
UCLA
Recent Work

Title
Models for Concurrent Product and Process Design

Permalink
https://escholarship.org/uc/item/0dg428k9

Authors
Ahmadi, R. H.
Roemer, T. A.

Publication Date
2009-05-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0dg428k9
https://escholarship.org
http://www.cdlib.org/

Models for Concurrent Product and Process Design

Thomas A Roemer

The Rady School of Management

University of California, San Diego

La Jolla, CA 92093-0093

troemer@ucsd.edu

Reza Ahmadi

Anderson School of Management

University of California at Los Angeles

Los Angeles, CA 90095

rahmadi@anderson.ucla.edu

May 6, 2009

Abstract

We propose procedures to address product design and manufacturing
process configurations concurrently in environments characterized by large
degrees of product proliferation. Exploiting the intrinsic flexibility of prod-
uct and process design, we present two approaches that synchronize pro-
duction flows through the manufacturing system. These approaches inte-
grate product and manufacturing system design decisions with operational
concerns and provide powerful means for managing production in environ-
ments characterized by a proliferation of products. Experimental results
show that the propsed methods can substantially reduce manufacturing
lead times, work in process (WIP), and overall system complexity.

Keywords: Design Flexibility, Process Flow, AND-OR Trees, Heuristics.

1

1 Introduction

Over the last two decades a significant shift has taken place in the source of competitive advantage for

manufacturing companies. Traditionally, firms made use of economies of scale to produce highly standardized

products to satisfy massive and homogeneous markets. Nowadays, to stay competitive, firms need the

capability to produce a broad variety of high quality products, and must exhibit rapid responsiveness to

dynamic and increasingly fragmented markets by introducing new products frequently at short lead times

(c.f. Blackburn, 1992 or Pine, 1999).

While standardized products were usually produced on dedicated assembly lines, under product variety

most manufacturing systems are operated and scheduled as general job shops where the product types move

independently along their own routes through the manufacturing system. Most commonly, such systems

are controlled by myopic scheduling rules and require large queues of Work-In-Process (WIP) inventory to

maintain high workstation utilization (Stecke, 1985). Moreover, scheduling is a time consuming process that

requires highly skilled personnel (Lin and Solberg, 1991) and even sophisticated methods cannot guarantee

acceptable WIP levels (Lee and Johnson, 1991). Together with WIP, manufacturing lead times also increase,

thus countervailing and possibly jeopardizing the responsiveness that is so important in dynamic markets.

In most manufacturing plants, the largest part of the manufacturing lead time is spent waiting in queues

(Umble and Srikanth, 1990); in some instances over 90%, as demonstrated by Karmarkar et al. (1985).

These drawbacks vanish if the products can follow a Synchronized Flow (Ahmadi and Wurgaft, 1994a).

In synchronized flows all products follow the same linear flow through the machines, thus moving smoothly

and continuously from one operation to the next, with no waiting in queues. Small and medium size products

can migrate through the system on pallets containing the entire product mix according to the ratios of their

total demands. If, in addition, setup times are negligible, as is often the case if flexible manufacturing

systems (FMSs) are employed, then batch sizes should be as small as possible and each pallet should contain

a Minimal Part Set (MPS), which is the smallest set of products that satisfies the ratios of the total

product demands. Many modern manufacturing systems, such as those for auto parts, computer boards and

mechanical tools operate under these conditions. Throughout this paper we will assume an environment

where these conditions hold and where each machine can be staged with c different operations.

A synchronized manufacturing system thus closely resembles the classical assembly line and bears all of

its advantages, yet accommodates product variety. TheMPSs are repetitively produced, a completedMPS

leaves the system at the throughput rate and a newMPS is released into the system. Production scheduling

and routing are thus easily accomplished and errors are unlikely. No queues can develop at the machines,

keeping WIP low, lead times short and throughput high. Additional savings arise because the linear flow

2

only requires inexpensive equipment such as conveyors or stationary robots, rather than expensive labor or

automatically guided vehicles, common in FMSs. The simplicity of the flow and the low WIP levels are also

instrumental in detecting product defects early, thus further enhancing the system’s responsiveness.

Ahmadi and Wurgaft (1994b) show how to partition product lines and design manufacturing processes to

achieve synchronized product flows. However, attainability of this goal and its effectiveness depend largely

on the product designs, in particular on the operations required and the structure of the manufacturing

processes. In this paper we propose to utilize the inherent flexibility of product design to develop products

that are amenable to a synchronized flow manufacturing system.

To model the flexibility in product design, we adopt the concept of AND-OR trees (Marple, 1961) to

represent different product design choices. In particular, we assume that the different design choices for each

product can be represented by an acyclic AND-OR digraph, whose nodes represent operations and whose

arcs present precedence constraints between the operations. The core question in this paper is how product

designs should be selected from their AND-OR tree representations, so that they can conform to the same

linear flow, a property that we will refer to as process compatibility. More specifically, we will introduce

algorithms that search through AND-OR trees to find process compatible designs while considering system

capacity and throughput.

The example in Figure 1 illustrates how the choice of product designs impacts the production flow: Two

products must be produced simultaneously and for each product one of two different designs, represented by

the graphs1 in Figure 1, must be chosen. Each of five available machines can perform exactly one operation,

so each operation, represented by nodes, has to be assigned to a different machine. Notice that regardless

of the design choice for product 1, choosing G22 will require the performance of eight different operations

for the manufacturing of both products, which exceeds the capacity of the five available machines. Figure

1a shows the assignment of operations to the machines and the production flow for the case when designs

G11 and G
1
2 are selected. In this case, the pallets have to revisit the machines where operations 3 and 4 are

assigned and contentions are likely. Figure 1b shows the case when design G21 is chosen for product 1. In

this case, both products can conform to the same linear flow and each MPS can move from one machine to

the next without conflicts.

Clearly, given sufficiently large capacity, it is always feasible to obtain a synchronized flow. However,

unless product demands are quite high, this will inevitably lead to underutilized capacities. It is therefore

imperative to find designs that are similar in the operations they require, yet do not cause reentry on

1 In the next section we show how a single AND-OR tree can embed all design choices for a given product, thus obliterating
the need to graph each design choice individually as in Figure 1.

3

1 2 53

1 2 43

1 4 53

G1
1

G1
2

Product 1

Product 2

M1
1

M2
2

M3
4

M5
5

M4
3

M1
1

M2
2

M3
4

M5
5

M4
3a)

b)

6 7 98 G2
2

G2
1

1 2 53

1 2 43

1 4 53

G1
1

G1
2

Product 1

Product 2

M1
1

M2
2

M3
4

M5
5

M4
3

M1
1

M2
2

M3
4

M5
5

M4
3a)

b)

6 7 98 G2
2

G2
1

Figure 1: Effect of Product Design Choices

machines so that all products can follow the same linear unidirectional flow.

The remainder of the paper is organized as follows. In Section 2, we briefly discuss the concept of AND-

OR design trees that are commonly employed to express flexibility in product design choices. In Section

3, we introduce a model and a solution procedure that selects process compatible designs under capacity

constraints to yield well balanced lines with short lead times. A generalization of this model is presented in

section 4, where we segment the product set into several process compatible product groups and evaluate

the trade-offs between capacity requirements, WIP and lead times that arise in this model. Before we

conclude the paper, we illustrate our procedure with the help of a 5-product example and benchmark their

performance under a variety of different scenarios.

2 Product Design Flexibility

Product design can be regarded as a process that translates broad functional objectives successively into

more and more detailed engineering specifications which eventually determine the final product in its entirety

and provide all the necessary information for the product to be manufactured (Eastman, 1988). Inevitably,

during this process, alternatives that are quite similar in terms of costs and quality have to be evaluated,

4

so that different design teams, when confronted with the same design tasks, usually come up with different

solutions that satisfy the stated objectives (Stoll, 1990). Unfortunately, design teams all too often disregard

the impact of their decisions on the manufacturing process, in particular when several products are designed

concurrently, so that much of the potential flexibility remains unexploited (Whitney, 1988).

A common procedure for dealing with the complexity of design problems is decomposition (Hubka and

Eder, 1988; Ulrich and Eppinger, 1995). The design problem is broken down into a series of subproblems such

that the solution of all or some of them results in the solution of the original problem. These subproblems

can be broken down further into smaller problems until the remaining problems are easily solved. The

decomposition of complex design problems, in connection with the evaluation of alternative design choices

gives rise to the concept of AND-OR tree representations (Marple, 1961; Eastman, 1988). AND-OR trees

formally summarize all design choices in one graph and provide thus the opportunity to make an appropriate

choice in the context of all design alternatives and the product’s environment, such as existing product lines

and manufacturing processes.

Formally an AND-OR tree is like any tree, but the vertices are partitioned into two distinct subsets,

AND- and OR-nodes. The AND nodes define sets of components and technologies that are necessary in the

design. The OR vertices represent alternative technologies and configurations.

Definition 1 A subset of vertices of an AND-OR tree is said to be a solution if it satisfies the following

three properties:

• The root vertex belongs to the solution.

• If a non-terminal AND-vertex belongs to the solution, then all of its children belong to the solution.

• If a non-terminal OR-vertex belongs to the solution, then exactly one of its children belongs to the
solution.

Figure 2 shows an example of such an AND-OR tree. Throughout the paper, we adopt the convention

that OR-nodes are represented by squares, AND-nodes by circles and all nodes with less than two children

are considered AND-nodes. The shaded nodes indicate one particular solution to this tree. The levels of

the vertices in an AND-OR tree define hierarchical relations among the vertices. The higher the level of a

vertex, the greater the level of detailed information for a part or component it contains. The vertices at the

lower levels of the AND-OR tree represent alternative system or subsystem designs, encompassing many of

the product’s components and functions.

Lin and Solberg (1991) take the concept of AND-OR trees one level of detail further by translating the

functional requirements into detailed engineering descriptions that specify all the necessary operation de-

scriptions such as tooling, cutting positions, processing times and precedence relations among the operations.

5

1

10 11

3

65

9

87
2

4

1

10 11

3

65

9

87
2

4

Figure 2: AND/OR Tree

Incorporating engineering descriptions into AND-OR trees adds additional flexibility to the design process

since different operation types may yield the same results. For example, the same surface may alternatively

be obtained by turning, slotting or planing (Victor, 2005) or a slot can be milled in one pass with a wider

cutter or in multiple passes with a narrower tool (Rembold et al., 1985). The resulting structure from this

translation is an AND-OR digraph representation of the different product designs in regard to their oper-

ations. In this representation, the nodes represent operations and the arcs represent precedence relations

on the operations. Henceforth we will refer to such product representations as Process Trees (PTs). To

preserve the tree structure, duplication of nodes as well as dummy nodes, representing logical constraints

but not operations, are also allowed. A solution to a PT provides sufficient detail for the product to be

manufactured and hence for the conditions for synchronized flow to be considered. For a more detailed

description of AND-OR digraphs representing alternative process relations we refer the reader to Lin and

Solberg (1991). Figure 3 shows the Process Tree representation for the two different design choices in Figure

1 where unnumbered nodes represent dummy nodes.

In the remainder of the paper, we assume a number of products are given, and for each product the PT

has been obtained. We also assume that the alternative designs for the parts, given by the AND-OR trees,

are similar in terms of general cost and conformance quality, that is inferior solutions have been deleted

from the AND-OR trees of the products before obtaining the PT s. Finally, we assume without much loss of

generality, that no individual design requires the same operation more than once.

6

Product 1

Product 2

5

1 2
4

1 4 53

6 7 98

3Product 1

Product 2

5

1 2
4

1 4 53

6 7 98

3

5

1 2
4

1 4 53

6 7 98

3

Figure 3: Process Tree Representation

3 Product Design Selection for Synchronized Flow

In this section, we study how a process compatible design selection can be determined from the process tree

representations for the different products. However, searching merely for a compatible solution does not

necessarily warrant satisfactory capacity requirements, WIP, lead times and throughput rates. We thus need

to incorporate these aspects in our search for a “good” design selection. Notice that these four performance

criteria are intimately linked in synchronized flows. The number of machines M (capacity) is equal to the

number of MPSs (WIP) in the system, since there is one MPS at each machine. The lead time in turn is

the product of the number of machines and the maximum workload of the machines, which is the inverse

of the throughput rate. Thus it is sufficient to address capacity and workload concerns in the search for a

process compatible solution. We will address the former by requiring that the total number of operations

required by a process compatible solution does not exceed the total staging capacity of a given number of

machines.

To obtain a high throughput solution we will choose the designs that minimize the maximum processing

time of the operations. If the machines are not flexible (c = 1), then this solution indeed maximizes the

throughput. Otherwise, the maximum workload of the machines, and thus the throughput, depends not only

on the chosen designs but also on how the operations are assigned to the machines. Given a design selection,

a throughput maximizing assignment can be determined by solving the classical line balancing problem with

the distinction of the additional constraint for the staging capacity. Hackman et al. (1989) concluded that

7

solutions to the line balancing problem improve quickly when the maximum processing time of the operations

decreases. Based on this result, we select the designs with the smallest maximum processing time, and thus

avoid the difficulty of addressing design selection and line balancing simultaneously.

Modeling this step is central to the next section where we introduce the Design Selection Problem (DSP).

If the DSP is feasible, then its solution yields a process compatible solution that complies with the capacity

requirements. In a second step, any of the heuristics suggested in the literature can be applied to this solution

to solve the line balancing problem. The line balancing problem has been studied for at least six decades;

a recent search on Google Scholar yielded 1620 results. Discussions and overviews of existing approaches

include the research by Salveson (1955), Ignal (1965), Mastor (1970), Dar-El and Cother (1975), Baybars

(1986), Hackman et al. (1989), Hofmann (1992), Berger et al. (1992) and Boctor (1995), Erel and Sarin

(1998), McMullen and Tarasewich (2003), Becker and Scholl (2006), Dolgui et al. (2006), or Bock (2008).

3.1 Design Selection Problem

The notation and formulation of the DSP follow:

Parameters
P Set of different products.
N Set of different operation types.
Dp Set of different designs for product p.
sip,d Contribution of product p to the processing time of operation i if design d is chosen.

aip,d

½
1, if design d for product p requires operation i.
0, otherwise.

M Number of available machines.
c Staging capacity of the machines.

Indices
p Product indices, p = 1, ..., |P |.
d Design indices, d = 1, ..., |Dp|.
i Operation indices, i = 1, ..., |N |.

Variables
W Maximum processing time.

yp,d

½
1, if design d for product p is chosen.
0, otherwise.

xi

½
1, if operation i is performed.
0, otherwise.

DSP Minimize W s.t. X
p∈P

X
d∈Dp

sip,d · yp,d ≤W ∀i (1)

8

xi ≥ aip,d · yp,d ∀i, p, d (2)X
i∈N

xi ≤M · c (3)

X
d∈Dp

yp,d = 1 ∀p (4)

The selected designs must be compatible (5)

yp,d ∈ {0, 1} ∀p, d (6)

xi ∈ {0, 1} ∀i (7)

Constraints (1) define the total processing times for the operation. The total processing time of an

operation depends on the designs requiring this operation and on the volume of the products corresponding

to those designs. The objective function minimizes the largest operation processing time, so that the line

balancing problem yields a well balanced line. Constraints (2) indicate whether an operation i is required

by any of the selected designs. Constraint (3) imposes the total staging capacity of the machines and, since

capacity is closely linked to WIP and lead times, also checks these two performance criteria. Constraints

(4) indicate that exactly one design must be chosen for each product. Constraint (5) is the compatibility

constraint which require the superimposition of the selected designs to be acyclic. If the superimposed graph2

has no cycles, then all the parts can be processed in a single pass through the production system.

Note that in this formulation of the problem no operation can be assigned to more than one machine.

However, Ahmadi and Wurgaft (1994b) have shown that duplication of operations can enhance the im-

plementation of synchronized flows. At the price of additional complexity, the following modifications of

constraints 3 and 5 permit duplication of operations:

|N |X
i=1

xi + α =M · c (8)

The selected designs must be α-compatible (9)

where we define designs to be α-compatible, if at most α operations must be repeated for the designs to

be process compatible. In essence, this modification, which we will refer to as the Relaxed Design Selection

Problem (RDSP), utilizes slack in Constraint (3) by assigning operations to more than one machine. The

2Let Gi = (Vi, Ei) be the digraphs associated with a given set of design selections for the |P | products. Digraph G
= (∪i∈P Vi,∪i∈PEi) is said to be the superimposed graph for these selected designs.

9

following proposition and its corollary establish the complexity of DSP and RDSP .

Proposition 1 DSP is unary NP-hard.

Proof. We reduce DSP to the 3-Partition problem (c.f. Lenstra et al. 1977): Given nonnegative integers

a1, a2, ...a3t, b , such that each ai satisfies b4 < ai <
b
2 and such that

P3t
i=1 ai = tb, does there exist a partition

(T1, T2, ..., Tt) of T = {1, ..., 3t}, such that |Tj | = 3 and
P

i∈Tj ai = b for j = 1, 2, .., t? Consider the following

instance of DSP : c = 1, |N | = M = |DP | = t, |P | = 3t, sip,d = ap if d = i, otherwise sip,d = 0. Its optimal
solution is W = b if and only if a 3-Partition exists. To see this, first note that each design requires exactly

one operation and that therefore no precedence relations exist. Hence Constraint (5) is always satisfied.

Moreover, the total processing time required for all products is tb, independent of the designs chosen. Since

t machines are available, b establishes a lower bound for the maximum processing time W . Now suppose a

3-Partition exists and let yp,k = 1 if ap ∈ Tk for all p and k. This assigns exactly 3 operations of the same
type to each machine, yielding a perfectly balanced system where each machine has the same workload b.

Conversely, suppose the answer to DSP is W = b. This implies that exactly 3 operations are assigned to

each machine and that the processing times on each machine add up to b. Letting ap ∈ Tk if yp,k = 1 for all
p and k yields a 3-Partition.

Corollary 2 RDSP is unary NP-hard.

Proof. The corollary follows trivially from the preceding proof.

3.2 Solution of the Design Selection Problem

Now we develop a procedure to solve the Design Selection Problem. The algorithm searches for an optimal

solution in the space given by the choices among the alternative designs of each product. We shall denote the

elements of this space σ as δ = (d1, ..., d|P |) where dp (dp = 1, ..., |Dp|) indicates the index of the design that
is chosen for product p. The choices δ are relaxed solutions to DSP , since they do not necessarily satisfy the

compatibility and other constraints. Let W i (δ) =
P|P |
p=1 s

i
p,dp

denote the total processing time of operation

i associated with selection δ. The algorithm generates a series of relaxed solutions that is nondecreasing in

W r, where r is a reference operation. The Design Selection Algorithm (DSA) follows.

Design Selection Algorithm (DSA)

Step 0 Let W ∗ =∞ , W r = 0, and L = σ.

While L 6= {} and W r < W ∗ do:

10

Step 1 Let W r = minδ∈L {W r (δ)} , δ0 = argminδ∈L {W r (δ)}, W = maxi=1,...,|N|
©
W i

¡
δ0
¢ª
, and L →

L\
©
δ0
ª
.

Step 2 If W <W ∗ and if δ0 satisfies constraints (3)and (5), then W ∗ =W and δ∗ = δ0.

The algorithm works as follows: Initially, the processing timeW r for the reference solution is set to 0, the

incumbent value W ∗ is set to infinity, and all relaxed solutions are placed in a list L. Step 1 generates the

elements of the sequence of relaxed solutions that is increasing inW r. At each iteration of the algorithm, the

design δ0 with the lowest processing time for the reference operation is removed from the list L and its largest

processing time W is computed. Step 2 updates incumbent value W ∗ if δ0 is feasible and an improvement

over the incumbent solution. Since the sequence of relaxed solutions is increasing in the reference processing

time W r, the algorithm terminates once the reference processing time of the newly generated element is

greater than the incumbent value W ∗. Alternatively, the algorithm stops after emptying the list L.

Notice that the feasibility check in Step 2 requires to verify if constraints (3) and (5), regarding the

staging capacity and compatibility are satisfied. DSA treats these constraints implicitly. Constraint (3) is

violated if and only if the number of nodes in the superimposed graph exceeds the available staging capacity

and Constraint (5) is violated if and only if the superimposed graph contains circuits. The latter can be

checked efficiently by topologically ordering the nodes in the superimposed graph. The graph is acyclic if

and only if a topological order exists (Deo, 1974). This approach of treating the compatibility constraints

implicitly is similar to the approach of using independence tests to determine maximum-weight independent

sets in matroids (c.f., Nemhauser and Wolsey 1988).

In the worst case, the DSA will stop after enumerating all the
Q
pDp relaxed solutions. However, the

choice of the reference operation may significantly affect the computational requirement of the algorithm.

A good choice for the reference operation will cause the W r ≥ W ∗ condition to occur as early as possible.
It is likely that this will occur if the operation with the largest average sip,d is selected as the reference

operation. In practice, this rule works quite well with homogenous product designs, where processing times

are similar across the designs. For non homogenous designs, the variance of the processing times should also

be considered in the choice of the reference operation. Possibilities include using weighted averages of the

mean and coefficient of variation, choosing the reference operation with the highest average of some number

of the smallest processing times and others.

Solving RDSP necessitates α-compatibility tests which require two steps. First, α needs to be computed

which is simply the difference between the staging capacity and the number of operations (or nodes in the

superimposed graph) required by the given design selection. The second step must determine if all cycles

can be removed from the superimposed graph by duplicating at most α operations which is equivalent to

11

ascertain that a graph can become acyclic by removing at most α arcs. This is the well known, unary NP-hard

(Karp, 1972) minimum arc feedback problem, which together with the closely related linear ordering problem

occur in numerous applications such as matrix triangulization (Lawler, 1964), decision making (Korte and

Oberhofer,1969), comparison ranking (Flueck and Korsh, 1974), preference ranking (Hochbaum and Levin,

2006), tournaments (Charbit et al. 2007) and others. As a consequence many solution procedures have been

suggested during the last three decades (e.g. Kaas 1981, Grötschel et al., 1984, Barthelemy et al. 1989,

Seymour 1995, Even et al. 1998, Aneja and Sokkalingam 2004, Hudry and Charon, 2006 or Wang 2008),

which can be employed to determine α-compatibility. In many instances, to affirm α-compatibility, it may

suffice to establish an upper bound for the minimum arc set feedback problem. One such upper bound is the

number of cycles in the superimposed graph which is easily obtained by generating the reachability matrix

(Deo, 1974). Nevertheless, RDSP still may require an α-compatibility test at each iteration, so that running

times can become much larger than for DSP . We therefore recommend RDSP only if attempts to solve

DSP have been futile.

3.3 Generation of Designs

A critical step in the algorithm is the search for the design with the smallest processing time of the reference

operation in Step 1. In this section we discuss how to find this design efficiently and how this obliterates

the need to store the entire list L. Notice that the kth iteration of the DSA requires the design with the

kth smallest processing time for the reference operation, henceforth referred to as the kth minimum design

denoted by T k. Consider the graph that combines the PTs of all products under one common AND root.

This graph can be thought of as a Total Process Tree (TPT), whose components are the individual products.

Moreover there is a one-to-one correspondence between design selections and solutions to the TPT and the

search for the kth minimum design can be performed on the TPT . To find T k we observe that there must be

at least one h < k such that T k and Th have exactly one OR-node in common, for which they have distinct

children.

For example, consider the graph in Figure 4. The dummy root node 0 combines products 1 and 2 (with

root nodes 1 and 7 respectively) into one TPT . Processing times for reference operation 3 are given in

parentheses in the respective nodes. Since there are only two design choices for each product, exactly four

design choices exist as listed and ranked in the figure. Notice that the T 2 design differs from the T 1 design

by choosing node 5 instead of node 2 as the son of node 1, while all other choices remain the same. Similarly,

T 3 (indicated in the figure by the dark shaded nodes) differs from T 1 by choosing node 9 as the son of node

7, while otherwise making identical choices to T 1. Finally, T 4 differs from T 3 in choosing node 5 as the son

12

2

0

3 (1)

1

4

5

3 (2) 6

8

3 (3)

7

10

9

3 (5) 11

Product 1 Product 2

T1: 0,1,2,3,4,7,8,3,10
T2: 0,1,5,3,6,7,8,3,10
T3: 0,1,2,3,4,7,9,3,11
T4: 0,1,5,3,6,7,9,3,11

Figure 4: Example of Total Process Tree

of node 1 instead of node 2. This property is formally expressed in the following proposition.

Proposition 3 For any k > 1, there exists a T k such that for some h < k, T k and Th have exactly one

OR-node in common, for which T k and Th have distinct sons.

Proof. Clearly, if all OR-nodes of the two solutions have identical sons, then T k = Th, contradicting

h < k. Consequently, at least one such OR-node must exist. Now suppose two of such OR-nodes exist, say

node 1 and node 2 and denote their descendants by sets H1,H2,K1, and K2 respectively. Since Th and

T k are identical except that H1 6= K1 and H2 6= K2, any difference in the total duration of the reference

operation must stem from different contributions C (ξ) (ξ ∈ {H1,H2,K1,K2}) by these four sets. Clearly
C (H1) > C (K1) and C (H2) > C (K2) cannot hold since h < k. W.l.o.g. suppose that C (H1) ≤ C (K1)

and consider tree T g which is identical to tree T k except that it has descendents H1 for node 1 instead of

K1. If C (H2) ≤ C (K2) then the processing time for the reference operation for T g cannot exceed that

of T k and either T g is one of the best k − 1 solutions or T g is also a k-th minimum design. In the latter

case, the proposition is satisfied by trees T g and Th in the former case by trees T k and T g. Conversely, if

C (H2) > C (K2) then the processing time for the reference operation of tree T g must be less than that for

tree Th. Thus T g must be among the k − 1 best designs and the proposition holds for trees T k and T g.

13

Proposition 3 allows us to recursively generate T k once T 1 is obtained. To obtain the latter, define V

as the vertex set of TPT , H(i) as the set of children of vertex i, and pi as the processing time required for

the reference operation at vertex i (i = 1, ...|V |). The height h of a tree is defined as the maximum level

among the vertices in TPT , where the level of vertex i is the length of the path from the root to vertex i

(c.f. Manber, 1989). The following algorithm computes T 1 in O(|V |) time:

Minimum Design Algorithm (MDA)

Step 0 Determine the level of all vertices and label the vertices accordingly.

Let vi = pi for i = 1, ...|V | and t = h− 1, L = V .

While t > 0 do:

Step 1 For each node at level t let vi →
½
vi +minq∈H(i) vq if i is an OR-node
vi +

P
j∈H(i) vj if i is an AND-node

IF i is an OR-node, then let vq ≤ vj ∀j ∈ H (i). Set L = L−
S

j∈H(i)\q
Hj .

Step 2 Let t→ t− 1.

The level of each vertex in Step 0 can be identified by any tree traversal algorithm such as preorder or

postorder transversal (c.f. Sedgewick 1988). The solution is identified by the remaining vertices in List L.

To obtain T k we define Rk as the set of OR nodes corresponding to T k and T k−1n to be a minimum

deviation from the design T k−1 at OR-node n in the following manner: T k−1n consists of all the nodes of

T k−1 except for the descendants of node n. If these descendants constitute the tree ti in T k−1 with root node

i ∈ H(n) and required processing time vi then T k−1n is obtained by replacing ti in T k−1 with the subtree tj

of TPT , such that vj = minj∈H(n) [vj |vj ≥ vi]. The algorithm to find T k follows. Lo is a list containing the

solutions.

kth-Minimum Design Algorithm (k −MDA)

Step 0 Find T 1 by applying MDA. Set κ = 2. Place T 1 in list Lo.

While κ ≤ k do:

Step 1 For n = 1, ..., |Rκ−1| determine T k−1n and place it into L1.

Step 2 Find the minimum solution in list L1. Denote this solution by Tκ and move it from L1 to Lo. Let
κ→ κ+ 1.

14

Note that at the κth iteration all minimum deviations from the T j , (j = 1, ...,κ−2), already exist in L1 so
that only the deviations from Tκ−1 are needed in order to complete the list. The minimum design deviations

in Step 1 can efficiently be computed using the information in the vis from Step 0. The computational

complexity of the algorithm is O(k · |R| ·H) where R is the set of OR-nodes in TPT and H is the maximum

number of children of any OR-node in TPT .

With the Design Selection Algorithm we have provided a tool that generates process compatible designs

from process tree representations under particular consideration of total system throughput. Each iteration

of the DSA evaluates different design selections for the products. To generate these efficiently, we developed

the kth-Minimum Design Algorithm. The DSA considers all products simultaneously and ultimately forces

them to follow the same linear flow through the entire manufacturing system. In the next section, we

address how to partition the products into process compatible subsets, that are processed on separate, and

thus shorter, synchronized sublines.

4 Product Set Partitioning for Synchronized Flow

Often times, WIP and lead times of synchronized solutions can further be improved by segmenting the

production line into synchronized sublines. To see this, consider the four product example in Figure 5 and

suppose that five machines are available, each with staging capacity c = 2. The shaded nodes in Figure 5

indicate the only solution satisfying these constraints. Figure 6a shows a corresponding assignment of the

operations to machines M1 to M5. Notice that only the first two operations assigned to machine 1 are

performed on all four products. Moreover, once an MPS exits the first machine, products A and B and

products C and D respectively, share two of the remaining three operations. However, note that no two

operations are common between these two groups of products. This suggests to partition the products into

two distinct subsets {A,B} and {C,D} that are processed together only in an initial segment, while being
processed in parallel in a second segment as in Figure 6b.

The subject of this section is to formally address the segmentation of the product set into process

compatible subsets. One difficulty arising in this context is that this problem involves the decision at what

point to segment the line into sublines. Lee and Tang (1997) provide a modeling framework that characterizes

the optimal point of product differentiation after which the line segmentation should proceed. In our model

we will assume that a suitable Point of Segmentation (PoS) is given. Complete product segmentation

without a common initial line can be obtained when the PoS is placed at the beginning of the production

line. Frequently, product variety is based on a common platform shared by a family of products or on

cost-reduced versions, add-ons or enhancements to a core product (Shirley, 1990). In this case the product

15

Product D
5d

6c

5b5a

6b6a

1a 1b

Product C
4d

5c

4b4a

5b5a

1a 1b

Product B
3d

4c

3b3a

4b4a

1a 1b

Product A
2c

3c

2b2a

3b3a

1a 1b

Segment I Segment II

Figure 5: Suitable Designs for Line Segmenting

16

a)
M2

3b3a
M3

3d3c
M4

5b5a
M5

5d5c
M1

1b1a

b)

M2
3b3a

M3
3d3c

M4
5b5a

M5
5d5c

M1
1b1a

Segment I Segment II

a)
M2

3b3a
M2

3b3a
M3

3d3c
M3

3d3c
M4

5b5a
M4

5b5a
M5

5d5c
M5

5d5c
M1

1b1a
M1

1b1a

b)

M2
3b3a

M3
3d3c

M4
5b5a

M5
5d5c

M1
1b1a

Segment I Segment II

b)

M2
3b3a

M3
3d3c

M2
3b3a

M2
3b3a

M3
3d3c

M3
3d3c

M4
5b5a

M5
5d5c

M4
5b5a

M4
5b5a

M5
5d5c

M5
5d5c

M1
1b1a

M1
1b1a

Segment I Segment II

Figure 6: Line Segmenting

platform or the core product can be produced on a single line followed by individual sublines.

4.1 The Product Partitioning Problem

To model this problem, we will minimize the number of sublines or groups to be formed subject to machine

availability constraints for each group and to the condition that all designs within a group are process

compatible. The objective function serves as a good surrogate for minimizing capacity requirements, since

additional groups require more operation duplications and thus more capacity. At the same time, the

constraints on the number of machines for each group control total WIP and the lead time of the entire

system. To minimize the number of groups, we will again exploit the availability of alternative designs.

These alternative designs are not the designs for the entire product, but only for the part of the product to

be produced after the PoS and correspond to the alternative branches in the TPT that follow the operations

in the designs chosen up to the PoS. The model requires the following additional notation.

17

Parameters¯̄
D0
p

¯̄
Number of designs of product p after the PoS.

M 0 Maximum number of machines per group.
W 0 Upper bound on the maximum processing time.

Indices
d Design indices, d = 1...

¯̄
D0
p

¯̄
.

g Group indices, g = 1, ..., |P |.
Variables

G Number of Groups.

yp,d,g

½
1, if design d for product p is chosen and assigned to group g.
0, otherwise.

¾
xi,g

½
1, if operation i is performed in group g.
0, otherwise.

¾
zg

½
1, if group g is nonempty.
0, otherwise.

¾
The Product Partitioning Problem (PPP)

Minimize G s.t.
|P |X
g=1

zg ≤ G (10)

zg ≥ yp,d,g ∀p, d, g (11)

|P |X
g=1

X
p∈P

X
d∈Dp

sip,d · yp,d,g ≤W 0 ∀i (12)

xi,g ≥ aip,d · yp,d,g ∀i, p, d, g (13)X
i∈N

xi,g ≤M 0 · c ∀g (14)

|P |X
g=1

X
d∈Dp

yp,d ≤ 1 ∀p (15)

The selected designs in each group must be compatible (16)

yp,d,g ∈ {0, 1} ∀p, d, g (17)

xi ∈ {0, 1} ∀i (18)

zg ∈ {0, 1} ∀g (19)

Constraint 10 defines the total number of groups and constraints 11 are logical constraints that force zg

to unity once a product has been assigned to Group g. Constraints 12 limit the maximum processing time

18

for any operation to allow for a good line balancing solution. If the first segment, that is the line before the

PoS, has been determined by the DSA then the objective value from this solution can be used. Otherwise,

W 0 can be set as a percentage of the throughput rate (T) of the first segment. If it is imperative that the

throughput rate of the second segment does not exceed T , then T
c can be chosen for W

0. However, we

found this condition to be too restrictive in most applications and only justified if the variation between

processing times was very small. Constraints 14 limit the number of machines available to each group and

thus control WIP and, in connection with constraints 12, the lead time as well. The remaining constraints

are generalizations of constraints 2 and constraints 4 to 7 in DSP .

In complete analogy to RDSP , duplication of operations within groups can be incorporated by the

following problem relaxation (RPPP), where constraints 14 and 16 in PPP are modified as follows:

X
i∈N

xi,g + αg ≤M 0 · c ∀g (20)

The selected designs in group g must be αg-compatible for all g. (21)

Notice that a solution to PPP with G = 1 exists if and only if a solution to DSP exists with W ≤W 0.

It follows therefore directly from Proposition 1 that PPP and RPPP are unary NP-hard.

4.2 Heuristic solution for the Product Partitioning Problem

Since PPP is a generalization of DSP and unary NP-hard we will in this section only present a simple

greedy heuristic to generate solutions to PPP . Let Θ(dp) be the set of operations required by design d

for product p, Θ(Γ) =
S
dp∈ΓΘ(dp) be the set of operations required by a collection Γ of designs, f (δp) be

a preference score for design dp and R(p) be a regret value associated with product p. These two scores

mainly serve to select designs for new groups. A good design choice should allow the accommodation of

many additional products within the same group, but should also consider workload balancing criteria. A

good preference score should therefore evaluate a design based on

• its number of operations,

• the degree to which its operations are common among all designs,

• its total processing time, and

• its maximum processing time.

19

We have obtained good results by equating the preference score to the number of operations required by

a design, while successively applying the remaining three factors as tie breakers. The regret value evaluates

the ratio between the preference score of the two most preferable designs for each product. If this ratio

is large, then not choosing the most preferable design is likely to create conflicts later on. Consequently,

products with high regret values should be considered first when creating new groups. In the Product Set

Partition Heuristic below, lower preference scores indicate more preferable designs:

Product Set Partitioning Heuristic (PSPH)

Step 0 Let g = 0, Π = P.

While Π 6= {} do:

Step 1 Let g → g + 1, bDp = Dp for all p ∈ Π,
p = argmaxp∈Π {R (p)} , Π→ Π\ {p} and Γg =

n
δp|f (δp) = mindp∈ bDp

{f (dp)}
o

Step 2 Determine design δπ such that |Θ (δπ)
S
Θ (Γg)| = minp∈Π,dp∈ bDp

{Θ (dp)
S
Θ (Γg)} .

If |Θ (δπ)
S
Θ (Γg)| > M 0 · c then goto Step 1; else let Γ0g = Γg ∪ (δg).

Step 3 If Γ0g satisfies the compatibility constraints, then let Π → Π\ {π} and Γg = Γ0g. Else let Dπ →
Dπ\ {δπ}. Goto Step 2.

Step 1 utilizes the regret value and the preference score to create a new group. For unassigned products,

Step 2 determines the design that adds the least number of additional operations to an existing group. If

adding this design to the group violates the capacity constraints 12, then no design can be added and Step

1 starts over. Otherwise, if Step 3 ascertains that the selected design satisfies the compatibility constraints,

then it is added to the current group and the search for another compatible design from the remaining

products continues. Checking for compatibility (or α-compatibility) can be done in the same manner as in

the Design Selection Algorithm. If the design is not compatible, then it is excluded from further consideration

for this group and the search for another compatible design starts over. Notice that excluding the first k− 1
best designs amounts to finding the kth best design, which can efficiently be computed by appropriately

modifying the k −MDA presented above. PSPH terminates after at most P
P

pDp iterations, each of

which may require a compatibility test and invoke k −MDA.
In this section we have presented a line segmentation approach for synchronized flow manufacturing.

The approach combines partitioning of the product set with design selection to satisfy the conditions for

synchronized flow. Since this approach reduces unnecessary waiting times by grouping products that have

similar processing requirements, WIP and lead times will be smaller than in the unpartitioned approach.

20

On the other hand, capacity requirements may increase and machine utilization decrease if operations have

to be duplicated for different groups. Furthermore, since the existence of product groups limits the choices

during the line balancing phase, throughput rates may also decrease unless counteracted by the additional

capacity. In practical applications, we therefore recommend to evaluate different scenarios as illustrated in

the example in the next section.

5 Numerical results

5.1 Illustrative Numerical Example

The following example illustrates the concepts for synchronized flow manufacturing: There are |P | = 5

products that must be produced at the same production rate on machines with staging capacity c = 4.

Figure 7 shows the process trees for the products and the unit processing times for the |N | = 20 different
operation types. The products in this example are substantially differ in terms of operation sequences as

well as general tree structure. In particular, no common product platform can be distinguished. Thus the

example will illustrate our methodology on rather adverse circumstances.

To evaluate the performance of the suggested approaches, we will establish two benchmark cases. Both

cases consider manufacturing issues during design selection, but do not the incorporate the concept of

synchronized flows. The first approach, the minimum processing time (MPT) solution, selects the design

with the least total processing time for each product. Since theMPT solution also minimizes total processing

time, it is expected to result in particularly short lead and cycle times. The second benchmark case is

the design selection that requires the minimum number of operations (MinOp) for each design. While

this selection does not necessarily yield the solution with the minimum number of distinct operations, it is

nonetheless expected to yield good solutions without excessive machine requirements. Clearly, both solutions

are easily obtained and should thus be of interest to practitioners.

The MPT solution requires 20 and the MinOp solution 15 distinct operations3, so that respectively five

and four machines are necessary for their implementation4. To maximize throughput for each solution, the

machine workloads were balanced by appropriate operation assignments. Determining such an assignment

is a unary NP-hard problem for staging capacities larger than 2, but most Bin-Packing heuristics (Garey

and Johnson, 1979) yield suitable assignments. To obtain a routing for the MPSs, we applied the cyclic

3The MinOp solution is not unique in this example. In the spirit of testing our methodolgy under adverse conditions, we
computed that solution that minimizes the total number of distinct operations as well.

4The dark shaded nodes in Figure 7 are common to all solutions. The remaining nodes are marked with a D,M, or, P if
they belong to the DSP , MPT , or MinOp, solutions respectively.

21

2010 11 1412 13 15 16 1917 18i 1 42 3 5 6 97 8
23 6 75 2 3 8 44 3qi 3 52 2 2 8 65 7

Processing time qi required by operation i:

1P 1
3

5

7
13

12

6
15

12

P 2 42 12 13

7

15

6
14

16

5

11

8

1P 3

10

5

15

9

1812

8

P 4
20

16

12
19

4

10

17
9

18

16P 5
20

9

8

12

19
17

10

D, M

D, M

D, M

P
P

P

D, M

P

P

M, D

M

D, P D, P

M, P

D

2010 11 1412 13 15 16 1917 18i 1 42 3 5 6 97 8
23 6 75 2 3 8 44 3qi 3 52 2 2 8 65 7

Processing time qi required by operation i:

1P 1
3

5

3

5

7
13

12

13

12

6
15

12

15

12

P 2 42 12 13

7

15

12 13

7

15

13

7

15

6
14

16
6

14

16

5

11

8

1P 3

10

5

15

10

5

15

9

1812

8

P 4
20

16

12

16

12
19

4

10

17

10

17
9

18

16P 5
20

9

8

12

19

12

19
17

10

D, M

D, M

D, M

P
P

P

D, M

P

P

M, D

M

D, P D, P

M, P

D

Figure 7: 5 Product Example

scheduling heuristic proposed by Graves et al. (1983), which is known to generate good results.

Next, we solved DSP and RDSP for both, M = 4 and M = 5 henceforth referred to as (R)DSP 4 and

(R)DSP 5 respectively. For each of these solutions, the machines were balanced under conservation of the

precedence constraints. Finally, we solved the following instances of PPP : Up to three machines before the

PoS were considered5 where the line up to the PoS was identical to the DSP 5 solution. For each of these

choices, we solved for all feasible and non-trivial values of machines per groupM 0. In all instances the upper

bound W 0 on the maximum processing time, that is the RHS of Constraint 12, was set to W 0 = 16, the

objective function value of the solution to DSP 56. As in the non-partitioned synchronized solutions, the

5Note that this covers all necessary choices for the POS since DSP 5 is an optimal solution for the case where the PoS
occurs after the fourth machine.

6 It is interesting to observe that whenever we relaxed this constraint, we obtained solutions that were strictly dominated by
others on all four performance criteria.

22

Perform
ance

M
easure

M
achines

Cycle Tim
e

W
IP/M

achine

Lead Tim
e

D
istance

Total Proc. Tim
e

G
roups

Approach

Benchmarking Cases

MPT 5 26 1.25 162 13.0 129 (1)

MinOp 4 35 1.31 184 9.0 138 (1)

Unpart it ioned Solut ions
DSP 4 4 38 1 152 4.0 139 (1)

DSP 5 5 27 1 135 5.0 131 (1)

RDSP 5 5 27 1 135 5.0 130 (1)

Part it ioned Solut ions
PPP 0\ 2 8 30 1 60 2.0 136 4

PPP 0\ 3 5 30 1 90 2.6 138 2

PPP 1\ 2 7 26 1 78 3.0 141 3

PPP 1\ 3 6 26 1 104 3.6 138 2

PPP 2\ 2 6 26 1 104 4.0 138 2

PPP 3\ 1 6 26 1 104 4.0 129 3

Figure 8: Overview of Solutions

machines were then balanced under conservation of the precedence constraints.

To compare the solutions from the different approaches along different dimensions, we computed the

number of machines required, the cycle time, WIP and the lead times. In addition, we also computed

a measure called distance - an approximate measure for how far an MPS has to travel through a set of

machines. It is computed by adding up the absolute differences of the machine indices of two consecu-

tively visited machines. For example, as depicted in Figure 9, the MPT-Solution routes the MPSs in order

M1,M2,M3,M4,M5,M1,M2,M4, before exiting at “virtual machine” M6. For the distance d this yields

d = |2− 1|+ |3− 2|+ |4− 3|+ |5− 4|+ |1− 5|+ |2− 1|+ |4− 2|+ |6− 4| = 13. Notice that by this conven-
tion, for the synchronized solutions, distance is equal to the number of machines. Moreover, if the machines

are arranged equidistantly along a line, our measure becomes directly proportional to the distance traveled

through the machines. With increasing distance (relative to the number of machines), the actual manage-

ment of the system becomes more challenging. As such, the distance may serve as a proxy for managerial

complexity, as well as for system setup costs, since longer workpiece routes require higher investments in

23

hardware.

Figure 8 provides an overview of all results, where the notation PPP m\x indicates the solution to PPP
with m machines up to the PoS and M 0 = x. Notice that no design selection dominates any other selection

on all performance measures. Therefore all selections, including the benchmarking cases, are efficient, and

the choice of a particular selection depends mainly on the relative importance of the measures in a given

environment. For example, if short lead times and small WIP are of primary importance, then the selection

generated by PPP 0\2 should be considered. However, this selection is costly since it requires twice as many
machines as the selections with the fewest machines.

Even at the same level of capacity, the synchronized solutions considerably outperform the benchmark

cases in terms of WIP, lead times, and distance. In MinOp, the lead time is more than 13% longer than in

DSP 4, the distance 125% greater, and it operates with up to 50% more WIP. Similarly, the lead time in the

MPT solution is 20% (80%) longer than the lead time for DSP 5 (PPP 0\3), the distance is 160% (400%)

greater, and it operates with up to 25% (25%) more WIP than DSP 5 (PPP 0\3) . Figure 9 indicates the
reasons for these differences: In the MPT solution, each MPS initially traverses all five machines but then

re-enters three machines causing an increase in WIP, distance and lead time. In the synchronized solutions,

waiting occurs only to the extent that the machines are not perfectly balanced. Additional savings in the

lead time for the PPP 0\3 solution arise because the products visit fewer operations not required by them.
Notably, in the PPP solution, each operation is on average performed on 80% of the products in a pallet,

versus 32% in DSP 5 and 24% in MPT . Since the benchmark solutions disregard precedence constraints,

they have more flexibility in balancing the lines. As a consequence, the benchmarking solutions feature

shorter cycle times. In particular, the cycle time for MinOp is ≈ 8% shorter than the cycle time for DSP

4, and the cycle time for MPT is ≈ 4% (≈ 13%) shorter than the cycle time for DSP 5 (PPP 0\3).
The performance of the synchronized flows increases further, when relaxing some of the assumptions:

Suppose that setup times are not negligible. In that case, it is no longer efficient to use MPSs and the

products should migrate through the system on pallets that contain larger batch sizes of the product mix.

Consequently, WIP and lead time increase proportionally for all solutions, yielding still higher savings with

synchronized flows. Moreover, if the setup times are operation- rather than product-specific, the performance

of non-synchronized flows may deteriorate rapidly due to repeated setup of operations. In theMPT solution,

operation 12 is performed during both visits at machine 2, and thus has to be setup twice. If the setup time

is one unit or more, throughput of the MPT solution drops to, or below, the level of the DSP 5 solution.

Next, consider unscheduled downtimes of the machines. Since waiting lines are normal in the MPT -

solution, no clear signal is sent upstream to cease production, causing further inventory pile ups as well as

24

DSP 5- Solution

M1 M2 M3 M4 M5W = 26 W = 25 W = 27 W = 27 W = 26

1 16 2 3 9 4 5 6 7 12 17 18 19 10 11 20 8 13 14 15
0 27 54 54 81 81 10827 134108

DSP 5- Solution

M1 M2 M3 M4 M5W = 26 W = 25 W = 27 W = 27 W = 26

1 16 2 3 9 4 5 6 7 12 17 18 19 10 11 20 8 13 14 15
0 27 54 54 81 81 10827 134108
1 16 2 3 9 4 5 6 7 12 17 18 19 10 11 20 8 13 14 15

0 27 54 54 81 81 108270 27 54 54 81 81 10827 134108

MPT- Solution

M1 M2 M3 M4 M5M1 M2 M3 M4 M5W = 26 W = 26 W = 26 W = 26 W = 25W = 26 W = 26 W = 26 W = 26 W = 25

16 12 1 2 4 9 20 5 8 17 10 6 11 14 19

3 7 15 12 13 18 10
120 130 146136 159 162

0 16 3216 32 58 58 81 81 106
1616 12 112 1 2 4 9 202 4 9 20 5 8 17 105 8 17 10 6 11 14 196 11 14 19

3 7 15 12 13 18 1010
120 130 146136 159 162

0 16 3216 32 58 58 810 16 3216 32 58 58 81 81 106

PPP 0/3- Solution

M4 M5
16 17 12 9 19 10 20

W = 30 W = 30

60300 30

M1 M2 M3
1 2 4 8 9 5 6 3 12 14 15 10

W = 27 W = 30 W = 21

0 30 60 60 8130

{P
1,

 P
2,

 P
3}

{P
4,

 P
5}

PPP 0/3- Solution

M4 M5
16 17 12 9 19 10 20

W = 30 W = 30

60300 30

M1 M2 M3
1 2 4 8 9 5 6 3 12 14 15 10

W = 27 W = 30 W = 21

0 30 60 60 8130

M4 M5
16 17 12 9 19 10 20

W = 30 W = 30

60300 30

M4 M5
16 17 12 9 19 10 20

W = 30 W = 30

6030

M4 M5
16 17 12 9 19 10 20

W = 30 W = 30

60300 30

M1 M2 M3
1 2 4 8 9 5 6 3 12 14 15 10

W = 27 W = 30 W = 21

0 30 60 60 8130

M1 M2 M3
1 2 4 8 9 5 6 3 12 14 15 10

W = 27 W = 30 W = 21

0 30 60 60 8130

{P
1,

 P
2,

 P
3}

{P
4,

 P
5}

operations

time out

time in

Figure 9: Process flows for several 5-machine solutions

25

longer lead times. Unless countered by appropriate measures, a single downtime at machine 4 of 15 units

permanently increases the lead time by this amount and forces WIP up to 8 MPSs. Stochastic processing

times or varying product mixes have a similar impact on the manufacturing system, and jeopardize the

planned production schedule.

Finally, consider permanent changes in demand and thus in the mix ratios in the MPSs. This will

not impact process compatibility, but the machines may have to be re-balanced. In the example, if the

demand for product 3 doubles while the other demands remain constant, then both DSP 5 and MPT can

be re-balanced to yield a maximum workload of 31 units. While this does not change the flow between the

machines in DSP 5, the MPSs in MPT , after consecutively visiting each machine once, have to revisit

machines 3,1, 2, and 4 in that order. If the line is not rebalanced, then maximum workload increases to 38.

Otherwise, depending on the material handling system, potentially costly reconfigurations of the shop floor

may be required.

5.2 Comparison of Approaches

In order to evaluate the performance of our proposed solutions for larger scale problems, we created 33

different scenarios. In the base scenario, we compared 20 different products (|P | = 20). For each product, a
process tree is generated by the following procedure:

Algorithm 1 (Tree Generation) INPUT: MinNodes, MaxNodes, P01, P2, P3, P4.

Step 0: L = {1}, m = n = 1,

Step 1: Determine number of nodes ν from uniform distribution between MinNodes and MaxNodes.

Do While n < ν

Step 2: Determine number of sons s for node m to be 1, 2, 3, or 4 with probabilities P01, P2, P3, and P4

respectively.

If s = 1 and |L| > 1, then s = 0 with probability n
ν .

If n+ s > ν then s = ν − n.
Assign nodes n+ 1, ..., n+ s as sons to node F .

Step 3: m = m+ 1, n = n+ s, L = {m, ..., n}.
Loop

The input determines the size and structure of the tree. In our base case we chose MinNodes = 15 and

MaxNodes = 25, allowing the number of operations (or nodes) for each product to be uniformly distributed

between 15 and 25. Values of P01 to P4 roughly correspond to the probability of a given node in the tree

26

having 0 to 4 sons. Initially, only node 1 (the root node) is in list L. Node m and n respectively denote the

nodes in list L with the lowest and highest indices. Step 1 determines the number of nodes in the tree. In

Step 2, node m is randomly assigned up to 4 sons, while ascertaining that the total number of nodes will

not exceed ν. Step 3 updates the list by removing node m and adding its sons to the list. In our base case,

we chose P01 = 0.2, P2 = 0.7, P3 = 0.09, and P4 = 0.01. The tree structure was completed by designating

each node an OR node with probability P_OR = 0.5 and an AND node otherwise.

This random generation of trees may give rise to the somewhat unrealistic scenario that one solution to

a tree could consist of 2 operations only, while others could require more than 10 operations. To exclude

such scenarios, we pruned the trees to restrict solutions to designs with Spread = ±2 operations around the
median number of operations. Next, each node was randomly assigned an integer between 1 and |N | = 50,
without assigning the same integer twice. Each integer thus represents a different type of operation. The

duration of each operation is generated from a Normal Distribution with coefficient of variation CV = 0.2.

Finally, the machine staging capacity for the base case is c = 4.

For this base case, we then randomly generated 100 problem instances. In each problem instance, we

first computed the MPT and MinOp solutions and determined the machine requirements for each. Using

a binary search over the cycle time (i.e. bin size), we employed the First Fit Decreasing (FFD) procedure

(Garey and Johnson, 1979) to assign operations to machines. To find a routing through the shop and

determine the lead time, WIP and distance, we applied Graves’ heuristic. We next generated the DSP

and RDSP solutions with the machine requirements M given by the machines required by the MPT and

MinOp solutions. Thus we ascertained equal machine requirements for the different solutions to enable a

direct comparison of the four performance criteria (cycle time, lead time, WIP, and distance). Performing a

binary search over the cycle time, we used a modified version of the FFD that accommodates precedence

constraints, and assigned operations to machines. Given the cycle time and the machine requirements, the

remaining performance criteria followed immediately for the simple linear flow of the (R)DSP solutions.

The relative performance of the heuristic was averaged over all 100 instances and the results are reported

in Figure 10. Similar to the illustrative example above, the DSA drastically decreases lead time, WIP, and

distance, at the expense of some increase in cycle time when compared to the MinOp and MPT solutions.

Moreover, part of this increase in cycle time is erased by RDSA without much or any sacrifice along the

other dimensions.

Next, we created 32 additional scenarios by varying the parameters in our experimental setup as depicted

in the left hand side of Figure 11. Experiments 2 to 4 test our methodology on varying problem sizes that is

on the number of products |P |. Experiments 5 to 10 vary the machine staging capacity c, and experiments 11

27

Relative Performance of Heuristics (Base Case)

94% 94%
100% 100%

91%

146%

162%

230%

87%

140%

161%

232%

50%

75%

100%

125%

150%

175%

200%

225%

250%
Cycle Time Lead Time WIP Distance

DSA (=100%) RDSA MINOP MPT

10% 9% 12% 10% 21% 24% 0% 19% 26% 0% 49% 60%StDev

Relative Performance of Heuristics (Base Case)

94% 94%
100% 100%

91%

146%

162%

230%

87%

140%

161%

232%

50%

75%

100%

125%

150%

175%

200%

225%

250%
Cycle Time Lead Time WIP Distance

DSA (=100%) RDSA MINOP MPT

10% 9% 12% 10% 21% 24% 0% 19% 26% 0% 49% 60%StDev

Figure 10: Average Relative Performance of Approaches for Base Case

to 16 address the size of the trees (Min_Nodes andMax_Nodes and proportionally the number of distinct

operations |N |). By exclusively changing the number of distinct operations |N | in experiments 17 to 19, we
examine the impact of design similarities between the products, as a larger range of possible operations allows

more distinct product designs. Experiments 20 to 23 examine the impact of more or less variable processing

times, while the remaining experiments generate different tree structures. For each of these experiment

settings we again ran 100 trials and computed the 4 performance criteria in the same manner as for the

base case. To demonstrate implementability, we coded all procedures in rudimentary V BA within an Excel

spreadsheet. Most sets of 100 experiments took less than 20 minutes to run, but none exceeded 3 hours. To

compactly report the results of our trials, the right hand side of Figure 11 compares the best of the MinOP

andMPT solution to that of the DSA solution. Bold faced numbers indicate that the result differs by more

than ±10% from the base case.

Over all generated instances, the DSA, on average, reduced lead times by 28%, WIP by 36% and

our measure for managerial complexity, distance, by 54%, while adding 14% to the cycle time of the best

benchmark solution. The results further show that the performance of the DSA solutions are very robust

in respect to the problem instance. Common to all solutions are substantial improvements in lead time,

WIP, and distance at the penalty of some drop in cycle time. Moreover, the magnitude of the latter seems

fairly independent of the problem instance, hovering at a fairly constant 6% to 22% increase over the best

of the benchmark heuristics. In contrast, distance appears most sensitive to the problem parameters, with

28

Experim
ent |P

| c

M
ax_N

odes

M
in_N

odes

|N
|

C
V

Spread

P
01 P2 P3 P

4

P
_O

R

C
ycle Tim

e

Lead Tim
e

W
IP

D
istance

1 20 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 115% 71% 62% 43%
2 10 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 108% 69% 64% 50%
3 30 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 121% 76% 63% 42%

4 40 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 125% 75% 61% 40%
5 10 2 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 113% 82% 73% 46%

6 10 6 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 108% 66% 62% 53%
7 10 8 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 108% 65% 60% 55%
8 20 2 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 122% 88% 71% 40%
9 20 6 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 111% 65% 59% 48%
10 20 8 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.5 111% 63% 57% 49%
11 10 8 40 30 80 0.2 2 0.2 0.7 0.09 0.01 0.5 106% 60% 57% 48%
12 20 8 40 30 80 0.2 2 0.2 0.7 0.09 0.01 0.5 107% 60% 55% 40%
16 20 4 10 1 20 0.2 2 0.2 0.7 0.09 0.01 0.5 110% 70% 66% 61%
15 20 4 15 5 30 0.2 2 0.2 0.7 0.09 0.01 0.5 113% 72% 64% 55%
13 20 4 40 30 80 0.2 2 0.2 0.7 0.09 0.01 0.5 112% 72% 66% 39%
14 20 4 55 45 110 0.2 2 0.2 0.7 0.09 0.01 0.5 109% 71% 66% 34%
17 20 4 25 15 65 0.2 2 0.2 0.7 0.09 0.01 0.5 113% 74% 67% 50%
18 20 4 25 15 80 0.2 2 0.2 0.7 0.09 0.01 0.5 110% 72% 67% 53%
19 20 4 25 15 95 0.2 2 0.2 0.7 0.09 0.01 0.5 105% 67% 65% 46%
20 10 4 25 15 50 0.4 2 0.2 0.7 0.09 0.01 0.5 117% 67% 63% 47%
21 10 4 25 15 50 0.08 2 0.2 0.7 0.09 0.01 0.5 108% 69% 66% 51%
22 20 4 25 15 50 0.4 2 0.2 0.7 0.09 0.01 0.5 121% 74% 63% 43%

23 20 4 25 15 50 0.08 2 0.2 0.7 0.09 0.01 0.5 112% 70% 63% 44%
24 20 4 25 15 50 0.2 4 0.2 0.7 0.09 0.01 0.5 117% 73% 63% 46%
25 20 4 25 15 50 0.2 6 0.2 0.7 0.09 0.01 0.5 119% 73% 62% 44%
26 20 4 25 15 50 0.2 20 0.2 0.7 0.09 0.01 0.5 117% 72% 63% 44%
27 20 4 25 15 50 0.2 2 0.2 0.8 0 0.01 0.5 116% 71% 62% 43%
28 20 4 25 15 50 0.2 2 0 1 0 0.01 0.5 111% 68% 64% 45%
29 20 4 25 15 50 0.2 2 0 0 1 0 0.5 111% 72% 65% 46%
30 20 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.25 121% 78% 64% 45%

31 20 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.75 121% 79% 65% 45%
32 20 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.9 122% 78% 64% 44%
33 20 4 25 15 50 0.2 2 0.2 0.7 0.09 0.01 0.1 122% 80% 65% 45%

Average 114% 72% 64% 46%

P
rocessing

T
im

e
T

ree S
tructure

Experimental Setting
Relative Performance of DSA to

 best of MinOp and MPT (=100%)

N
um

ber
of Trees

M
achine C

pacity
S

ize of Trees
Sim

ilarity
of

Products

Figure 11: Overview of Experiments

29

reductions of the distance ranging from 39% for very small trees to 66% for very large ones. Indeed, the

advantage of the DSA with respect to distance monotonically increases with an increase in tree size, machine

capacity, or the number of products. With respect to lead time and WIP, the performance of the DSA also

increases monotonically with the machine capacity, but we were unable to detect any further trends. In

particular, the structure of the trees, that is the allowable spread, the number of sons of each node, or the

prevalence of AND- or OR nodes, show no sign of impacting the quality of the R (DSA) solution. The

set of experiments thus illustrates that the (R)DSA heuristics are easily implementable and applicable to

industrial size problems. Moreover, the considerable advantages (and slight disadvantages) of the heuristics

when compared to our benchmark solutions, fall within predictable levels. Ultimately, the results suggest that

DSA solutions are particularly promising for large problem instances or high machine staging capacities.

Moreover, as outlined in the preceding subsection, nonquantifiable benefits of the synchronized solutions

significantly add further lure to their implementation, particularly in the presence of stochasticity.

6 Summary and Conclusion

We have provided two methodologies for addressing product and process design concurrently. The primary

objective of both approaches is to select designs which allow a simple synchronized flow of products through

the manufacturing system. The advantages of such systems include simple management control, high re-

sponsiveness, economical implementation, low WIP, short lead times, low managerial complexity, and high

machine utilization (c.f. Ahmadi and Wurgaft, 1994a, Umble and Srikanth 1990). By considering the entire

product line simultaneously, our research addresses the challenges of product variety explicitly, and con-

tributes to the emerging literature (c.f. Ho and Tang, 1998, Pine 1999) that focuses on the complexities

arising with increasing product proliferation.

In the first approach, we suggest the exact Design Selection Algorithm that encompasses all products

simultaneously, enabling the same linear flow through the entire manufacturing system. The second approach

partitions the product set into subsets that allow linear flows on separate sublines. Since this problem is a

generalization of the first one, we present a heuristic to solve it. The resulting structure features lower WIP

and shorter lead times than the unpartitioned case, but is often harder to balance. The trade-off between

the two solutions should be evaluated in the context of the given environment. The computational results

presented in the preceding section illustrate the implementability and computational efficiency of the DSA,

and demonstrate the benefits of synchronized flow solutions as substantial and fairly constant over a large

variety of different scenarios. In contrast, the downside, that is reduced cycle times, are modest throughout.

Moreover, most assumptions in this paper were made for the sake of clarity, and are not necessary for

30

applying either of the methods. Our methodologies can be applied as soon as process trees of the designs have

been generated and are thus suitable for a wide variety of different scenarios. Furthermore, since synchronized

flows are easily managed, their application is even more promising under less ideal assumptions, particularly

in environments characterized by higher degrees of uncertainty.

7 References

References
[1] Ahmadi, R.H. and H. Wurgaft, “Design for Set Manufacturability“ in: S. Dasu and C. Eastman

(eds.), Management of Design - Engineering and Management Perspectives , Boston, Kluwer, 1994a.

[2] Ahmadi, R.H. and H. Wurgaft, “Design for Synchronized Flow Manufacturing,” Management
Science 40 (1994b), 1469-1483.

[3] Aneja, Y.P. and R.T. Sokkalingam, “The minimal feedback arc set problems,” INFOR 42, 2,
(2004), 107-112.

[4] Barthelemy, J.P., A. Guenoche and O. Hudry, “Median Linear Orders: Heuristics and a Branch
and Bound Algorithm,” European Journal of Operational Research 42 (1989), 313-325.

[5] Baybars, I., “A Survey of Exact Algorithms for the Simple Line Balancing Problem,” Management
Science 32 (1986), 909-931.

[6] Becker and Scholl “A survey on problems and methods in generalized assembly line balancing,”
European Journal of Operational Research 168, (2006), 694-715.

[7] Berger, I., Bourjoully, J.-M. and Laporte, G., “Branch-and Bound Algorithms for the Multi-
Product Assembly Line Balancing Product,” European Journal of Operations Research 58 (1992), 215-
222.

[8] Blackburn, J., “Time-Based Competition,” R.D. Irwin, Homewood, Illinois, 1992.

[9] Bock, S. “Using distributed search methods for balancing mixed-model assembly lines in the automotive
industry,” OR Spectrum 30, (2008), 551-578.

[10] Boctor, F.F., “A Multiple-rule Heuristic for Assembly Line Balancing,” Journal of the Operational
Research Society 46 (1995), 62-69.

[11] Charbit, P., S. Thomasse, and A. Yeo “The Mimimum Feedback Arc set Problem is NP-Hard for
Tournaments,” Combinatorics, Probability and Computing 16, 1, (2007), 1-4.

[12] Even, G., S. Naor, B. Schieber, and M. Sudan “Approximating minimum feedback sets and
multicuts in directed graphs,” Algorithmica 20 (1998), 151-174.

[13] Dar-El, E.M. and R.F. Cother, (1975). “Assembly line sequencing for model mix,” International
Journal of Production Research 13 (5) 463-477.

[14] Deo, N., “Graph Theory with Applications to Engineering and Computer Science,” Englewood Cliffs,
Prentice-Hall, 1974.

31

[15] Dolgui, A., B. Finel, N.N. Guschinsky, G.M. Levin, and F.B. Vernadat “MIP approach to
balancing transfer lines with blocks of parallel operations,” IIE Transactions 38 (2006), 869-882.

[16] Erel, E. and S.C. Sarin “A survey of the assembly line balancing procedures,” Production Planning
and Control 9, (1998), 414-434.

[17] Flueck, J.A. and J.F. Korsh “A Branch Search Algorithm for Maximum Likelihood Paired Comparison
Ranking,” Biometrika 61, (1974), 621-626.

[18] Eastman, C., “Automatic Composition in Design”, in: S. Newsome et al. (eds.) Design Theory, New
York, Springer, 1988.

[19] Garey, M.R. and D.S. Johnson, “Computer and Intractability - A Guide to the Theory of NP-
Completeness,” New York, Freeman, 1979.

[20] Graves S.C., H.C. Meal, D. Stefek and A.H. Zeghmi, “Scheduling the re-entrant flow shops”,
Journal of Operations Management 3 (1983), 197-207.

[21] Groetschel, M., Juenger, M. and Reinelt, G., “A Cutting Plane Algorithm for the Linear
Ordering Problem,” Operations Research 32 (1984) 6, 1195-1220.

[22] Hudry, O. and I. Charon, “A branch-and-bound algorithm to solve the linear ordering problem for
weighted tournaments,” Discrete Applied Mathematics 154, 15, (2006), 2097-2116.

[23] Hackman, S.T., M.J. Magazine and T.S. Wee, “Fast, Effective Algorithms for Simple Assembly
Line Balancing Problems,” Operations Research 37 (1989) 6, 916-924.

[24] Ho, T.-H. and C. Tang “Product Variety Management — Research Advances,” Boston, Kluwer 1998.

[25] Hochbaum, D. S. and A. Levin “Methodologies and algorithms for group-rankings decision,” Man-
agement Science 52, 9, (2006), 1394-1408.

[26] Hofmann, T.R., “Eureka: A Hybrid System for Assembly Line Balancing,” Management Science 38
(1992) 1, 39 47.

[27] Hubka, V. and W.E. Eder ”Theory of Technical Systems,” Berlin, Springer, 1988.

[28] Ignall, E.J. “A review of Assembly Line Balancing,” Journal of Industrial Engineering, 16 (1965),
244-254.

[29] Karmakar, U.S., S. Kekre and S. Kekre “Lotsizing in multi-item multi-machine job shops,” IIE
Transactions, 17 (1985) 3, 290 -298.

[30] Kaas, R., “A Branch and Bound Algorithm for the Acyclic Subgraph Problem,” European Journal of
Operational Research 8 (1981), 355-362.

[31] Karp, R.M., “Reducibility among Combinatorial Problems,” in Miller and Tatcher (eds), Complexity
of Computer Computations, New York, Plenum, 1972.

[32] Korte, B. and W. Oberhofer, “Zur Triangulation von Input-Output Matrizen,” Jahrbuch für
Nationalökonomie und Statistik 182 (1969), 398-433.

[33] Lawler. E.L. “A comment on minimum feedback arc sets,” IEEE Transactions on Circuit Theory 11,
(1964), 296-297.

32

[34] Lee, H.F. and R.V. Johnson, “A Line-Balancing Strategy for Designing Flexible Assembly Systems,”
International Journal of Flexible Manufacturing Systems 3 (1991), 91-120.

[35] Lee, H.L. and Tang, C.S., “Modeling the Costs and Benefits of Delayed Product Differentiation,”
Management Science 43 (1997) 1, 40-53.

[36] Lenstra, J.K., A.H.G. Rinnooy Kan and P. Brucker, “Complexity of Machine Scheduling Prob-
lems,” Annals of Discrete Mathematics 1 (1977), 343-362.

[37] Lin, G. Y-J., and J.J. Solberg “Effectiveness of Flexible Routing,” The International Journal of
Flexible Manufacturing Systems 3 (1991), 189-212.

[38] Manber, U. “Introduction to Algorithms,” Reading, Addsion-Wesley, 1989

[39] Marple, D., “The Decisions of Engineering Design,” IEEE Transactions on Engineering Management,
1961, 55-71.

[40] Mastor, A.A. “An Experimental Investigation and Comparative Evaluation of Production Line Bal-
ancing Techniques,” Management Science 16 (11) (1970), 728-746.

[41] McMullen and Tarasewich “Using ant techniques to solve the assembly line balancing problem,”
IIE Transactions 35, (2003), 605-617.

[42] Nemhauser, G. and L. Wolsey, “Integer and Combinatorial Optimization,” New York, Wiley, 1988.

[43] Pine II, B.J., “Mass Customization: The New Frontier in Business Competition” Boston, Harvard
Business School Press, 1999.

[44] Rembold, U., C. Blume and R. Dillman, “Computer Integrated Manufacturing,” New York,
Dekker, 1985.

[45] Salveson, M.E. “The Assembly Line Balancing Problem,” Journal of Inductrial Engineering, 6, (1955),
18-25.

[46] Sedgewick, R. “Algorithms,” Reading, Addison-Wesley, 1988.

[47] Seymour P.D. “Packing directed circuits fractionally,” Combinatorica 15 (1995), 281-288.

[48] Shirley, G.V., ”Models for Managing the Redesign and Manufacture of Product Sets,” Journal of
Manufacturing and Operations Management , 3 (1990), 85-104.

[49] Stecke, K.E., “Design, planning, scheduling, and control problems of flexible manufacturing systems,”
Annals of Operations Research , 3 (1985), 51-60.

[50] Stoll, H.W., “Design for Life-Cycle Manufacturing,” in: J.E. Ettlie and H.W. Stoll, (eds.) Managing
the design-manufacturing processes, New York, McGraw-Hill, 1990.

[51] Ulrich, K.T. and S.D. Eppinger, “Product Design and Development,” New York, McGraw-Hill,
1995.

[52] Umble, M.M. and M.L. Srikanth, “Synchronous Manufacturing - Principles for World Class Excel-
lence,” Cincinnati, South-Western, 1990.

[53] Victor, H., “Trennen” in: Grote, K.-H. and Feldhusen, J. (eds.), Dubbel - Taschenbuch für den
Maschinenbau, Berlin, 21. Aufl., Springer, 2005.

33

[54] Wang, Z.-S., “Improved Algorithm for minimal feedback arc set based on stochastic evolution,” Com-
puter Enginering and Applications, 44, 17, (2008), 45-48.

[55] Whitney D.E., “Manufacturing by Design,” Harvard Business Review, July-August (1988).

34

