grass herbicides molinate and methyl parathion on 
75 and 45 percent, respectively, of the acreage. These 
figures are updated using data from Rice Pesticide 
Use and Surface Water Monitoring, a 2002 report by 
DPR, as interpreted by the authors. We maintain the 
assumption of two applications of grass herbicides, 
although we increase the treated acreage to 80 and 60 
percent with one application composed of 40 percent 
molinate and 40 percent thiobencarb and the other 
composed of propanil on 60 percent of the acreage. 
Broadleaf control was adjusted to one application 
of triclopyr on 45 percent of the total rice acreage. 
Material and application costs of the herbicides are 
updated as well using information provided by UCCE 
(DeMoura). Finally, all cash operations are assumed to 
be financed at a nominal interest rate of 10.51 percent 
in accordance with the UCCE sample-costs document 
(Williams et al. 2001). As such, any change in the cost 
structure directly affects interest on operating capital, 
though the magnitude tends to be small. Overall, these 
updates result in a per-acre cost increase of $17.69 
(nominal dollars) over the 2001 cost study.

Estimated farm-level revenues are adjusted as well. 
To more accurately represent the current world rice 
market (despite the bullish outlook at the beginning 
of the 2003 growing season), we assume the market 
price per cwt at harvest is the average price from 1986 
through 2002 of $6.50 with average yields at 80 cwt 
per planted acre. Government payments are divided 
into two components: direct payments and counter-
cyclical income-support payments as described by 
USDA, ERS (2003b). In accordance with the 2002 
Farm Bill, direct payments are calculated at 85 per-
cent of average yields at $2.35 per cwt. Williams et 
al. (2001) estimate that growers of approximately 95 
percent of planted acres have received this payment 
in the past, so the total direct payments are multiplied 

14 An extension of this approach can be found in Bond, Carter, and Farzin.
15 These costs are quite similar to corresponding cost data for California rice compiled by USDA, ERS as described in a report 
entitled Rice Production Costs and Returns, 2001–2002 with the exception that UCCE costs include additional hauling, drying, 
and storage charges of approximately $145 per acre.
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by 0.95. Countercyclical income-support payments 
are calculated using the ERS formula, which we can 
summarize as 85 percent of average yields at $1.65 per 
cwt. Incorporation of these changes results in a $28.01 
increase in gross revenue per acre over the 2001 UCCE 
sample-costs study. The original and adjusted costs 
and returns per acre are reported in Table 2.

Given the public nature of experimental data on 
LibertyLink® rice grown in California and the full 
cooperation of Bayer CropScience through phone 
interviews and email correspondence, we use this 

transgenic variety as the basis for our analysis (Mit-
ten). We assume a price for Liberty® (glufosinate) 
herbicide of $60 per gallon16 and an application rate 
of 0.446 pounds of AI per acre [500 grams (g) AI 
per hectare (ha)] in accordance with the company’s 
projected label recommendations (Mitten). To fully 
represent the fact that weed infestations will differ 
across plots, scenarios for transgenic cultivation are 
presented for both one and two applications of the 
herbicide on 100 percent of the acreage.

16 Promotional materials available for LibertyLink® corn and canola advertise a price of approximately $64 per gallon while a 
search of retail prices on the internet in September, 2003, uncovered prices as low as $55 per gallon.
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Table 2. Costs and Returns of Producing Conventional and LibertyLink® Transgenic Rice in Dollars per Acre

 UCCE Adjusted
 Returns UCCE Projected LibertyLink®Rice Returns

  2001c Returns One Application Two Applications

Gross Value of Production

Primary Product, Rice $640.00 $520.00 $520.00 $520.00

Farm Bill Provision 116.00 264.01 264.01 264.01

Total Gross Value of Production $756.00 $784.01 $784.01 $784.01

Operating Costs

Seed $21.00 $21.00 $21.00 $21.00

Fertilizer 71.44 71.44 71.44 71.44

Insecticide and Fungicide 14.82 14.82 14.82 14.82

Herbicidea 68.70 83.69 16.03 32.05

Purchased Irrigation Water 59.13 59.13 59.13 59.13

Equipment Rent 14.67 14.67 14.67 14.67

Custom Operationsb 66.12 68.13 63.70 75.70

Contract Operations 143.80 143.80 143.80 143.80

Labor 59.46 59.46 59.46 59.46

Fuel, Lube, and Electricity 50.39 50.39 50.39 50.39

Repairs 13.00 13.00 13.00 13.00

Interest on Operating Capital 15.04 15.73 12.91 13.90

Assessment 7.20 7.20 7.20 7.20

Total Operating Costs per Acre $604.78 $622.47 $547.56 $576.57

Net Returns above Operating Costs  $151.22 $161.54 $236.45 $207.44 
per Acre

Net Returns above Operating Costs  $1.89 $2.02 $2.96 $2.59 
per Hundredweight

Supporting Information

Price (dollars per cwt at harvest) $8.00 $6.50 $6.50 $6.50

Yield (cwt per planted acre) 80 80 80 80

Farm Bill Provision Payments

   Direct Payments $116.00 $151.81 $151.81 $151.81

   Countercyclical Payments  $112.20 $112.20 $112.20

Effective Price per Hundredweight $9.45 $9.80 $9.80 $9.80

Note:  Adjusted UCCE returns incorporate price and chemical-use changes as estimated by the authors and detailed in the text. Projected 
LibertyLink® returns are estimated under assumptions of one and two applications of Liberty® herbicide on 100 percent of the acres.
a  Includes chemical material costs only.
b  Includes chemical application costs.
c  Source: Williams et al. 2001.
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Deterministic Results

A comparison of the costs and returns per acre 
from producing LibertyLink® and conventional 

medium-grain rice varieties is provided in Table 2. 
Compared to the adjusted sample costs reported in 
the third column of Table 2, the herbicide costs for 
the new technology are 81 and 62 percent lower in 
the one- and two-application scenarios, respectively, 
while total custom-operations costs, including applica-
tion rates, are 6 percent lower for the one-application 
scenario but 11 percent higher for the two-application 
scenario. 

The latter result is a direct consequence of the cost 
differential between ground and air applications of 
herbicides; ground applications of glufosinate (and 
propanil products such as SuperWHAM!®) cost ap-
proximately $12 per acre while air applications range 
from $6 to $7.25 per acre (DeMoura). The savings in 
chemical costs, however, drive the overall cost savings 
associated with transgenic rice and are explained us-
ing the information provided in Table 3. While the 
price of glufosinate per pound of AI is greater than 
all of the chemicals under consideration with the 

exception of triclopyr, the application rate per pound 
of AI is only 6 to 13 percent of the average herbicide 
control system. This decreases the cost of herbicide 
materials per acre by almost 62 percent as shown in 
the last column Table 2.

When these results are combined, net returns 
over operating costs increase in the range of $45.89 
to $74.90 per acre depending on the herbicide ap-
plication rate, or $0.57 to $0.94 per cwt. Thus, this 
baseline scenario, which assumes perfect substitut-
ability between medium-grain transgenic LibertyLink® 
rice and conventional varieties in terms of market ac-
ceptance (and, as a result, price) and yields, predicts 
considerable economic incentives for rice growers to 
adopt transgenic varieties with similar characteristics 
due to their increased profitability. It is important to 
recognize, however, that these results are based on 
average costs over the entire Sacramento Valley rice-
growing region and utilize aggregate data to estimate 
the conventional herbicide weed-management regime. 
Individual growers, of course, will most likely dif-
fer in regime from these averages depending on the 
characteristics of the specific operation. Those growers 

RESULTS AND ANALYSIS

Table 3. Per-Acre Chemical Use, Cost, and Gross and Active-Ingredient Application Rates

 Share Gross Active-Ingredient Price Price 
 per Application  (AI) Application per per 
 Acrea Rateb Ratec AId Acree

Ordram®/Molinate (Grasses) 0.40 30.00 4.50 $13.20 $59.40

Grandstand®/Triclopyr (Broadleaf) 0.45 0.44 0.20 $51.16 $9.98

SuperWHAM!®/Propanil (Grasses) 0.60 14.56 6.00 $8.87 $53.24

Bolero®/Thiobencarb (Grasses) 0.40 26.70 4.01 $14.67 $58.74

Liberty®/Glufosinate (Broad Spectrum) 1.00 2.45 0.45 $35.93 $16.03

Total Conventional Scenariof  31.62 7.09 $12.34 $83.69

Total Liberty® – One Application  2.45 0.45 $80.54 $16.03

Total Liberty® – Two Applications  4.90 0.89 $80.54 $32.05

a  Assumed proportion of treatment area in adjusted UCCE and LibertyLink® scenarios.
b  Pounds of herbicide per acre as assumed in UCCE (2001b) except for Bolero®, which is set at 26.7 pounds per acre per label.
c  Pounds of AI per acre as calculated by authors based on label information.
d  Price of herbicide in dollars per pound of AI applied.
e  Total price of herbicide chemical per acre (does not include application costs).
f  Conventional scenario includes applications of Ordram®, Grandstand®, SuperWHAM!®, and Bolero® at the share per acre indicated. Liberty® 
scenarios assume one and two applications of Liberty® herbicide on 100 percent of the acreage.
Sources: DPR and UCCE (2001b).
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with “superior” land, as defined by lower aggregate 
weed-management costs, would benefit the least from 
adoption of transgenic rice while those with marginal 
land or serious weed-resistance problems tend to ben-
efit more from the herbicide-management cost savings 
offered by the transgenic system and are hence most 
likely to adopt.

To further investigate these issues, the assumption 
of perfect chemical substitutability, which essentially 
drives the assumption of identical yields, can be re-
laxed. A severely infested plot with a large, resistant 
seed bank of watergrass or some other weed would 
likely experience yield increases with adoption of a 
transgenic control system. Such yield gains have been 
observed in practice for HT soybeans and HT canola in 
the range of 0 to 20 percent (Gianessi et al.; McBride 
and Brooks). However, yields are not necessarily 
guaranteed to increase for all plots. Under generally 
ideal conditions, a yield drag of between 5 and 10 
percent for medium-grain cultivars of LibertyLink® 
rice relative to conventional varieties has been ob-
served in California rice field trials. This is consistent 
with similar field trials of HT soybeans. Such losses 
would decrease revenues (and some costs, though to 
a lesser extent) and would thus reduce the increased 
profitability of adoption of this new technology. Yield 
drag should not be an issue with most growers given 
the advanced, widespread state of weed resistance to 
currently licensed chemicals for rice weed control in 
the Sacramento Valley. However, it is important to note 
that, in the short run, a few producers could actually 
experience a slight yield drag if the new technology 
was adopted; this is not expected to persist in the 
long run.17

A fall in demand for California rice due to con-
sumer concerns, coupled with increased supply as 
a result of productivity gains, could cause rice prices 
to decline over time and decreasing net returns in the 
presence of yield changes. Similarly, a price premium 
for nontransgenic rice varieties could erode net-returns 
differences between traditional and HT cultivars but 
benefit conventional rice producers. Decreased yields 
or prices for transgenic rice, ceteris paribus, would 
reduce the gross rents from the technology.

Furthermore, the seller of the transgenic seed is 
likely to charge a premium of up to 60 percent of total 
per-acre seed costs, depending on the pricing structure 
of the technology. Roundup Ready® and Bt seed for 
commercially produced transgenic crops has histori-
cally been priced from 30 to 60 percent higher than 
nontransgenic varieties, and price premia for Liber-
tyLink® corn seed range from 0 to 30 percent, although 
average chemical costs per acre are typically greater 
(Annou, Wailes, and Cramer; Gillam; Benbrook). Fur-
thermore, growers will likely pay at least part of the 
burden of the fees assessed by the CRCA. Assuming 
that these effects are constant per cwt of output, they 
can all be represented as a unit increase in costs in 
terms of net returns. Increased unit costs of this form, 
ceteris paribus, would alter the distribution of the rents 
between stakeholders (growers, handlers, owners of 
the technology) but not dissipate gross rents.

As points of reference, base assumptions on price 
and yields are $6.50 per cwt and 80 cwt per acre, so 
gross revenues from sales of rice output are assumed 
to be $520. A price premium of $0.25 per cwt for con-
ventional rice as compared to transgenic rice (about 
3.85 percent) with no associated change in yields 
would thus have the equivalent effect on net returns 
to the grower of a fee of about $20 per acre. Note that 
changing output prices does not affect the cost struc-
ture of the average farm operation and, thus, there is 
a direct, linear relationship between net returns and 
price. To calculate the impact of these effects, simple 
subtraction of the product of the price change and 
yield from the baseline scenario is appropriate.

On the other hand, both a technology fee and the 
CRCA assessments directly enter the cost structure 
and, as such, affect interest costs as well. Tables 4 and 
5 lay out these effects. A 30 to 60 percent technology 
fee, assuming a seeding rate of 1.5 cwt per acre and 
price of conventional seed of $14 per cwt, is equiva-
lent to $6.30 to $12.60 per acre. Total fees assessed 
as a result of the CRCA would currently be $8.50 per 
acre at identical seeding rates and yields of 80 cwt 
per acre, although it is unlikely that 100 percent of 
these assessments would be passed to the grower. 
Table 4 assumes no pass-through to growers of the 

17 Over time, these differences are expected to dissipate as the technology evolves and more cultivars are bred with the transgenic 
trait.



Economic and Environmental Impacts of Adoption of Genetically Modified Rice in California

15

legislated fees while Table 5 assumes the maximum 
pass-through, thus bounding the estimates. Both 
conservatively assume two applications of glufosinate 
per growing season.

Without the CRCA legislation, adoption of Lib-
ertyLink® rice is profitable for a technology fee of 
$6.30 regardless of any realistic yield assumptions 
and profitable at a technology fee of $12.60 per acre 
so long as yield drag is no greater than 8.9 percent 
(see Table 4 for more information). With zero yield 
gains, net returns per acre in this range of seed price 
premium increase by between 21 and 25 percent over 
conventional rice returns with even greater benefits 
for those experiencing positive yield gains. If we as-
sume a small price premium of, say, $0.25 per cwt, 
the technology is profitable for either yield losses of 

7 percent with no technology fee or no yield change 
with an unrealistic $25.89 technology fee. This high-
lights the importance of yield and price assumptions 
on the calculation of net benefits. However, it is clear 
that, even with a small output price premium and a 
seed price premium at the upper end of the observed 
range, the most likely adopters (those experiencing 
yield gains as a result of increased weed suppression) 
will benefit from increased returns over costs.

Allocation of maximum CRCA assessments to the 
grower slightly changes the per-acre benefits but does 
not affect the qualitative conclusions (see Table 5). 
Net returns over the baseline scenario with a $6.30 
technology fee are no longer positive with an 8.6 per-
cent yield drag nor for a $12.60 technology fee and a 
6.7 percent yield drag. However, identical yields still 

Table 4. No CRCA Assessment – Sensitivity Analysis of Net Benefits from HT Adoption LibertyLink®  
Two-Application Scenario and Net Returns of HT Cultivation over Conventional Cultivation

Technology Percent Change in Yield over Baseline Scenario (Yield Drag)

Fee per Acre –10% –5% 0% 5% 10%

 $0.00 8.92 27.41 45.89 64.38 82.87

 $2.50 6.31 24.80 43.39 61.77 80.26

 $5.00 3.70 22.19 40.89 59.16 77.65

 $7.50 1.09 19.58 38.39 56.55 75.04

 $10.00 –1.52 16.97 35.89 53.94 72.43

 $12.50 –4.13 14.36 33.39 51.33 69.82

 $15.00 –6.74 11.75 30.89 48.72 67.21

Note:  Net returns of producing LibertyLink® rice with two herbicide applications less net returns of producing conventional rice according to 
assumptions in Table 2.

Table 5. Maximum CRCA Assessment – Sensitivity Analysis of Net Benefits from HT Adoption LibertyLink® 
Two-Application Scenario and Net Returns of HT Cultivation over Conventional Cultivation

Technology Percent Change in Yield over Baseline Scenario (Yield Drag)

Fee per Acre –10% –5% 0% 5% 10%

 $0.00 1.26 19.36 37.45 55.54 73.63

 $2.50 –1.35 16.75 34.84 52.93 71.02

 $5.00 –3.95 14.14 32.23 50.32 68.41

 $7.50 –6.56 11.53 29.62 47.71 65.80

 $10.00 –9.17 8.92 27.01 45.10 63.19

 $12.50 –11.78 6.31 24.40 42.49 60.58

 $15.00 –14.39 3.70 21.79 39.88 57.97

Note:  Net returns of producing LibertyLink® rice with two herbicide applications less net returns of producing conventional rice according to 
assumptions in Table 2.
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result in net benefits of between $24.50 and $30.80 
per acre, more than enough to cover a $0.25 price 
premium for conventional rice. To bound the per-acre 
benefits, we assume a lower bound of $0.25 per cwt 
price premium (a yield drag of 5 percent and a technol-
ogy fee of $12.60 with maximum CRCA assessment) 
and an upper bound of no price premium (a yield 
gain of 5 percent and a technology fee of $6.30) with 
no CRCA pass-through. Under these assumptions, we 
conclude that the per-acre benefits of the transgenic 
HT technology are between –$7.22 and $58.10 for any 
given California rice grower with a midpoint estimate 
of $21.90. However, if we restrict attention to those 
producers most likely to adopt, as defined by at least 
zero difference in net returns, yield drag at the lower 
end of the range can be as high as 1.2 percent and 
they will still adopt.

Stochastic Sensitivity Analysis

The preceding deterministic sensitivity analysis ac-
counts for heterogeneity in land, weed infestation, 
and management ability as well as for the distribution 
of the rents generated by the technology. However, 
the magnitude of these rents is determined primarily 
through assumptions regarding yield and the price 
of rice as well as base assumptions on the price of 
alternative herbicide systems. While these point es-
timates are based on the best information available, 
another approach is to parameterize the distributions 
of those variables, which can be perceived as stochas-
tic, and use Monte Carlo simulations to estimate the 
distribution of the surplus benefits of the transgenic-
rice technology.

We take the specification in the equation and es-
timate distributions for a transgenic yield premium, 
the transgenic-rice price, and a conventional-rice price 
premium. Yields for the HT cultivar are assumed to 
vary according to a symmetric triangular distribution 
centered around 80 cwt per acre with a minimum 
value of 72 cwt (–10 percent) and a maximum value 
of 88 cwt (+10 percent). This distribution allows for 
the possibility of yield gains and losses and, with sym-
metry, tends to be very conservative given the state 
of weed infestation and resistance across the state. 
Prices for California rice are essentially determined 
on the world market and thus are not influenced by 
the individual producer. Using historical data from 
USDA for 1986 through 2002, we assume a lognormal 
distribution for output price with a mean of $6.50 
per cwt and a standard deviation of 1.67. Finally, the 
price premium for conventional rice is assumed to be 
distributed as a skewed triangular with a most-likely 
value of $0.25 (3.8 percent), a minimum value of zero, 
and a maximum value of $0.52 or about 8 percent. 
These values are consistent with experience with corn, 
soybeans, and canola cited previously (Foster, Berry, 
and Hogan).

To run the simulations, the technology fee and all 
CRCA assessments are set equal to zero and 10,000 
draws from the distributions are made for each of 
four scenarios, depending on which parameters are 
assumed random. This gives an estimate of the gross 
surplus generated by the technology before pricing 
and assessment policies determine the distribution 
of those benefits. The first and second simulations 
assume no price premium with yields only and with 
both yields and price random; the third assumes that 

Table 6. Monte Carlo Sensitivity Analysis at 95 Percent Confidence Interval, Per-Acre Benefits

Stochastic  All Producersa Yield Gainersb

Element(s) 2.5% Median 97.5% 2.5% Median 97.5%

Yield Onlyc $17.21 $46.15 $74.59 $46.36 $56.90 $77.01

Yield + Pricec 13.89 46.03 78.02 46.31 55.87 83.70

Yield + Premiumd –8.47 25.94 58.74 15.34 37.54 62.48

Yield + Price + Premium –10.88 25.77 61.51 14.90 36.76 67.30

a  “All Producers” defined as triangular transgenic yield distribution with premium +/– 10 percent.
b  “Yield Gainers” defined as that portion of all producers with transgenic premium between 0 and 10 percent.
c  Price premium set to zero.
d  Output price set to mean of distribution, $6.50 per cwt.
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yields and the price premium are stochastic with the 
output price fixed at $6.50 per cwt, and the fourth 
assumes that all three parameters are random. As per-
acre benefits do not vary with output price alone, this 
scenario is excluded. In addition, each simulation is 
run for two groups—one that exhibits yields across the 
entire range of the distribution, labeled “all produc-
ers,” and one in which attention is restricted to those 
growers who are expected to increase their yields with 
adoption of the transgenic crop. This group is labeled 
“yield gainers” and yields are distributed as a nonsym-
metric triangular distribution with a most-likely and 
minimum value of 80 cwt per acre and a maximum 
value of 88 cwt (+10 percent). The yield gainers are 
most likely to adopt the new technology, and results 
from these simulations may more accurately represent 
the distribution of benefits among those who actually 
grow transgenic rice. Results from the Monte Carlo 
analyses are reported in Table 6.

Under these assumptions, gross benefits from the 
technology are generally positive except on the lower 
end of the distributions. Yield gainers, on average, 
see a return of between $9.84 and $11.60 per acre 
more than the overall average producer with a slightly 
smaller variance due to the smaller yield variance 
assumed for this group. For both groups, introduc-
tion of the price premium increases the variability of 
the benefits by more than the introduction of output 
price variability. The price premium also reduces the 
magnitude of the surplus gains by approximately $20 
at the median.

Table 6 does not account for CRCA assessments or 
technology fees, generally bounded between $6.30 per 
acre (a 30 percent technology fee and no CRCA pass-
through) and $21.10 per acre (a 60 percent technology 
fee and full CRCA pass-through). Although not exact, 
a “back of the envelope” calculation suggests that me-
dian farm-level benefits, after accounting for these fees, 
are expected to be positive; however, not all farmers 
will see increased returns. The same is true for yield 
gainers in that median benefits are greater than $21.10 
for each scenario but the lower end of the distribution 
may experience negative returns from adoption. The 
majority in each group, however, will benefit.

More specifically, the exact probabilities of net 
returns greater than zero can be calculated. Assuming 
all three parameters are stochastic and bounding the 
fees according to the preceding assumptions, the 
probability that net returns are greater than zero for 
all producers is between 60.14 and 85.8 percent. For 
yield gainers, this range increases to between 89.4 and 
100 percent, once again highlighting the importance 
of yield assumptions on net returns and hence on 
adoption.

Three-Year Trial

To further test the potential adoption impacts of the 
LibertyLink® transgenic rice variety, we apply the 
preceding methodology to the results of a three-year 
field study conducted by Fischer (2000, 2001, 2002). 
The study covered growing seasons between 1999 and 
2001 and was funded by DPR. The exercise uses the 
weed-management regimes and corresponding yield 
measures of the Fischer study, together with the pric-
ing assumptions previously maintained, to estimate 
net returns for a hypothetical farm using identical 
herbicide rotations.

To elaborate, Table 7 describes the rice-variety and 
herbicide-treatment regime used in each year of the 
Fischer study. The project was implemented on a rice 
field in Glenn County, California, on which watergrass 
was found to be resistant to molinate, thiobencarb, 
and fenoxaprop—three of the four chemicals registered 
in the state to control grass weeds at the time of the 
study (Fischer 2002). Four treatment regimes were 
analyzed: continuous molinate each year, an inten-
sive combination of several chemicals each year, a 
rotate-mode-of-action regime in which chemicals with 
differing properties were rotated from year to year, 
and a continuous transgenic regime (LibertyLink®) 
resistant to glufosinate. Each regime was applied to 
four plots of 0.57 acres each, and indicator measures 
such as yields were averaged for each treatment group 
(Fischer 2002). It is important to note that the choice 
of treatment regime was not related to economic 
considerations but, rather, to evaluation of the effi-
cacy of differing treatment regimes under resistance 
conditions (Fischer 2002).18

18 More specifically, the authors state that their objective was to “evaluate in a systems approach key management options for 
reducing herbicide selection pressure towards resistance” (Fischer 2002, p. 6).
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To estimate potential returns over operating costs, 
the yield and herbicide regime data are used in con-
junction with the structure presented in Table 2 to 
estimate per-acre costs and revenues on a hypothetical 
farm unit. Herbicides, custom operations, contract 
operations, interest on operating capital, assessments, 
and yields vary according to the experimental data 
while the remainder of the cost components (includ-
ing a subset of custom operations) are held constant 
at the levels presented in the first table. Again, to 
provide a basis for comparison, we set output prices 
for the transgenic variety equal to the conventional 

product and the CRCA assessments and technology 
fee equal to zero.

Table 8 reports the results of the exercise. The 
first year of the trial included eight plots planted with 
LibertyLink® M-202 seed (a popular medium-grain 
variety) treated once with varying levels of glufos-
inate mixed with ammonium sulfate and eight plots 
planted with conventional M-202 seed, four of which 
were treated once with molinate and the remainder 
of which were treated once with propanil. The con-
tinuous-molinate treatment served as a baseline for 
the entire experiment as the field had demonstrated 

Table 7. Seed Type and Treatment Regime of Fischer Field Trial

Regime Rice Variety Treatment

Trial Year: 1999

Continuous Molinate Conventional M-202 Ordram® (molinate), 4 lbs AI/acre

Intensive Combination Conventional M-202 SuperWHAM!® (propanil), 4 lbs AI/acre

Rotate Mode of Action LibertyLink® M-202 Liberty® (glufosinate), 0.36 lbs AI/acre + Ammonium  
  Sulfate, 3 lbs AI/acre

Continuous Glufosinate LibertyLink® M-202 Liberty® (glufosinate), 500 g AI/ha + Ammonium Sulfate,  
  3 lbs/acre

Trial Year: 2000

Continuous Molinate Conventional M-202 Ordram® 3 lbs AI/acre followed by Ordram®, 2 lbs AI/acre

Intensive Combination Conventional M-202 Abolish® (thiobencarb), 4 lbs AI/acre + Regiment®  
  (bispyribac), 15 g AI/acre followed by Clincher®  
  (cyhalofop),  210 g AI/ha + SuperWHAM!® 6 lbs AI/acre

Rotate Mode of Action Conventional M-202 SuperWHAM!® 4 lbs AI/acre followed by SuperWHAM!®  
  6 lbs AI/acre

Continuous Glufosinate LibertyLink® M-202 Liberty®, 350 g AI/ha followed by Liberty®, 500 g AI/ha

Trial Year: 2001

Continuous Molinate Conventional M-202 Ordram®, 4 lbs AI/acre followed by MCPAa, 1 pint/acre

Intensive Combination Conventional M-202 Command® (clomazone) 0.6 lbs AI/acre followed by 
  Regiment® (bispyribac-sodium), 12 g AI/ha

Rotate Mode of Action Conventional M-202 Command®, 0.6 lbs AI/acre followed by MCPAa, 1 pint/acre

Continuous Glufosinate LibertyLink® M-202 Liberty®, 500 g AI/ha

a  MCPA (aryloxyalkanoic acid) has a variety of trade names, including Agroxone®, Agritox®, Zelan®, Chiptox®, Frasan®, and Vacate®. The 
particular brand used in the Fischer (2002) study was not documented.
Source: Fischer 2002.
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watergrass resistance to this particular chemical (note 
the average yield for this treatment).

From an economic standpoint, the intensive-com-
bination regime (propanil) was slightly superior to 
the two transgenic regimes with net returns per acre 
approximately 4 to 10 percent greater but less than 
the yield advantages of 8 to 13 percent. As operating 
costs for this treatment were higher than those for the 
transgenic rice, the difference in returns is explained 
primarily through yield advantages. It should be 
noted, however, that propanil drift is known to cause 
significant damage to fruit trees and cotton, and the 
chemical was banned in some areas at one point in 
the 1960s (Fischer 2001; Wilson). Both propanil and 
glufosinate achieved comparable control of the water-
grass weed, prompting the authors to conclude that 
both are “options to control multiple-resistant water-
grass. For these treatments to be effective in the long 
term, [watergrass] seed rain reinfestations still need 
to be much lower” (Fischer 2000). In other words, to 
control the weed in the future, multiple applications 
of each herbicide may be necessary, reducing the 
profitability of the transgenic system.

In response to this conclusion, the second trial year 
included two applications of varying chemicals for 
each herbicide regime with two treatments of propanil 
on conventional M-202 rice in the rotate-mode-of-ac-
tion regime and two treatments of glufosinate on the 
LibertyLink® plots. Two issues with regard to this 

year warrant mentioning. First, the initial planting of 
LibertyLink® seed showed poor germination and was 
reseeded at 17 days after submergence (Fischer 2001). 
The additional reseeding costs are included in Table 
8. Second, the researches mistakenly applied 350 g 
AI/ha of glufosinate in the first application rather 
than the recommended 500 g AI/ha. This presum-
ably decreases both yields and costs, ceteris paribus, 
although watergrass control was still estimated at ap-
proximately 99.99 percent for this treatment regime 
(Fischer 2001).

The economic results show that the intensive-
combination regime based on herbicide tank mixes is 
economically inferior with very small returns relative 
to the others due to relatively large herbicide material 
and application costs and little yield advantage. The 
propanil treatments again outperformed the transgenic 
regime in terms of yields and returns with advantages 
of 11 and 6 percent, respectively, despite significantly 
higher herbicide costs. However, seeding costs for the 
transgenic variety were twice as high (approximately 
$36 greater) due to the reseeding. The authors of the 
watergrass study attributed this poor germination to 
“the experimental nature of the LibertyLink® rice seed 
used in this experiment” (Fischer 2001). If the same 
yield results could be obtained without reseeding, 
the transgenic variety would dominate the alternative 
treatments with net returns of approximately $237.39, 
11.8 percent higher than the next best alternative (the 

Table 8. Three-Year Returns, Costs, and Yields Associated with the Fischer Field Trial

 Continuous Intensive Rotate Mode  Continuous 
 Molinate Combination of Action Glufosinate

Trial Year 1999

Net Returns per Acre (over Operating Costs) $31.12 $258.70 $234.73 $249.71

Herbicide Material and Application Costs (per acre) $60.30 $47.49 $24.98 $28.03

Yields (Hundredweight per Planted Acre) 42.86 89.21 78.94 82.87

Trial Year 2000

Net Returns (over Operating Costs) $201.16 $14.88 $212.76 $201.39a

Herbicide Materials and Application Costs (per acre) $70.65 $163.31 $40.17 $28.03

Yields (Hundredweight) 67.60 81.71 77.69 77.69
a  Additional reseeding due to poor germination resulted in increased costs of $36 for the continuous glufosinate (LibertyLink®) treatment. In 
the absence of this effect, net returns would be approximately $237.39.
Source: Fischer 2002.
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rotation regime). Furthermore, the transgenic regime 
offered better control of watergrass than the rotational 
treatment (Fischer 2001).

The 2001 growing season offered the opportunity 
for the third and final year of the Fischer project. No 
propanil treatment regimes were included in this 
final year, and all but the transgenic regimes used 
multiple applications of chemical herbicides. Given 
the germination problems in the previous year, the 
seeding rate of LibertyLink® rice was increased from 
1.5 to 2 pounds per acre and these increased costs are 
reflected in the results presented in Table 8.

Of the four treatment regimes compared in this 
year, the transgenic variety offered the highest re-
turns—2 percent above the next best option (rotation). 
The intensive combination offered the highest yields 
but lowest economic performance due to the high 
cost of herbicide material and applications. It should 
be noted that, even with the higher seeding rate, the 
continuous glufosinate regime with LibertyLink® rice 
in this final year offered the highest returns of any of 

the years. Perhaps more significantly, when taken as a 
three-year program of management, the regime offered 
returns that were 72 percent, 68 percent, and 1 percent 
greater than the continuous-molinate, intensive-
combination, and rotation-mode-of-action regimes. 
However, the undiscounted difference between the 
two best alternatives is $9.20 per acre, part of which 
would likely be as a technology fee.

The authors of the Fischer study concluded the 
following in their 2002 final report: “Overall, the use 
of glufosinate on transgenic LibertyLink® rice has 
demonstrated its potential as a viable strategy for the 
control of thiocarbamate-resistant watergrass.” The 
economic results presented here, based partially on 
those findings, suggest that a transgenic weed-manage-
ment strategy can be, at the very least, competitive with 
alternative pest-control regimes such as herbicide-
action rotation. Overall benefits of such a program, 
however, are subject to individual growing conditions, 
market acceptance, and the pricing strategy of the 
technology owners.
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Most commercial rice production in the Sacra-
mento Valley region is cultivated under flooded 

conditions and is heavily dependent on chemical her-
bicides and insecticides to control weeds and insect 
pests. Release of the standing water into the Sacra-
mento Valley watershed is thus an important negative 
externality arising from rice farming and one that may 
be affected by introduction of transgenic varieties.19 
For example, in the early 1980s, a large number of fish 
were killed as a result of molinate poisoning in rice 
water drainage areas while small levels of thiobencarb 
were found to adversely affect the taste of drinking 
water (CRC 2003). These findings led to implementa-
tion of the Rice Pesticides Program by DPR in 1983 
(Newhart). The program was originally designed to 
reduce molinate and thiobencarb (both herbicides) 
pollution of local waterways and expanded in the early 
1990s to include performance goals for these and the 
insecticides methyl parathion and malathion and to 
address damage done by drift and dust from aerial 
application of herbicides (Newhart; CRC 2003). Other 
chemicals such as bentazon have been prohibited or 
at least restricted in geographic use as in the case of 
propanil (CRC 2003). Furthermore, the Central Val-
ley office of the California Regional Water Quality 
Control Board passed an amended conditional waiver 
of waste discharge requirements for irrigated lands in 
2003. This waiver tightens quality standards for water 
released from agricultural uses in the Central Valley 
as well as requires monitoring and reporting of water 
quality and implementation of management practices 
that improve the quality of discharged water. Coverage 
under the conditional waiver can take the form of a 
“coalition group” with a common interest, such as 
the rice industry, and CRC has indicated that a com-
modity-specific rice waiver is preferred (CRC 2003). 
Efforts to obtain this specific waiver are ongoing and 
have been received favorably by the board given the 
success of the rice pesticides program (Hill).

Many of the chemicals currently registered for use 
on rice in California require holding periods for flood-
waters that range from four to fifty-eight days in length 

and vary by water-management system (Newhart). 
Ideally, these programs allow the chemicals to degrade 
in the water, resulting in ambient concentrations at 
least 90 to 99 percent less than the initial application 
(Newhart). While these programs are generally effec-
tive in holding ambient concentrations at monitoring 
stations at or below maximum allowable levels, with 
some exceptions, significant holding periods can affect 
water depth and salinity within farms and thus initial 
establishment of rice plants and yields (Scardaci et 
al.; Newhart). The program has been quite successful; 
peak molinate concentrations have been reduced by 
better than 90 percent in the Sacramento River and 
Colusa Basin Drain since the beginning of monitor-
ing and thiobencarb concentrations have declined as 
well, although by a lesser percentage (CRC 2003). It 
should be noted that peak concentrations are an im-
perfect indicator as weather events and other sources 
of variability can significantly affect detectable levels 
of these chemicals.

The environmental and health effects of leaching 
and runoff of chemicals in U.S. agriculture are diffi-
cult to quantify, primarily due to measurement issues 
and uncertainty. Approaches to estimation of these 
external costs vary and include using abatement or 
clean-up costs directly; developing proxy variables 
for environmental damage, including pounds of AI 
applied or indices of chemical properties; and as-
suming a dollar value per unit of damage. Contingent 
valuation methods have also been used to estimate 
consumers’ willingness-to-pay to avoid exposure 
through risk reduction (Brethour and Weersink; 
Swinton and Williams).

Although admittedly simplistic, one proxy for 
environmental damage is total pounds of chemicals 
applied. Based on 2002 acreage and use figures from 
DPR and the chemical labels, approximately 17.2 mil-
lion pounds of herbicides were applied that year with 
3.86 million pounds of active chemical ingredient. As 
shown in Table 3, total pounds of chemical herbicides 
applied per acre are expected to decrease by at least 
84 percent with adoption of the HT system and total 

ENVIRONMENTAL IMPACTS

19 Rice-straw burning, now limited in the Sacramento Valley through permits, contributes to air pollution in the region. However, 
these externalities are not likely to be affected by introduction of HT rice.
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poundage of AI is predicted to decrease by at least 87 
percent under the two-treatment scenario. Cultiva-
tion of HT rice could thus decrease total herbicide 
poundage by between 7.27 and 10.9 million pounds 
and AI poundage by between 1.69 and 2.53 million 
pounds, assuming 50 to 75 percent adoption. How-
ever, this simple measure ignores toxicity, mobility, 
and persistence of different chemicals in the soil and 
water that are likely to significantly affect external 
damage costs (Brethour and Weersink). Similarly, 
the mandatory water-holding periods currently in 
place are designed to dissipate the damage done by 
conventional chemicals.20

While this study makes no attempt to further quan-
tify the reduced chemical damages from adoption of 
transgenic rice, several other projects have addressed 
the relationship between water quality and HT crops 
and are summarized in Gustafson. Computer-simula-
tion models used by the U.S. Environmental Protection 
Agency (EPA) (Wauchope et al.) have predicted lower 
levels of chemical concentrations in runoff from trans-
genic corn systems than from conventional corn 
production. Furthermore, the herbicides used in the 
transgenic system have a “favorable chemical profile” 
in that EPA’s water-quality standards allow for greater 
concentrations of these chemicals in water than the 
traditional herbicides used in conventional corn 
production (Gustafson, p. 1). Case studies cited in 
Gustafson for Bt cotton, HT corn, and HT soybeans 

confirm these results since concentrations of herbi-
cides in watersheds were well below standards for a 
number of diverse geographic areas.

We conclude that, while most, if not all, pesticides 
applied in agricultural systems introduce some degree 
of risk and thus potential damage to the environment, 
the reduced application rates and chemical proper-
ties of glyphosate (Roundup Ready®) and glufosinate 
(Liberty®) have the potential to further reduce external 
damage costs from rice production. In addition, pro-
duction benefits, specifically in terms of yields, may 
be enhanced if the holding period for floodwater is 
reduced for the transgenic system due to the lowered 
toxicity of the associated chemicals. This is in ac-
cordance with previous studies that concluded that 
cultivation of transgenic crops, in general, is consistent 
with increased environmental stewardship (Carpenter 
et al.). However, it should be noted that these conclu-
sions are based on the assumption that weeds resistant 
to currently available chemical controls in California 
do not exhibit this property towards glyphosate and 
glufosinate. As with many chemical agents, repeated 
applications of the same AI on the same plot may 
result in self-selection of weed varieties resistant to 
that ingredient, thus potentially reducing the environ-
mental benefits of transgenic-crop cultivation in the 
long run as producers increase applications or shift 
to alternative means of control.

20 To the extent that holding periods are currently required for conventional production technologies, they are reflected in the 
earlier analysis.
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This study has used a static, partial-budgeting ap-
proach to estimate the potential net economic 

grower benefits associated with adoption of one culti-
var of GM rice in California. Scenarios were developed 
based on average cost data and actual pesticide-use 
data, as well as on a three-year field study of herbicide-
resistant weeds. Sensitivity analysis was conducted 
using both deterministic and stochastic methods to 
represent heterogeneity across growers and uncer-
tainty regarding modeling assumptions. The results 
suggest that a production strategy including GM rice 
varieties could lead to significant economic benefits 
for many growers in at least the near term. Those most 
likely to benefit from adoption of transgenic rice are 
growers with relatively high herbicide material and 
application costs, likely as a result of weed resistance, 
and those who are restricted to certain chemical agents 
as a result of state or national regulations. Field-trial 
results suggested that a transgenic weed-management 
strategy over multiple years is competitive with a 
rotational strategy under certain assumptions and 
dominates a continuous-molinate and intensive-her-
bicide regime. These findings are generally consistent 
with ex post transgenic crop analyses for corn, soy-
beans, and cotton, most of which show positive or 
neutral economic benefits from adoption (Fernan-
dez-Cornejo and McBride 2002; Marra, Pardy, and 
Alston; Fernandez-Cornejo, Klotz-Ingram, and Jans). 
In addition, water quality degradation is not likely to 
occur with transgenic rice adoption as chemical-ap-
plication rates are expected to sharply decline and the 
toxicity of the associated chemicals is generally less 
than more traditional herbicides.

We must point out that this study has certain 
limitations. First, these results are based in large part 
on ex ante assumptions regarding outputs and inputs, 
especially the relatively lower cost of glufosinate 
herbicide per gallon relative to the alternatives. It is 
expected that Bayer CropScience will set the price of 
glufosinate in accordance with its portfolio of trans-
genic crops (primarily canola and corn at present), 
so the introduction of transgenic rice will not affect 
the price of this herbicide. However, this is far from 

certain. Additionally, this study does not account for 
the response of other chemical producers who may 
change their pricing strategy in response to the intro-
duction of HT rice cultivars.

Second, this analysis is static or, in the case of 
the field trial, a sequence of static analyses. Thus, 
several important elements that have been purposely 
excluded may impact the conclusions. Among these 
is the lack of dynamic effects in the model, such as 
the potential of glufosinate resistance in rice fields 
through the natural selection process or the effects 
on watergrass or other weed seedbanks (Carpenter et 
al.). There has been little evidence of such resistance 
in the literature; nevertheless, it may become more of 
an issue if significant adoption occurs.

Third, we assume that GM rice will be accepted by 
the marketplace, that only a small share of the market 
will be willing to pay a non-GM price premium, and 
that the costs of segregating non-GM from GM rice 
will be modest. By the time GM rice is adopted in 
California, the political opposition to biotechnology 
will have likely declined in the state and elsewhere. 
More importantly, California may not be the first 
growing region in the world to adopt transgenic rice. 
If GM rice is first adopted in Asia, then adoption in 
California will have only a small impact on the mar-
ket. Clearly, more research is required on the market 
response to GM rice.

Finally, general-equilibrium price and quantity ef-
fects that impact both consumer and producer welfare 
are not included in this analysis. In a highly differenti-
ated market like the rice market in California, such 
effects are most likely at the aggregate market level and 
would impact the estimation of the total surplus lost 
from banning GM rice. However, we chose to focus our 
analysis at the agent level (our median representative 
producer) via the partial-budgeting approach and we 
reported sensitivity results assuming exogenous mar-
ket conditions. Therefore, our model does not require 
forecasting of potential adoption rates or estimating 
systems of regional supply and demand (or their as-
sociated elasticities) for the conventional and biotech 
markets, thus considerably simplifying the analysis.

CONCLUSIONS
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Notwithstanding these caveats, we believe that our 
overall conclusions are robust in that transgenic rice 
will most likely benefit the California rice industry. 
Further economic research will sharpen the estimates 
provided in this report. If, as this study suggests, 

cultivation of GM rice varieties offers significant 
economic advantages to growers, there is little doubt 
that the technology will be embraced by California 
rice growers.
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