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Abstract (

Accurate rainfall modeling is of vital importance for the proper management of OUT

environment. Rainfall descriptions are required, among others, to model pollution mi-
gration, to address issues related to climate change (i.e. global circulation), to estimate
extreme weather events, and to manage our watersheds. Adequate environmental plan-
ning can only be accomplished with reliable rainfall quantification. Even though several
sophisticated (stochastic) rainfall models exist, they do not capture all the variability
observed at a fixed location when a storm passes by. Typical models approximate the
irregular and intermittent rain patterns (of a fractal and/or multifractal nature) by
superimposing randomly arriving smooth Euclidean objects (i.e. rectangular pulses),
and consequently preserve only some statistical features of the rainfall series (fields)
(e.g. mean, variance, spatial correlations, etc.). Since these representations are typi-
cally limited by their analytical tractability and because there has been a recognition
of chaotic effects in rainfall, a new approach for rainfall modeling based on multino-
mial multifractal measures and fractal interpolating functions has been developed by
Puente (1992, 1995). The basis for these fractal-multifractal models is the fact that
predictability could only be improved when the observed (intermittent) details present
in rainfall events are considered explicitly. One advantage of the fractal geometric
procedure is that its outcomes are entirely deterministic. This follows because the two
components that make up the approach are deterministic.

This work reports on the use of the new models to represent: (i) high resolution
rainfall time series, (Ii) natural processes of two kinds, namely those termed chaotic
or stochastic, and (iii) spatial rainfall (geophysical) patterns. In relation to the high
resolution rainfall, it is shown that the intrinsic shape and variability of three storms
gathered every few seconds (5 to 15) may be captured employing the fractal geometric
methodology. It is illustrated how these data sets are parsimoniously encoded wholis-
tically, resulting in very faithful descriptions of hoth major trends and small (noisy)
fluctuations. These results suggest that a stochastic framework for rainfall may not
be required. In regards to the geometric description of general natural time series,
it is exhibited via simulations that the fractal-multifractal approach does provide a
convenient framework to describe a large class of records that would pass, according
to typical statistical and chaotic criteria, as low-dimensional and chaotic or as high-
dimensional and stochastic. In order to handle rainfall (radar reflectivities) patterns
in space, extensions of the fractal-multifractal procedure to higher dimensions are also
included. The potential for the development of a new approach to rainfall dynamics in
space, based on the geometric features of spatial patterns, is discussed.
Key words: rainfall modeling, turbulence, intermittency, fractal geometry, rnultifrac-
tals , projections.

11



Contents
1 Problem and Research Objectives

1.1 Basis For a New Approach
1.2 Literature Review .

1
1
2

2 Methodology: The Fractal-Multifractal Approach
2.1 Fractal Interpolation, Multifractals and Derived Measures.
2.2 Fractal Interpolation in Two Dimensions .
2.3 Fractal Interpolation in Three Dimensions
2.4 Statistics of Multifractals .

4
5
9

12
14

3 Results and Their Significance
3.1 Description of High Resolution Rainfall
3.2 Chaos vs. Stochasticity in Temporal Rainfall .

3.2.1 A Brief Review of Chaos Theory
3.2.2 A High Resolution Storm in Boston
3.2.3 Fractal-Multifractal Data Sets

3.3 Rainfall in Space .

16
16
26
28
30
35
49

4 Summary, Conclusions, and Recommendations 53

5 References 55

III



List of Tables
1
2
3
4
5
6

Information for high resolution storms. . .
Relevant statistics for high resolution Boston storm .
Relevant statistics for high resolution storm Iowa2 in Iowa City.
Relevant statistics for high resolution storm Iowa3 in Iowa City.
Relevant surrogate parameters for "storms" in Figure 14. . . .
Set of data and parameters for Figure 30. (angles in degrees).

16
18
19
20
28
52

IV



List of Figures
1 Recursive construction of fractal interpolating function. . . . . . . . . . . .. 4
2 Examples of fractal interpolators: (a) z = 0, (b) z = 0.45, (c) z = 0.7, (d)

z = 0.995. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Derived Measures Y = Iz(U) for the fractal interpolators in Figure 2 6
4 Recursive construction of binomial multifractal measure. . . . . . . . 7
5 Construction of derived measures. dy = I( dx). . . . . . . . . . . . . . 8
6 Examples of derived measures along a line: (a) exponential, (b) log-normal. 8
7 From turbulence to order, After Puente (1992). 11
8 Examples of derived measures along a line based on Cantorian parents. . . 12
9 Three-dimensional fractal interpolator projections and derived measures. {(O, 0.1, 0),

(0 0) ( )} (1) - (2) - 0(1) - 0(2) - 45 (1) - 0 6.5,1, .4, 1,0,0.2 . r1 - Tl - -0.6, 1 - 1 - ,r2 - "

r~2} = -0.6, O~I) = e~2) = 45, PI = 0.3, P2 = 0.7 (angles in degrees). . . . . .. 13
10 Predicted and real rainfall records for the Iowa3 storm in Iowa City. Fractal

multifractal parameters: (a) localization, {(0.03, -0.87)' (0.24, -0.17), (0.39,
0.54), (0.72, 0.52), (1.09, 0.92)}, (b) regularity, -0.53, -0.20, -0.13, -0.85, (c)
intermittency: 0.25, 0.28, 0.25, 0.22. . . . . . . . . . . . . . . . . . . . . . .. 22

11 Statistics for observed Iowa3 storm in Iowa City: autocorrelation (p( r)), power
spectrum (S(w)), data histogram (f(dy)), and multifractal spectrum (f(a)). 23

12 Statistics for predicted Iowa3 storm in Iowa City: autocorrelation (p(r)),
power spectrum (S( w) L data histogram (f( dy)), and multifractal spectrum
(f(O'.)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 24

13 Moments for observed and predicted (*-*) Iowa3 storm in Iowa City: central
moments in time (M(y)), modal moments in time (M(y)*), central moments
in intensity axis (M(dy)), and mass exponents (r(q)). . . . . . . . . . . . .. 25

14 Hidden variable projections and a storm in Boston. . . . . . . . . . . . . .. 27
15 Statistics for observed storm in Boston: autocorrelation (p( r)), power spec-

trum (S(w)), data histogram (f(dy)), and multifractal spectrum (f(o:)). . .. 31
16 Statistics for predicted storm in Boston: autocorrelation (p(r)), power spec-

trum (S(w)), data histogram (f(dy)), and multifractal spectrum (f(O'.)). . .. 32
17 Moments for observed and predicted (*-*) storm in Boston: central moments

in time (M(y )), modal moments in time (M(y )*), central moments in intensity
axis (M(dy)), and mass exponents (r(q)). 33

18 Observed storm in Boston correlation dimension and ](2 entropy. (a) phase-
space correlation functions, (b) local slopes of correlation functions, (c), (d),
and (e) correlation dimensions for five large, five intermediate and five small
distances r as indicated from right to left on the uppermost correlation func-
tion in (a) by the symbols +, *, 6, 0 and x, (f) ](2 mean entropy and one
standard deviation band, and (g) 1/](2 and one standard deviation band. .. 36

19 Observed storm in Boston: false neighbors for alternative delays (r) and
largest Lyapunov exponent for alternative dimensions (No). . . . . . . . . .. 37

v



20 Predicted storm in Boston correlation dimension and f{2 entropy. (a) phase-
space correlation functions, (b) local slopes of correlation functions, (c), (d),
and (e) correlation dimensions for five large, five intermediate and five small
distances r as indicated from right to left on the uppermost correlation func-
tion in (a) by the symbols +, *, 6., 0 and x , (f) f{2 mean entropy and one
standard deviation band, and (g) 1/ f{2 and one standard deviation band. .. 38

21 Predicted storm in Boston: false neighbors for alternative delays (T) and
largest Lyapunov exponent for alternative dimensions (No). . . . . . . . . .. 39

22 Measure dyb-573. Fractal-multifractal parameters: (a) localization, {(a, 0),
(0.5,1), (1, -I)}, (b) regularity, -0.5, 0.7, (c) intermittency: 0.3, 0.7 40

23 Measure dya736. Fractal-multifractal parameters: (a) localization, {(O, 0),
(0.5,1)' (1, a)}, (b) regularity, 0.7, 0.3, (c) intermittency: 0.6,0.4. . . . . .. 41

24 Statistics for measuredyb-573: autocorrelation (p(T)), power spectrum (S(w)),
data histogram (f( dy))' and multifractal spectrum (J( 0:)). ... . . . . . ., 43

25 Statistics for measure dya736: autocorrelation (p(T)), power spectrum (S(w)),
data histogram (f(dy)), and multifractal spectrum (f(o:)). . . . . . . . . .. 44

26 Measure dy b-5 73 correlation dimension and 1<2 entropy. (a) phase-space cor-
relation functions, (b) local slopes of correlation functions, (c), (d), and (e)
correlation dimensions for five large, five intermediate and five small distances
l' as indicated from right to left on the uppermost correlation function in (a)
by the symbols +, *, 6., 0 and x , (f) f{2 mean entropy and one standard
deviation band, and (g) 1/ f{2 and one standard deviation band. . . . . . .. 45

27 Measure dyb-573 false neighbors for alternative delays (T) and largest Lya-
punov exponent for alternative dimensions (No). . . . . . . . . . . . . . . .. 46

28 Measure dya736 correlation dimension and f{2 entropy. (a) phase-space cor-
relation functions, (b) local slopes of correlation functions, (c), (d), and (e)
correlation dimensions for five large, five intermediate and five small distances
7' as indicated from right to left on the uppermost correlation function in (a)
by the symbols +, *, 6., 0 and x , (f) f{2 mean entropy and one standard
deviation band, and (g) 1/ f{ 2 and one standard deviation band. . . . . . .. 47

29 Measure dya 736 false neighbors for alternative delays (T) and largest Lya-
punov exponent for alternative dimensions (No). . . . . . . . . . . 48

30 Examples of bivariate derived measures for parameters in Table 6. 50
31 Plausible storm evolutions (clockwise). . . . . . . . . . . . . . . . 51

VI



1 Problem and Research Objectives
This work addresses the problem of understanding the intermittent structure that rainfall
records exhibit. Although several representations for rainfall exist, the most sophisticated
stochastic models only preserve some statistics of the available records, and consequently do
not capture the specific details present in them. The overall objective of this research is the
development of a framework for the proper quantification of natural intermittent phenomena,
and in particular rainfall.

An introduction to the recent literature which suggested the possibility of developing
a new approach to rainfall is given next. Afterwards, a description of the most common
rainfall models is included.

1.1 Basis For aNew Approach

A new vision to understand the intricacies of physical phenomena has been gained with the
ad ven t of the modern theory of turbulence (chaos) and fractal geometry. In this relation,
three important paradigms have appeared:

(a) Details that were thought to be unimportant may in fact play crucial roles in our ability
to predict; e.g. Lorenz (1963), Moon (1987).

(b) What appears unpredictable and "random" at a local scale could be explained as part
of a global deterministic process; e.g. Lorenz (1963), Mandelbrot (1983), Meneveau
and Sreenivasan (1987).

(c) Very complicated processes, which were thought to require partial differential equations
for their description (e.g. convection, fully-developed turbulence), may be accurately
described by means of very simple deterministic models; e.g. Libchaber (1982), Men-
eveau and Sreenivasan (1987), Feigenbaum (1980).

The framework provided by these paradigms constitutes the basis herein. The specific ap-
plications to Hydrology are inspired in part by the call to new approaches to the science, as
suggested by Dooge (1986).

Understanding hydrologic (geophysical) phenomena requires the proper quantification
(interpolation, estimation, prediction, simulation, etc.) of the available information in time
and in space. This is a difficult task because these data sets are complex. They exhibit
heterogeneities, anisotropies, and intermittencies which preclude their simple mathematical
description. The typical approach for many years has been to understand such variability
based upon well founded physical principles, i.e, partial differential equations which express
conservation laws, e.g. Eagleson (1970), Freeze and Cherry (1979), and to quantify the
remaining uncertainties clue to our imperfect knowledge via probability theory, e.g. Bras
and Rodriguez-Iturbe (1985), Bhattacharya and Gupta (1990), and Cressie (1991).

Given the inherent difficulties in fully describing the complex data sets we have avail-
able and the fact that often times such data is not completely accurate, many stochastic
procedures center their attention on relevant statistics of the patterns at hand (i.e. means,



variances, spatial correlations, extremes, etc.) and employ assumptions like stationarity
(homogeneity) and ergodicity in order to develop manageable theories. Despite substantial
progress throughout the years, the problem of "spatial variability" is still an important lim-
itation in several geophysical disciplines and the development of new methods is needed, see
Doege (1986) and NRC (1991a, b). Although state of the art stochastic methods may pro-
vide a viable representation for complex data, the simplifying assumptions used may lead to
smoothed and/or distorted representations of the observed data sets. This may happen also
because preservation of some relevant statistics do not necessarily translate into preservation
of whole geometrical patterns. The paradigms above suggest that not being able to capture
the geometric details of our data sets may hamper our ability to predict, specially if the
prevailing dynamic conditions are sufficiently nonlinear.

Descriptions of natural phenomena via fractal geometry have been developed and pop-
ularized by Mandelbrot (1983, 1989). The basic assumption is that the underlying process
possesses a geometric structure that repeats when looked at increasingly smaller scales. This
self-similarity (self-affinity) represents a plausible way for bridging the gap across alternative
scales, and has been found of relevance in several disciplines in Physics, e.g. Mandelbrot
(1983), Feder (1988). Lately, these ideas have played an important role in the ever intriguing
field of turbulence. In fact, the use of multifractal measures, e.g. Meneveau and Sreenivasan
(1987) and Sreenivasan (1991), appears to provide an adequate framework to study the very
intermittent and highly heterogeneous behavior observed in turbulence. It is worth men-
tioning that even though the power of fractal ideas is unquestionable, a couple of common
objections have been that: (i) the use of the most simple mathematical fractals give rise
to self-similarity (self-affinity) ad-infinitum, a property hardly observed with real (geophys-
ical) data; and (ii) the use of fractal techniques sometimes is not properly linked with the
"Physics" of the underlying phenomena.

In this work, a new procedure for the quantification of space-time variability of hydrologic
(geophysical) phenomena is reviewed and used. The idea is to reproduce the "complex",
"jagged", and "intricate" hydrologic patterns as deterministic fractal transformations of
turbulence-related distributions (multifractal probability measures). The transformations
to be used belong to the family of deterministic continuous fractal interpolating functions,
as introduced by Barnsley (1986) and Barnsley et al. (1989). It will be shown that this
approach provides a compact quantification of high resolution rainfall records, which may
lead to better understanding of the underlying phenomena. It is illustrated via simulations
that they may also result in improved dynamic representations of hydrologic (geophysical)
processes.

1.2 Literature Review
A brief summary of pertinent research on rainfall modeling is presented here. This is included
to stress the advantages and disadvantages of these models, and to contrast their scope with
the proposed methodology. No detailed description is given to "physically-based" models
(e.g. Georgakakos and Bras (1984) or alike). Instead this section concentrates on stochastic
and fractal models.

Many stochastic models for rainfall at a site have been reported in the literature. They
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differ in their assumed distributions of: (i) rainfall arrivals, and (ii) rainfall produced at
each instance. Typically, rainfall is computed superimposing all contributions from "cells"
occurring before the time of interest. Rectangular pulses with random intensities and dura-
tions are the most typical parameterization. Early models assumed an homogeneous Poisson
description for the arrivals. Representative among these approaches are the works of Todor-
ovic (1968), Gupta (1973), Eagleson (1978), and Marien and Vandewielde (1986). Non-
homogeneous Poisson (Cox) models have also been reported, i.e. Smith and Karl' (1983),
Guttorp (1986). To account for the observed clustering (intermittency) of rainfall events,
schemes that replace the Poisson arrivals have been developed. The use of the Neyman-Scott
clustering representation is illustrated in the works of Kavvas and Delleur (1981), Waymire
and Gupta (1981), Rodriguez-Iturbe et al. (1984), Rodriguez-Iturbe (1986). An approach
based on randomized Bernoulli trials is given by Smith (1987). The use of the Bartlett-Lewis
clustering model is reported in the work of Rodriguez-Iturbe (1987a).

Comparisons among some of these models have been carried. It has been found that
cluster-based procedures are better than Poisson-based ones (Valdes et al. (1985), Rodriguez-
Iturbe et al. (1987b)), but inconsistencies have been observed in cluster models regarding
their ability to have a unique set of parameters irrespectively of the degree of aggregation,
Foufoula-Georgiou and Guttorp (1986). Although progress has been made on parameter
estimation (Smith and Karr (1985)), no single model is universally accepted for a given
situation.

In summary, stochastic rainfall models at a spatial location try to mimic the structure
observed on storms at a site. The way information is synthesized is by means of statisti-
cal quantities (mean arrival rates, mean storm duration and intensity, spectrum of counts,
etc.). Although simulated series do preserve statistical characteristics like mean, variance,
and some autocorrelations, global capturing of rainfall (i.e. the observed details and the im-
plied probability distribution) is not accomplished. Being based on average quantities and
simplified conditions to ensure mathematical tractability, these models are typically limited
in their ability to perform well at extreme events.

A new brand of model was introduced by considering rainfall as a chaotic process,
Rodriguez-Iturbe et al, (1989). Even though determinism becomes an important component
of the approach, actual dynamic modeling (i.e. finding the equations of motion from a time
series) is quite difficult (e.g. Crutchfield and McNamara (1987), Casdagli (1989)), and limits
the practical applicability of the otherwise beautiful methodology. A "fractal" representation
to rainfall was introduced by Lovejoy and Schertzer (1985, 1990), and Schertzer and Lovejoy
(1987) via the notion of universal multifractals. Their idea is to represent rainfall (and other
geophysical processes) as a realization of a Levy stochastic process, and parameterize it via
its co dimension function (a portion of the multifractal spectrum, e.g. Feder, 1988). Success
has been attained in characterizing such function for alternative data sets, e.g. Lovejoy and
Schertzer (1990). Even though reasonably looking simulations may be obtained, it is difficult
to find conditional simulations with such an approach.

In this work, rainfall time series are modeled via fractals and multifractals. An impor-
tant difference between the fractal-multifractal approach and those just mentioned is that
the former is entirely deterministic. As will be explained later on, no assumptions regarding
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stationarity or ergodicity are needed. As can be seen in Figures 8, 9, 10 and 14, the fractal-
multifractal representation results in "random-looking" outcomes which are not random at
all. And for the proper combinations of parameters they indeed "look" and have the statis-
tical characteristics of actual rainfall records. This includes statistical properties preserved
by the aforementioned stochastic models and, in particular, the codimension function and
chaotic characteristics present in the data (Puente and Lobato, 1994, Puente and J uliao,
1994, Puente and Obregon, 1995).

2 Methodology: The F'ractal-Multifractal Approach
The fractal-multifractal approach of Puente (1992, 1994, 1995) is reviewed next. Included
first is a geometric description of the procedure followed by mathematical treatments of
fractal interpolators in two and three dimensions. The section ends with a brief summary of
multifractal statistics.

• (1/2.1)

(a)

(1,0)•

(b)

(e)

(d)

Figure 1: Recursive construction of fractal interpolating function.
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y

(0) (b)

x

(c) (d)

Figure 2: Examples of fractal interpolators: (a) z
z = 0.995.

0, (b) z - 0.45, (c) z 0.7, (d)

2.1 Fractal Interpolation, Multifractals and Derived Measures
Consider the set of three data points {(O,0), (0.5, 1), (1, O)} (equally spaced in x) as illustrated
in Figure l(a). Fix a real number a ::; z < 1, draw lines between the points and locate
two intermediate points going up and down the distance z from the mid-points of the line
segments, as shown in Figure 1(b). Continue the process by joining the newly acquired
points and the original ones, locating four additional intermediate points (in the middle of
the line segments) by going up, down, and down, up respectively a distance Z2, as shown in
Figure 1(c). CalTY the process ad-infinitum, adding at the n-th stage 2n intermediate points
with vertical displacements of magnitude z". Take displacements at stage n those of stage
n - 1 on the first half, and the reciprocal of these on the second half. For instance, in the
third stage use as vertical displacements: up, down, down, up, and down, up, up, down, as
shown in Figure 1(d).

The sequence of piecewise linear functions thus constructed converges to a continuous
function fz : [0,1] -+ R (z < 1), which, by virtue of its definition, perfectly interpolates
the original three data points. Figure 2 exhibits the limiting functions for varying values
of z. As shown in Figure 2{a), when z equals zero, linear interpolation between the data
points is obtained. As seen in Figures 2(b, c, and d), when z increases the resulting function
becomes increasingly jagged. For z ::; 0.5, fz may be shown to be differentiable almost
everywhere (with respect to the Lebesgue measure). But, as z is increased beyond 0.5, fz
losses its differentiability and its graph covers more and more space on the plane leading
to fractal (intermediate) dimensions, D, between 1 and 2, Barnsley (1986, 1988). The
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(0) (b)

y

(c) (d)

Figure 3: Derived Measures Y = 1z(U) for the fractal interpolators in Figure 2

resulting graphs are in all cases self-affine: if fz is restricted over any stage n subinterval
[(i -1) ·2-(n+l), i .2-(n+1)], i= 1, ... , 2n+1, and if such graph is adequately enlarged (with two
distinct horizontal and vertical scales), then the whole function fz over [0,1] is recovered. All
functions 1z, even in the case when the fractal dimension of its graph is one, are examples
of deterministic fractal interpolating functions, as introduced by Barnsley (1986, 1988).

As any function fz is recursively constructed, two (probability) measures are naturally
generated by counting the relative frequencies of the acquired points in the x and y coor-
dinates. For the example in Figure 1, a uniform measure is obtained in x. This is easily
seen because additional points at any stage are always in the middle of previous ones. In y,
different measures appear depending on the parameter z , Puente (1992). Due to the conti-
nuity of the interpolating function, measures in y may be interpreted as being derived from
the uniform measure in x via 1z, i.e, Y = fz(U), with U denoting the uniform probability
measure in [0,1] and Y representing the derived measure (random variable) in y. Figure 3
shows the measures in y corresponding to the cases reported in Figure 2. As expected, when
z = 0 a uniform measure is also obtained in y, Figure 3(a). As z is increased and as 1z
becomes increasingly jagged, non-uniform derived measures of varying shapes are obtained,
see Figures 3(b, c, and d). Notice that these graphs provide a (normalized) portrait of the
number of crossings by the alternati ve functions fz. As z approaches 1, the graph of 1z nearly
fills-up the plane and has a fractal dimension arbitrary close to 2. As seen in Figure 3(d),
the obtained derived measure closely resembles a Gaussian. That a limiting Gaussian is
obtained in this case can be proven mathematically, Puente et al. (1996).

As mentioned in the introduction, multifractal measures are being increasingly identified
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Figure 4: Recursive construction of binomial multifractal measure.

as relevant models of physical phenomena, especially in circumstances related to turbulence.
Such measures also appear in the classical problem of the gambler's ruin in relation to the
strategy of bold play, see for example Dubins and Savage (1968), Feller (1968), Billingsley
(1983) and Feder (1988); and in the structure of the width function of Peano river networks,
see Marani et al. (1991). They can be easily generated using a recursive procedure. Figure 4
illustrates the construction of a multiplicative binomial multifractal having equal length
scales. An originally uniform bar is cut by a prespecified factor p, 0 < p < 1, p =1= 0.5,
say p = 0.3. Then, the first piece is stretched and the second piled-up so that a stair with
two steps of equal lengths and masses p and (1 - p) is obtained. The process is repeated in

each piece ad-infinitum. At stage n of the construction there are ( ~ ) segments of length

(1 j2)n and mass pk . (1 - p )n-k, for k = 0, 1, ... ,n, thus forming a "layered" measure. In
the limit, when n tends to infinity, the number of layers also goes to infinity and the set of
points that corresponds to each layer becomes a fractal subset of the interval [0,1] (like the
classical Cantor set). For this reason the measure 0btained, M (p), is termed multifractal, see
Mandelbrot (1989). Multiple-layered behavior has been observed in turbulence. In fact, the
spacings between layers in fully-developed turbulence are very nicely fitted by those given by
Figure 4 precisely when p = 0.3, Meneveau and Sreenivasan (1987). Binomial multifractals
with different length scales are obtained if all mass redistributions are made over subintervals
of unequal lengths. When the original mass is partitioned into more than two pieces, general
multiplicative multinomial multifractal measures are obtained. It will be shown later that
these measures appear in a very natural way when computing a fractal interpolator following
a Monte Carlo approach.

If arbitrary binomial multifractals, like the one constructed in Figure 4 for any 0 < p <
1, P =1= 0.5, replace the uniform distribution in x (i.e. when p ::;:::0.5), then additional flexibil-
ity is gained in regards to derived patterns (distributions), see Puente (1992, 1994). Derived
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Figure 5: Construction of derived measures. dy = f(dx).

(0) (b)

Figure 6: Examples of derived measures along a line: (a) exponential, (b) log-normal.
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measures exhibit: (i) multifractal behavior (when z is small), (ii) absolutely continuous ap-
parence (if z is large), and (iii) a Gaussian distribution (whose parameters depend on p)
when z tends to 1.

Figure 5 illustrates the derived distributions construction for the most general case, see
Benjamin and Cornell (1970). The measure in y, dy, (at Yo) is found by adding the cor-
responding "probabilities" in X, dx, (sum over all the Xo with Jz(xo) = Yo). Notice that
the measure in y (Y = J(X) = Jz(M(p))) may be thought as a weighted projection of the
function Jz, with the weights given by the measure M(p). These derived measures possess a
physical interpretation as they may be thought of as images or "projections" of turbulence.

Figure 6 shows a couple of derived measures along a line which illustrate the suitability
of the fractal-multifractal representation to describe hydrologic (geophysical) information.
They represent plausible realizations of phenomena either in time or in space, which have:
(a) an exponential and (b) a log-normal distribution, respectively. Observe that without
knowing their origin, both outcomes would have been qualified as "random". They give
suitable data sets which are not self-similar nor self-affine and provide commonly observed
marginal distributions in practice. In addition, the characterization of these patterns is quite
parsimonious: both of these graphs were obtained interpolating the set of three data points
employed in Figure 1, using p = 0.3.

It is important to stress at this time the main differences between the fractal-multifractal
approach and classical statistical methods currently in use. First, the fractal-rnultifractal
approach is entirely deterministic: both the parent multifractal measure and the trans-
forming mapping may be uniquely obtained via simple recursive procedures. The data at
hand is interpreted as a normalized distribution, a probability measure, which is encoded
via a parent (deterministically generated) multifractal measure and a unique (and hence de-
terministic) fractal interpolating function. Second, instead of concentrating on the statistics
of the actual realization or realizations at hand, the fractal-multifractal approach focuses on
a wholistic description of geophysical patterns as we see them. Rather than using derived
distributions to characterize the distribution of the data, the fractal-multifractal approach
uses derived distributions to describe the data. It appears that the fractal-rnultifractal pro-
cedure, or others based on a similar idea, may provide a very parsimonious representation
of natural data sets in time and in space.

2.2 Fractal Interpolation in Two Dimensions
The previous geometric construction may be carried mathematically and extended to any
number of interpolating points in the plane. As explained in Barnsley (1988), the inter-
polating functions may be obtained as attraciors of a set of contractile affine mappings.
Specifically, given a set of N + 1 data points on the plane, {(Xn,Yn),XO < Xl < ... < xN,n =
0, 1, ... , N}, and a set of N contractile affine maps of the form

Wn ( ~ ) = (~: ~n) ( ~ ) + ( ': ); 0 S Idn I < 1, n = 1, ... ,N (1)
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subject to

Wn ( xo) ( Xn-l ) 1 Wn ( XN) (xn); n = 1, ... , N,
~ ~-1 ~ ~

(2)

an interpolating function f may be found such that G = U;;=lWn(G) with G being the
graph of f, G = {(x, f(x))lx E [xo, XN])' Barnsley (1986, 1988) showed that f exists, is
continuous, is unique, and passes through each data point. Furthermore, (1) and (2) yield
4 equations in 5 unknowns for each n E {I, ... ,N} enabling the solution of 4 parameters in
terms of the remaining one and the data set. The vertical scalings dn are typically chosen as
the free variables. Once all parameters are fixed, it may be shown that the fractal dimension
of G is D = max(l, Do), where Do is the unique solution of

N
L ldnla~o-l = 1.
n=l

(3)

The geometric example in Figure 1 is recovered by setting d1 = -d2 = z. The graphs in
Figure 6 are recovered by setting d1 = -d2 = 0.45 and d1 = d2 = -0.70, respectively.

The graph G can be constructed following simple deterministic recursive (geometric)
rules (Barnsley 1988, Puente 1992). For instance, it may be found computing an infinite
N-ary tree rooted at one of the data points. The first N nodes of such a tree are the
images of the chosen data point, obtained using the affine mappings WI; .•. , WN. The tree
continues by applying the mappings to the newly acquired points on G, and so on. This
corresponds to the procedure explained in Figure 1. Another simple way of creating the
graph, G, is via a Monte-Carlo approach called the "chaos game" in which successive points
are found recursively through images of (an arbitrary) data point employing the maps Wn
according to a (fixed) set of weights Pn 0::;;=:1 P« = 1, Pn > 0, n = 1, ... , N). Instead of
finding the whole N-ary tree, this method follows a single branch. This second procedure
works due to an ergodic theorem (Barnsley, 1988) and it is a more convenient procedure for
computer simulations. It must be stressed that this Monte-Carlo approach does not add any
randomness to the final unique (and hence deterministic) outcome G.

By counting the number of times image points fall into a small interval in either the
x or y axis, the methods above induce unique stationary measures in x and y, X and Y
respectively (Barnsley 1986). As previously explained, the derived measures, which depend
on the method of construction, can be scaled and thought of as probability distributions
so that Y = f(X) is the derived distribution of X via f. Given the structure of the first
component of the affine mappings (see equation (1)), the unique measures in x induced by
the chaos game are the deterministic multifractals with parameters P« and length scales
given by the data spacings, as explained on the previous section. As mentioned before,
diverse measures appear in y depending on the nature of the affine mappings: they could be
either non-smooth (i.e. multifractal as the parent measure in x) or absolutely continuous (as
the fractal dimension D increases). In the limit, when the graph G of the fractal function
fills up the plane (as D -+ 2), the limiting derived distribution is Gaussian. This fact
illustrates that there is a simple deterministic connection between intermittent (turbulent-
based) measures and the harmonious Gaussian. The connection (via plane-filling fractal
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Figure 7: From turbulence to order, After Puente (1992).

functions) is particularly relevant because it ties up two very different behaviors observed in
nature: irregularity and order, Puente (1992, 1994). Figure 7 illustrates this limiting case,
for a binomial multifractal measure (DX) being transformed into a Gaussian distribution
(DY). That this is the case (in the limit) may be proven mathematically, Puente et al.
(1996).

When the fractal function is not plane-filling, the derived measures obtained can not be
Gaussian. Instead, they are measures, as will be illustrated shortly, that resemble natural
phenomena, like the rainfall patterns under study. The "fractal connection" does not lead
to a Gaussian, but instead "bridges the gap" between turbulence (disorder) and other kinds
of "disorder", as observed in natural patterns.

The derived measures in Figure 6 were obtained playing the chaos game employing a
couple of affine transformations. As more affine functions are used, more flexibility is gained.
For example, one may define three affine functions but only use two of them to arrive at
Cantorian measures in x. This leads to derived distributions that may contain "holes".
As seen in Figure 8, these objects may be of use in the modeling of phenomena such as
rainfall which alternate between "active" and "dormant" states. Both graphs in Figure 8
interpolate {(O,O), (0.25,0.5), (0.5,1), U,O)}. The first one is obtained when d1 0.6,
d2 = -0.2, d3 = 0.2 and PI = 0.6, P2 = 0, P3 = 0.4, while the second uses d1 = 0.5,
dz = -0.4, d3 = -0.4 and PI = 0.7, pz = 0, P3 = 0.3.
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Figure 8: Examples of derived measures along a line based on Cantorian parents.

2.3 Fractal Interpolation in Three Dimensions
Analogous to the two-dimensional case, one may consider N + 1 data points, {(xn,Yn,zn) :
Xo < ... < XN; n = 0,1, ... , N}, and a set of N contractile maps of the form

such that

(4)

An = (dn hn)
In mn

has L2-norm less than 1 (I1An1l2 = VArnax(A;An) < 1) and

(5)

Now, a three-dimensional "wire" G = W1(G) U , .. U WN(G) appears, which is the unique
attractor of the mappings {WI, .. "WN}, and the graph of a continuous deterministic function
from [xa, XN] to the yz-plane. The construction leaves now four free parameters per map,
with an, en1 en, L, gnl and kn all determined in terms of dn, hn1 In, mn and the N + 1 data
points. Transforming to polar coordinates, redefine the submatrix An

( d h) ( 1'(1) COS 0(1) _r(2} sin O(2} )A- n n _ n n n n
n - 1 m - 1'(1) sin O(l} 1'(2} cos 0(2)n n n n n n

(7)

The entries on these matrices and the interpolating data points constitute the parameter set
e which completely characterize an interpolating function j.

If the magnitude of the scaling parameters 1'~i) are all less than one, then there is a unique
attracting set G with the desired properties, Barnsley (1988). Moreover, the attractor G
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Figure 9: Three-dimensional fractal interpolator projections
{(O,0.1, 0), (0.5,1,0.4), (1,0, 0.2)}. d1

) = ri2) = -0.6, of)
r~2} = -0.6, of) = O~2) = 45, PI = 0.3, pz = 0.7 (angles in degrees).

and derived measures.
of) = 45, r~1) = 0.6,

becomes fractal as the magnitude of the scaling parameters increases towards one (Barnsley
1988). Analogous to the two-dimensional case, a formula may be derived for the fractal
dimension of G, Puente and Klebanoff (1994).

Figure 9 shows the analogous to Figure 5 for the three-dimensional case. In addition to
a parent measure in x, a fractal interpolating function from x to y, and a derived measure in
y, now there are also an interpolating function from x to z (a projection of the unique "wire"
in the x - z plane), a derived measure in z and more importantly a joint derived measure
in y z. As may be seen, phenomena along y and z may be correlated and, as before, need
not to be strictly self-similar or self-affine. Rainfall in time may be modeled by considering
the wire projection either in x - y or in x - z. Now there are "hidden" relationships being
used which could account for variables such as reflectivities, water content, temperature, etc.
As will be illustrated later, the projections over the y - z plane may be employed to model
spatial rainfall.

As in the two-dimensional case, in the limit when the rn's tend to 1 one obtains joint
bivariate Gaussian distributions, Puente and Klebanoff (1994). By varying the parameter
set e one may obtain alternative cross-correlations which are geometrically explained in
terms of the xy and xz projections of the corresponding unique function f = [e- When a
Cantorian measure is used in x still a space-filling fractal leads to a bivariate Gaussian in
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yz. As in two-dimensions, a Cantorian measure in x leads to increased freedom in derived
measures over the plane when the function I is away from being space-filling.

It is not hard to generalize the procedures given here so that derived measures are defined
over nm, and in particular over n3.

2.4 Statistics of Multifractals
Consider a measure p, over a one-dimensional domain of size L, defined up to some minimum
scale Or. To describe it, divide it into N pieces of size 8 == LIN?: 8r, and call f.Li(8) the
measure in the ith piece, 1 :::;i :::;N.

The Lipschitz-Holder exponents a quantify the strenght of the measure's singularities.
Typically, they are location dependent and are found from the scaling relation, (0 ---+ 0):

(8)

Let N(a,8) be the number of pieces for a given resolution 8 where a given value of a is
found, and define I( a) from the scaling relation:

(9)

Then, f( a) may be thought of as the fractal dimension of the set of points that corresponds
to a singularity a, and a graph of a vs. I( a) is called the multifractal spectrum of the
measure.

Loosely speaking, a measure is multifractal when its multifractal spectrum exists and has
the shape of an inverted parabola. f(a) can not be negative for a single measure. This
is because an observed value of a in yields for N( a, 8) at least a value of 1, and hence an
exponent of at least 0 for f(a). The maximum value of f(a) corresponds to the fractal
dimension of the measure's support. This value equals 1 in case of a measure defined over
an interval.

A generally equivalent way to arrive at multifractals is obtained by considering the scaling
laws of the moments of the measure. This involves

N
L:[j.ti( 8)F I'V 8-r(q) ,
i;;;;l

(10)

where T( q) is the measure's qth mass exponent. As q is varied, the different orders of
magnitude within the measure are probed. For instance, when q is large and positive, the
sum is dominated by large j.t( 8) 's; while if q is negative, the sum is dominated by small
j.t(o)'s. Loosely speaking again, a measure is multifractal when r(q) is a non-linear convex
function. The measure's generalized dimensions are defined in terms of the mass exponents
by D(q) = ;~J,Hentschel and Procaccia (1983). D(O) is the fractal dimension of the support
of the measure, D( 1) is the entropy dimension, and D(2) is the correlation dimension. For
an absolutely continuous measure over the line (i.e. uniform, Gaussian, etc.) the mass
exponents become the straight line r(q) = 1 - q, and then all generalized dimensions are
equal. These measures are clearly not multifractals.

14



When f(a) and D(q) are smooth functions of a and q, the following heuristic argument
can be made, Halsey et al. (1986):

2:[,ui(8W rv 2: 8exq5-!(ex) rv 8min{exq-!(ex)}.
ex

(11 )

This implies Legendre relationships between T(q) and f(a):

dT
a = - dq' (12)

f(a) = a q + T(q). (13)

Even though these Legendre relations are valid for many typical multifractal models
(e.g. multinomial multifractals and measures arising from stochastic cascades with strongly
bounded generators, Holley and Waymire (1992), there are examples in which they do not
hold (e.g. Holley and Waymire, 1992).

Yet another way for arriving at the concept of multifractality has been developed by
Schertzer and Lovejoy (1987). Instead of working with the measure,u( 5), attention is centered
on the extremes of the density c). = ,u(8)/8. This leads to the codimension function of the
data, cC/), via the scaling relation:

(14 )

The multifractal spectrum and the codimension function contain precisely the same infor-
mation when low values of a are considered (q > 0). In fact, for one-dimensional continuous
data sets the codimension function is simply related to the left side of the multifractal spec-
trum via the relations: I = 1 - a and cb) = 1 - f( a). For data sets defined over two or
three dimensions the codimension is preferred because it does not depend explicitly on the
dimension being studied, Schertzer and Lovejoy (1989).

Several procedures have been proposed in the literature to estimate the multifractal
spectrum (or codimension function) of a measure. Following the "mass exponents" technique,
the T(q)'S are found first (via simple regressions using its definition) and then the Legendre
relations are used to get f( a).

It is possible to get the multifractal spectrum directly without Legendre transforms)
Chhabra and Jensen (1989). The "direct method" requires usage of normalized measure

(15)

such that an "average" a and the corresponding f(a) are

(16)

and
f(q) lim L,i (i(q, 8)log((i(q, 8)).

&-0 log8
( 17)
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This procedure, based on information theoretic ideas, avoids employing Legendre transforms
but results in a spectrum that satisfies them. Practical use of this method in fully developed
turbulence has been reported by Chhabra et al. (1989).

The codimension function may also be obtained following several approaches. These
include the Probabilistic Distribution Multiple Scaling (PDMS) technique, and the Double
Trace Moment procedure of Lavallee et a1. (1991). We shall concentrate only on the methods
for multifractal spectrum in lieu of the existing equivalences between f( a) and c(f).

3 Results and Their Significance
This section contains the analysis made on several uses of the fractal-multifradal method-
ology. They include the following specific applications: (1) representation of high resolution
temporal rainfall records, (ii) determination of chaos and stochasticity of generated series,
and (iii) potential of the geometric methodology in dealing with space-time rainfall.

3.1 Description of High Resolution Rainfall
The suitability of the fractal-multifractal approach for representing real rainfall records is
illustrated in this section. For this purpose, three high resolution storms were used: one in
Boston previously analyzed by Rodriguez-Iturbe et al. (1989), and two in Iowa City gathered
and analyzed by Georgakakos et al. (1994). Table 1 provides relevant information about
these events.

Table 1: Information for high resolution storms.

Storm Location Date Sampling Time Data Points Duration
(sec) (hours)

Boston Boston 10/25/80 15 1990 8.3
Iowa2 Iowa City 11/01/90 5 8192 11.4
Iowa3 Iowa City 11/30/90 5 8192 11.4

The parameters that need to be specified for a fractal-rnultifractal description of a given
data set are: (a) the points by which the fractal interpolation function passes (localization
parameters); (b) the sequences of ups and downs and their magnitude (regularity parameters,
z's), and (c) the quantities that dictate how to recursively construct the multifractal measure
(intermittency parameters, p's). As noticed from the construction of the components of
the fractal-multifractal representation, i.e. Figure 5, the shape of the derived measure dy
varies continuously on all the surrogate geometric parameters. This property implies that a
small change in localization, regularity or intermittency parameters leads to a small outcome
change, e.g. a nearby and different derived measure dy.

Although it appears that alternative derived measures are found by varying the surrogate
parameters, unfortunately there is neither a simple analytical formula that gives the derived
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measure dy, nor its most common statistics, in terms of these parameters. This implies
that the inverse problem for a given data set can not be obtained analytically, but will
require complete calculations via chaos game simulations. Fortunately, these calculations
are not extensive and a numerical approach can be implemented. At the end, the inverse
problem becomes complicated due to: (i) the large number of combinations of surrogate
parameters (even with few interpolating points), and (ii) the practically infinite number of
derived measures that may be generated, many having common features among themselves.
It has been our experience that a cataloguing exercise is a must before attempting any
sophisticated search algorithm.

Besides looking at pages on an interactive catalogue, the fractal geometric parameters
for the three storms reported in this work were obtained using multidimensional optimiza-
tion procedures. These algorithms minimized squared differences between real and fractal-
multifractal outcomes in terms of a combination of classical statistical indicators and multi-
fractal characteristics. The statistical qualifiers included moments of the data sets in both

, the time and intensity axis, and the autocorrelation function (power spectrum) of the records.
The multifractal characteristics considered accounted for the mass exponents function r( q)
for the data sets, i.e. equation (10).

Given the complex nature of the data sets to be fitted, a two-step optimization procedure
was considered. During the first stage, a preliminary set of parameters was found employ-
ing the multidimensional simplex method (Press et al., 1989), starting the procedure using
parameter values obtained via the cataloguing exercise. On the second stage, those param-
eters became initial conditions for more sophisticated searching procedures. The methods
of simulated annealing (Otten et al., 1989) and/or sequential quadratic programming (Zhou
and Tits, 1993) were used at this stage. It is worth reemphasizing that despite the success
attained by the procedures, heuristic knowledge on behalf of the user is key in order to search
for improved solutions.

Tables 2, 3 and 4 provide relevant statistical information for the observed and predicted
data sets on the three storms of Table 1. These statistics include:

• central moments for the records seen from the time axis, M(y),

• moments around the mode for records seen from the time axis, M (y r ,
• central moments computed from the rainfall intensity axis, M(dy)

• time lag where first minimum of autocorrelation function happens, r(flm),

• the scaling exponent Q' for the power spectrum, i.e. S(w) '" w-Cl',

• mass exponents for the indicated weights q, r(q), and

• the information dimension for the data, D(1).

The mass exponents above were computed fitting the best regression on equation 10 using
four consecutive resolutions. The reported values of the information dimension were found
employing the method of mass exponents taking four regression points, i.e. the Legendre
transforms on equations 12 and 13.
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Table 2: Relevant statistics for high resolution Boston storm.

I Moment ~ Order I Real value I Predicted value I Error (%) I
M(y) 1 0.445 0.439 1

2 0.237 0.215 9
3 0.265 0.211 20
4 2.502 2.412 4

M(y)'" 1 0.547 0.535 2
2 0.258 0.235 9
3 -0.854 -0.925 8
4 2.272 2.273 0

M(dy) 1 0.075 0.077 3
2 0.074 0.072 3
3 3.643 3.179 13
4 28.76 24.84 14

T(Jlm) ~
===

0: ~

23 16 30
2.711 2.686 1

T(q) -1.0 2.034 2.139 5
-0.2 1.204 1.202 0
0.6 0.396 0.396 0
1.4 -0.391 -0.392 0
2.2 -1.161 -1.153 I
3.0 -1.908 -1.873 2
3.8 -2.629 -2.545 3
4.6 -3.330 -3.184 4
5.4 -4.014 -3.803 5
6.2 -4.688 -4.411 6

I D(l) ~L--_~_O_.9_82_l-._0_.9_84_---L __ O__
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Table 3: Relevant statistics for high resolution storm Iowa2 in Iowa City.

I Moment ~ Order I Real value I Predicted value I Error (%) I
M(y) 1 0.382 0.407 7

2 0.243 0.230 5
3 0.702 0.605 14
4 2.913 2.959 2

M(y)* 1 OA13 0.419 1
2 0.245 0.230 6
3 0.313 0.458 46
4 2.571 2.843 11

M(dy) 1 0.023 0.022 4
2 0.050 0.048 4
3 9.267 8.855 4
4 115.8 120.5 4

r (J lm) ~==*==;;;6::::==~===8== ==3=3 ==!
ex ~ 1.300 1.351 4

r(q) -1.0 1.881 2.043 9
-0.2 1.195 1.208 1
0.6 0.396 0.389 2
1.4 -0.391 -0.374 4
2.2 -1.166 -1.079 7
3.0 ·1.928 -1.749 9
3.8 -2.677 -2.408 10
4.6 -3.413 ·3.062 10
5A -4.138 -3.714 10
6.2 -4.852 -4.364 10

I D(l) ~,--- O._98_2_.l-_0_.9_5_3 3__
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Table 4: Relevant statistics for high resolution storm Iowa3 in Iowa City.

I Moment ~ Order I Real value I Predicted value I Error (%) I
M(y) 1 0.480 0.476 1

2 0.227 0.222 2
3 -0.453 -0.563 24
4 2.275 2.404 6

M(y)* 1 0.664 0.652 2
2 0.292 0.283 3
3 -1.602 -1.655 3
4 2.959 3.152 7

M(dy) 1 0.035 0.032 9
2 0.062 0.060 3
3 5.485 5.188 5
4 51.00 43.55 15

r(flm) ~
;::::==:::::;

a ~

7 28 300
1.480 1.268 14

r(q) -1.0 1.986 1.829 8
-0.2 1.200 1.198 0
0.6 0.390 0.391 0
1.4 -0.380 -0.381 0
2.2 -1.113 -1.123 1
3.0 -1.820 -1.841 1
3.8 -2.514 -2.539 2
4.6 -3.202 -3.219 1
5.4 -3.888 -3.884 0
6.2 -4.572 -4.537 1

I D (1) ~__ ...L..--_0_.9_60_...L..--_0_.9_6_3 0__
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As may be seen, the fractal-multifractal description matches well the characteristics of
the three storms considered.

The storm in Boston, which has the shortest of all data sets considered, has a large
isolated maximum and several intermediate peaks, Figure 15. As may be seen in Table 2,
excellent agreement is found for all the moments computed, with modal moments on the time
axis (M(y)*) being better that those found around the mean. As observed on such table, the
magnitede of the time delay on the autocorrelation function where the first local minimum
happens is preserved but the actual values do not match (23 VS. 16). This happens despite
close agreement on power spectrum scaling, as evidenced by exponents C\:' (computed for
frequencies greater than 0.4) which differ by only 1%. The mass exponents for the storm in
Boston are nicely reproduced, with errors that are less than 3% for q values between -0.2 and
3.8. Notice that these small errors translate into a precise fit of the information dimension
D(l). The results given in Table 2 were found employing a parameterization based on five
interpolating points.

Table 3 contains the statistics for an Iowa City storm (Iowa2) and its corresponding
fractal-multifractal fit based on three interpolating points. This storm contains a large
localized peak and long periods (before and after the peak) of relatively little activity. As
the central and modal moments on Table 3 reveal, the fractal-multifractal approach does
preserve the location of the large peak and gives a representation which is very faithful in
relation to the moments. The reproduction of the short time delay to the first minimum
on the autocorrelation function of the real data (6 vs. 8), and the close agreement on the
power-law power spectrum (1.3 vs. 1.35, for regressions using frequencies greater tha.n 0.2)
confirm the quality of the fractal-multifractal representation. It may be seen however, by
comparing the Tables 2, 3 and 4, that this storm is the hardest one to fit in relation to
multifractal characteristics. As may be seen in Table 3, the errors on the mass exponents
function increase rapidly as lql increases. This leads to a fractal-multifractal prediction
which has an "emptier" domain than the real data, i.e. the correlation dimension for the
predictions is farther away from 1 than this attribute found for the real data.

The statistics for the other storm in Iowa City (Iowa3) are included in Table 4. This
high resolution storm exhibits two large zones of peak activity, several medium-sized peaks,
and a long zone of little "noisy" behavior, see the right hand portion of Figure 10. For this
storm, a fractal-multifractal representation based on five interpolating points was employed.
As may be seen by looking at Table 4~ this storm in Iowa City is nicely captured, both in
relation to its moments and also in regards to its multifractal characteristics.

Figure 10, for the storm Iowa3, illustrates that the fits obtained are not only statistical
correct but also visually appealing, Puente and Obregon (1995). This graph shows the parent
multifractal measure, the fractal interpolating function (from five interpolating points), and
the deterministic description obtained for the records. The data set itself is displayed on
the right hand side of the figure for comparison purposes. As may be observed, the location
and magnitude of the peaks are well represented and the overall behavior (ttnoise") of both
graphs is similar. Observe that the parent multifractal and fractal interpolating function
combination are not trivial ones, but these two deterministic objects blend together to give
a close representation of the observed records. That such a representation is possible suggests
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Figure 10: Predicted and real rainfall records for the Iowa3 storm in Iowa City. Fractal
multifractal parameters: (a) localization, {(0.03, -0.87)' (0.24, -0.17), (0.39, 0.54), (0.72,
0.52), (1.09, 0.92)}, (b) regularity, -0.53, -0.20, -0.13, -0.85, (c) intermittency: 0.25, 0.28,
0.25,0.22.

indeed that actual records may be thought of as "weighted projections" without the need of
stochastic descriptions.

Figures 11, 12 and 13 complement the statistical description given in Table 4. Figures 11
and 12 include the whole autocorrelation function (p(r)), power spectrum (S(w)) and the
-5/3 line, data histogram (f(dy)), and multifractal spectrum (f(a)) for the observed and
approximated records, respectively. Notice the close agreement in:

(i) the exhibited power-law power spectrum, i.e, close a's as shown in Table 4 for w > 0.1,

(ii) the shape of the autocorrelation function, which includes the delay r for which p(r)
equals e-1, (r(e -1)), and the time delay to the first local minimum, (r(flm)),

(iii) the histogram ofthe records, which includes moments on the two axis M(y) and M(dy),
and
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Figure 11: Statistics for observed Iowa3 storm in Iowa City: autocorrelation (p(T))~ power
spectrum (S(w)L data histogram (f(dy))~ and multifract al spectrum (1(0:)).
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Figure 12: Statistics for predicted Iowa3 storm in Iowa City: autocorrelation (p(r)), power
spectrum (S(w)), data histogram (j(dy)), and multifractal spectrum (1(a)).
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(iv) the left hand portion of the multifractal spectrum computed from the method of mass
exponents, as exemplified by very close entropy dimensions (Dl) calculated using a
varying number of resolutions (nr).

Of course, the fractal-multifractal representation obtained for Iowa3 is not perfect. Clearly, it
would be nice to have an even closer agreement on the details of the autocorrelation function
of the data. That the simulated series preserve the moments of the actual data is further
illustrated in Figure 13. This graph extends the results provided in Table 4. It includes the
first 15 central and modal moments in the time axis (in semi-log scale), the first 10 central
moments in the intensity axis (in semi-log scale), and the mass exponents function (found
from nr = 4 regression points) for values of q between -1 and 6 and having as increment
a value of 0.2. As may be seen, the agreement in regards to these attributes is excellent
for Iowa3. It is worth mentioning that the calculated multifractal spectrum from the direct
method (i.e. equations 16 and 17) gave the same results as the mass exponents method did.

Visual and statistical similarities (including multifractal behavior) have also been found
for the other storms. This will be illustrated for the storm in Boston in the next section.

In addition to fractal interpolating functions in two dimensions, "hidden" variable rainfall
descriptions, i.e. from equation 4 have also been computed. These projections of three-
dimensional wires also result in close and suitable representations of available records. The
suitability of such a representation is illustrated in Figure 14, which includes the actual
Boston records on the third spot from the top. Observe that the other "storms" have
features which are very similar to those of the Boston data, but their largest peaks occur
at different times. Table 5 includes the variable surrogate parameters for the five "storms"
in Figure 14. All these data sets have 3 interpolating points in three dimensions and share:

- 0 - 0 5 - (1) - (2) - 0 6 e(l) - a(2) - (I} - 0 6 (2) - -0 6Xo - ,Xl - ., X2 - 1, r1 - rl - - ., 1 - 1 - 45, r2 - ., r2 - .,

()~1)= ()~2}= 45, PI ::;;;:0.3, P2 = 0.7. A pictorial representation of the building blocks of the
second graph from the top in Figure 14 was already given in Figure 9. In fact, the second
"storm" corresponds to the measure dz in Figure 9 (be aware of proper orientation).

It is important to emphasize that all records in Figure 14 have a large maximum, few
intermediate spikes, and a rainfall variability which will be typically qualified as "noise".
Observe that the fractal-multifractal representation results in measures which resemble the
details present on actual records at a wide range of scales. A complete statistical analysis
reveals that the representations given in Figure 14 do share similar statistical and chaotic
characteristics. In fact, these series may be modeled as deterministic chaotic systems with
few degrees of freedom, as found for the original data by Rodriguez-Iturbe et al. (1989).
Details of a chaotic analysis of data sets similar to the ones shown in Figure 14 are given in
the next section.

3.2 Chaos vs. Stochasticity in Ternp oral Rainfall
As briefly explained on the previous section, whether rainfall may be viewed as a determin-
istic chaotic process has attracted attention in the literature, i.e. Rodriguez-Iturbe et al,
(1989). Given that it is possible to model complicated data sets by means of the fractal-
multifractal representation, it is relevant to ask if the outcomes of the deterministic procedure
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20

Figure 14: Hidden variable projections and a storm in Boston.
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Table 5: Relevant surrogate parameters for "storms" in Figure 14.

Storm number Geometry
(from the top) Yo Yl Y2 Zo Zl Z2

1 0.00 1.00 0.00 0.00 0.90 -0.20
2 0.10 1.00 0.00 0.00 0.40 0.20
4 0.00 1.00 0.00 0.00 1.00 0.00
5 0.10 1.00 0.00 0.00 0.50 0.00
6 0.10 1.00 0.00 0.00 0.20 0.40

lead to deterministic chaos. This section studies this question by: (i) using a suitable repre-
sentation of the storm in Boston, and (ii) considering a host of projections from alternative
wires in two-dimensions. Before giving such results, a brief review of chaos theory and related
techniques is provided.

3.2.1 A Brief Review of Chaos Theory

The possibility that natural and apparently random time series (i.e. with broad band spec-
trum) may be described by sets of few ordinary differential equations, which exhibit chaotic
behavior, has attracted considerable interest in the literat ure. Clearly, the physical de-
scription of a phenomena can be greatly simplified if a small number of modes dominates
the dynamics. One of the aims of nonlinear analysis of time series is the discrimination of
behavior between low-dimensional chaos and high-dimensional "random" behavior.

Key in the definition of chaotic behavior is the proper identification of low-dimensional
strange at tractors. Phase-space reconstruction is typically made by time embeddings of the
records X(t), i.e. vector time series of increasing dimensions N:

(18)

wi th an appropriate delay r. Stable fractal dimension of the obtained cloud of dots, after a
certain dimension No, is recognized as a precursor of chaotic behavior. Once the embedding
dimension No is found, a positive value for the largest Lyapunov exponent of the system
confirms the chaotic nature of the data.

Accurate definition of the delay r is crucial for the proper reconstruction of strange
attractors, and several suggestions have been made in the literature, e.g. Albano et a1.
(1988, 1991), Fraser and Swinney (1986), Fraser (1989). For this report r was defined as
the delay time to the first local minimum of the autocorrelation function of the data being
considered.

The proper determination of No is typically made employing the correlation dimension
and Kolmogorov entropy, Grassberger and Procaccia (1983a, b). For the correlation function
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at a given embedding N one defines

(19)

where H is the Heaviside step function, M is the number of points in the vector time series
X( ii) and the vertical bars indicate the norm of the vector.

If an attractor for the system exists then the correlation dimension, D(2), for the system
satisfies

(20)

and
VN '" v = D(2) (21 )

when c ~ 0 and N ~ 00. Stabilization of D(2) for a small value of No gives rise to possible
chaotic behavior because the correlation dimension approximates the fractal dimension of
the strange attractor.

Efficient algorithms for correlation dimension are needed when data sets are large, spe-
cially when considering a large number of embedding dimensions. A typical procedure divides
the phase-space into blocks and computes eN(r) for all points within the same block and
only for some points that belong to different blocks, e.g. Grassberger (1990).

Another criteria for identifying strange attractors is the stabilization of the /(2 entropy
of the HOWl a lower bound of the Kolmogorov-Sinai entropy, e.g. Provenzale et al. (1991).
/(2 is defined from successive correlation functions as follows:

(22)

and
(23)

for t ~ 0 and N -7 00. /(2 is thought to have the same qualitative behavior of the
Kolmogorov-Sinai entropy: it is positive and finite for chaotic systems and stochastic pro-
cesses with power-law power spectrum and it is infinite for "wild" stochastic processes like
white noise. Once again, stabilization of f{z for a low value of No is a good symptom for the
presence of a strange attractor.

Often times the use of correlation dimension leads to inconclusive discrimination between
chaos and stochasticity. This happens because the values of Vn may be quite sensitive to the
number of points used to fit the power law. In order to circumvent these difficulties, other
dimension algorithms have been introduced in the literature. The false nearest neighbors
algorithm of Kennel et al. (1992) relies on the observation that on a true attractor, neigh-
boring points should remain close dynamically. The idea is then to follow the evolution of the
points in phase-space and calculate the number of those that appear to be close but which
in reality are far in higher dimensions. The proper embedding dimension is then identified
as the phase-space dimension for which the percentage of false neighbors remains close to
zero.
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Confirmation of chaotic behavior relies on the exponential divergence of orbits originating
very close within the strange attractor. A positive largest Lyapunov exponent for the records
confirms such behavior. This is computed by following an infinitesimal No sphere of initial
conditions, Wolf et al. (1985). As time passes, the sphere evolves into an ellipsoid and
one may compute the growth of the largest principal axis Pi(i) to arrive at the Lyapunov
exponent AI:

. 1 (Pi(t))),1 = lim -1092 ~() .
t-+oo t Ti 0

f{2 is a lower bound of the sum of all positive Lyapunov exponents.

(24)

3.2.2 A High Resolution Storm in Boston

Figures 15, 16 and 17 compare relevant statistics of the observed and predicted records from
Boston. These results correspond to the ones given earlier in Table 2. As may be seen and
as previously mentioned, the kind of fractal-multifractal representation found for the storm
in Boston is comparable to the one already reported for the Iowa3 storm gathered in Iowa
City, i.e. Figures 11 to 13.

Observe that despite the 1990 data points in Boston, the fractal-multifractal projection
give reasonably close fittings of both the autocorrelation function and power spectrum of the
actual data. Notice the similarity in the shapes of these functions, with the autocorrelation of
the actual data being rougher than the one predicted by the fractal-multifractal approach;
and with the power spectrum of the predicted records exhibiting a less stable power law
behavior that the actual records.

In terms of the data histogram (J( dy)), even though the predicted and real shapes do
not match perfectly, there is indeed a good visual agreement and good fit of the moments
as previously reported in Table 2. Overall, the moments in both time and intensity axis are
very well preserved as seen in Figure 17 for time moments of orders up to 15, and intensity
moments of orders up to 10.

As seen with the mass exponents in Figure 17 and the multifractal spectra for the observed
and predicted storms given at the right hand corner of Figures 15 and 16, good agreement
between real and predicted is only found on a region of exponents q and only for the left
hand portion of the multifractal spectrum. As real and predicted mass exponents deviate
for large magnitudes of the exponent q, the multifractal spectra of both series differs in
both tails of the multifractal spectrum, see the Legendre relationships, equations (12) and
(13). It is clear that the right hand portion of the predicted multifractal spectrum is not
preserving what is present in the data, even while changing the number of regression points
nr. Overall, the entropy dimension, an stable qualifier of the spectrum, is well preserved by
the fractal-multifractal measure. This is particularly true for regressions made with 4 and 7
resol utions.

A chaotic analysis for both of the Boston records is included in Figures 18 to 21. Fig-
ures 18 and 20 include the correlation dimension analysis and 1(2 entropy calculations using
a delay T obtained from the first local minimum of the autocorrelation function of the real
records (i.e. 23). These figures include the following information:
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Figure 15: Statistics for observed storm in Boston: autocorrelation (p( T)) 1 power spectrum
(S(w)), data histogram (f(dy)), and multifractal spectrum (f(a)).
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(a) the phase-space correlation functions CN(r),

(b) the local slope of CN(r) (computed via lag-one differences),

(c), (d), and (e) the correlation dimensions VN computed for five large, five intermediate,
and five small values of the distance r, respectively. Such values are indicated on the
upper correlation function curve (i.e. N = 2) and are found via a regression of three
successive points ending with the symbol in question, e.g, the values reported for lJn

and symbol "+" are obtained employing CN(r) values for distances indicated by "6",
"*" and "+", ,

(f) the average J(2(N) entropy found for the "stable" region in the correlation function
slope and the band of plus and minus one standard deviation, and

(g) the average value of 1/ J(2(N) and its corresponding band of one standard deviation.

As may be seen on part (a) of Figures 18 and 20, the computed correlation functions for
both observed and predicted records are not perfect straight lines in log-log scale. This leads
to stable and unstable local slopes as indicated in part (b) of these graphs. While the actual
data leads to a slope valley between two mounds, the local slopes on the predicted records
show only one mound and smooth behavior for larger distances. Notice from parts (c), (d)
and (e) of Figure 18 that the real data exhibits stable correlation dimension estimates only
in the intermediate zone, leading to a correlation dimension D(2) of 3.68, see for example
the graph with symbol" x" in Figure 18(d). The predicted records, on the other hand, also
lead to stable behavior and close correlation dimension of 3.44, see Figure 20( e) and symbol
"*". These values are quite close to the 3.78 reported for this storm by Rodriguez-Iturbe et
al. (1989).

The J(2(N) entropy analysis yields inconclusive results for both the real and predicted
storms. As may be seen in Figures 18 and 20(f), (g), ]{2 remains positive for all embedding
dimensions N, but no apparent stabilization of either ](2 (N) or its inverse is attained. The
short length of the time series precludes a more complete analysis regarding this attribute.
Notice however that the behavior of real and predicted entropies is quite similar.

Figures 19 and 21 verify the correlation dimension results by bounding the optimal em-
bedding dimension using the method of false neighbors (Kennel et al., 1992). These figures
also include the largest Lyapunov exponents under alternative conditions (Wolf et al., 1985).

Notice that the percentage of false neighbors behaves very similarly for both real and
predicted records. As may be seen in Figures 19 and 21, for delays r which range from 8 to
32, there is a marked decrease in false neighbors as the embedding dimension is increased
from 2 to 4. At this stage, the percentage of false neighbors falls in all cases below 10%, and
only a mild rise is observed after. These results clearly support the validity of the correlation
dimension values given before.

The largest Lyapunov exponent (.\1) for both real and predicted series are given in Fig-
ures 19 and 21 for an optimal embedding of No = 4 and for a couple of plausible delays
r . The results for the real data are clear. A positive Lyapunov exponent is found for both
delays considered. For the predicted records the Lyapunov exponents vary in character. For
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the most of the time A1 gives positive values which signify chaotic behavior, but there are
series durations for which negative values are found. Overall, the behavior of both real and
predicted records is similar in relation to the largest Lyapunov exponent: notice that the
scales on both cases is quite close and that indeed positive values are found, compare in
particular the cases when T = 16.

In order to avoid issues related to the small length of the time series, the previous chaotic
analysis was also carried with simulated records having 16,384 values. The study confirmed
the chaotic nature of the fractal-multifractal projection which nicely approximates the Boston
data at the lower resolution. Once again a dimension close to 3.7 was found and the percent-
age of false neighbors came below 10% for 4 embedding dimensions. This time a positive
largest Lyapunov exponent was found, even for the duration of the series.

3.2.3 Fractal-Multifractal Data Sets

The previous section illustrated that it is possible to have a deterministic data set gener-
ated via the fractal-multifractal procedure, which in turn results to be low-dimensional and
chaotic. This was a bit surprising because determinism in the generated measure do not
have to translate necessarily into chaotic behavior, e.g. it could also lead to deterministic
non-chaotic behavior. In this section it will be shown that low-dimensional chaotic behavior
is not the only exotic response. Specifically, it will be demonstrated that fractal-multifractal
parameter combinations exist, whose corresponding projections give "high-dimensional" and
for all practical purposes "stochastic" behavior. This unexpected property is welcomed as it
allows the fractal-multifractal procedure to have a wide range of deterministic and stochastic
applications.

Figures 22 and 23 show the construction of two typical data sets which will be used to
illustrate low and high-dimensional behavior. They are obtained as projections in y (dy) of
simple wires in two dimensions which pass by three-point geometries (termed "b" and "a"
and defined on the headings of Figures 22 and 23, respectively). The two scaling parameters
are also reflected in the names of the data sets: -0.5 and 0.7 for the measure dyb-573, and
0.7 and 0.3 for dya736. As may be seen, the two measures come from parent binomial
multifractal measures which have as intermittency parameters 0.3 and 0.6~ respectively.
These parameters are encrypted in the last numbers on the names of the two measures.

As may be observed on Figures 22 and 23, the measure dya736 comes from a wire which
requires less ink than the one needed to generate dyb-573. In fact, using equation (3), it
may be shown that the former wire has fractal dimension one, while the latter has a fractal
dimension of about 1.26. As a consequence, the wire "xya73" filters the intermittencies of
the parent binomial multifractal less than the wire "xyb-S?". This leads, as clearly seen on
Figures 22 and 23~ to a measure dya736 which inherits more of the features of its parent
binomial multifractal than dyb-573. Of course, this is simply summarized by noticing that
dya736 has a "wilder" appearance than dyb-573.

Figures 24 and 25 confirm the different nature of the data sets. The two series (having
both 16,384 points) reveal basic differences in a1l their statistical and multifractal attributes.
The autocorrelation functions differ in their shape and basic scale, with the wilder dya736
having a much smaller correlation length than dyb-573. This is clearly seen in terms of
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Figure 18: Observed storm in Boston correlation dimension and f{2 entropy. (a) phase-space
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the time delays corresponding to the correlation e-1 and the autocorrelation's first local
minimum. The difference in shape between the two data sets is reflected by the shapes of
the corresponding histograms. While dya736 has ordinates which remain close to the origin,
dyb-573 gives a broader set of values which result in a less positively skewed histogram.
Although the spectral density function exhibits power law behavior in both cases, the wilder
set dya736 has an exponent of 1.19 which is less than the 1.28 found for dyb-573. This is
also consistent with the degree of irregularity of the two series. Finally, the difference in
intermittency is also captured by looking at the multifractal spectrum of both data sets. In
particular, the information dimensions D1 (for alternative resolutions used on the calculation
of mass exponents nr) for dya736 all equal to 0.95, confirm that such a measure has an
emptier domain than dyb-573, which has a value closer (0.98) to the fractal dimension of
its domain, i.e. 1. In summary, the results on Figures 24 and 25 corroborate what is seen
visually: although both series are deterministically generated, dya736 may be termed more
erratic and less predictable than dyb-573.

A complete chaotic analysis was carried out on these and other simulated series. Fig-
ures 26 and 27 show the correlation dimension, ](2 entropy, false neighbors and largest
Lyapunov exponent analysis for dyb-573, while Figures 28 and 29 give the same information
for the measure dya736.

As may be seen on part (a) of Figure 26, the computed correlation functions for dyb-573
using 128 as delay for phase-space reconstruction were not perfectly straight lines in log-log
scale. However, part (b) on the same figure shows a clear plateau in which the correlation
function slope stabilizes. As may be seen on part (b) and corroborated in intermediate zone
(d) using as key symbol "+", there is stable correlation dimension of about 5.2. Although
the corresponding ](z(N) entropy yields positive values for up to 20 embedding dimensions,
no stable asymptotic ](2 entropy could be inferred for the set, see Figure 26(f), (g). As found
earlier with the data sets dealing with the Boston storm, the finite length of the series may
be the reason. In any event, the obtained positive results for ](z(N) do not disprove the
possible chaotic behavior for dyb-573 as suggested by the correlation dimension analysis. It
should also be remembered that convergence to ](2 has been found to be slow in practice,
Provenzale and Osborne (1991).

Figure 27 verifies the correlation dimension results by computing an upper bound to the
optimal embedding dimension using the method of false neighbors, and includes information
on the largest Lyapunov exponent for the reconstructed flow. Notice that the percentage
of false neighbors analysis for dyb-573 suggests indeed an embedding dimension on the
vicinity of 5 or 6. This is true for a variety of delays, and in particular for r = 128 as
used on the correlation dimension analysis. As seen in relation to the largest Lyapunov
exponents, a clearly positive value is found when the embeddings are made made of 5 and
even 4 coordinates. These results do confirm the inferred chaotic nature of the deterministic
measure dyb-573.

Figure 28 contains the correlation dimension and /(2 entropy analysis for the "wild"
measure dya736. As found with dyb-573, the computed correlation functions for dya736
(using now a phase-space reconstruction delay of 16) were hardly straight lines in log-log
scale. This lead to two zones in relation to their local slopes: one apparently stable for large
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and some intermediate distances, and one clearly unstable as revealed by the increasing
slopes for (some) intermediate and small distances r. However, part (b) on the same figure
shows a clear plateau in which the correlation function slope stabilizes. While the stable zone
would imply a stable correlation dimension of about 2, see Figure 28( c), (d); the unstable
one gives asymptotes which range from 4 to 12, see Figure 28(e). Close scrutiny of all the
correlation dimension curves (1/N vs. N) reveal that none of the graphs do attain a clear
asymptote. In fact, it is not hard to see that those graphs exhibit a monotonically increasing
trend which prevents a proper definition of the correlation dimension D(2). These results,
and in particular the behavior seen at small distances r on Figure 28( e), suggest that dya 736
may not qualify as low-dimensional and chaotic.

An interesting stabilization was found in relation to dya736 in regards to the /{2(N)
entropy, see Figure 28(f), (g). This attribute, which was calculated based on distances that
correspond to the results of Figure 28(e), i.e. for small distances r , appears to reach an
asymptote at about N = 14 for /{z of about 0.09. This fact confirms the complexity of the
measure dya 736. It also suggests that the deterministically generated measure dya 736 may
indeed be chaotic but having a high number (14) of degrees of freedom.

False neighbor and largest Lyapunov exponents analysis for dya736 is found in Figures 29.
As may be seen, the percentage of false neighbors does not become lower that 15% for a
variety of time delays T. This is clearly the case for values of the embedding dimension that
are very low, i.e. 2,3 (as may have been falsely suggested by Figure 28(c), (d)) and for large
values of 14, or 15 (as may be suggested by the stable /{z entropy in Figure 28(e)). Although
there is a plateau in the percentage of false neighbors for dya736 , the "low" values are not
maintained when additional phase-space coordinates are added. The same kind of results
were obtained when the reconstruction delay was reduced to 8. The fact that the percentage
of low neighbors is never close to zero, and the observed growth in the percentage of false
neighbors, indicate that dya736 can not be classified as a low-dimensional system.

The positive largest Lyapunov exponents for dya736 confirm that such time series is
complex, see Figure 29. This results suggest that dya736 can be termed high-dimensional
and "stochastic".

3.3 Rainfall in Space
To illustrate the potential of the fractal-multifractal representation to describe spatial rainfall
data, Figure 30 shows several contour plots of joint derived measures that were obtained
transforming binomial multifractal measures via a three-dimensional fractal interpolating
function. The parameters (0) that were used and the corresponding binomial multifractal
parameters Pn are shown in Table 6. All graphs, which are not meant to represent rainfall per
se, share the first and last interpolating data points which are (0,0,0) and (1,0,0). Notice the
wide variety of geometries that could be captured by means of the three-dimensional fractal-
multifractal approach. Observe that depending on the parameter choice, these figures reflect
situations that have both highly "intermittent" (multifractal) and anisotropic behavior, or
"smooth" and seemingly isotropic behavior. Notice also that some of these graphs reflect data
sets that are recognizable as appearing in hydrologic (rainfall) or geophysical applications.
Observe that even though some of these figures may be considered "fractal", they do not
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Figure 30: Examples of bivariate derived measures for parameters in Table 6.

exhibit mathematical self-similarity (self-affinity).
In the spirit of the paradigms mentioned in the introduction, it is plausible that a sim-

ple geometric-based dynamic description of hydrologic (geophysical) phenomena may be
developed based upon the fractal-multifractal method. A new approach to dynamics may
be drawn as follows. Instead of concentrating on (stochastic) partial differential equations
which describe dynamics, one may study the evolution of geometric "surrogate" (fractal-
multifractal) parameters which allow the encoding of successive snap-shots of hydrologic
patterns. If in practice one finds a set of surrogate parameters which is small in size, one
may literally see how patterns evolve without the need of partial differential equations.
That the proposed approach may work to describe the dynamics of rainfall patterns in

space is illustrated in Figure 31. These simulations were obtained via the fractal-multifractal
approach and the changes seen (clockwise) from frame to frame are due only to the variation
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Figure 31: Plausible storm evolutions (clockwise).
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Table 6: Set of data and parameters for Figure 30. (angles in degrees).

Middle Point First transformation Second transformation Weights
Coordinates rll) ell ) r(2) e(2) rll) ell) r~:t) el:t) PI P21 I I 1 2 2 2

(a) (0.5,0.2,1) 0.5 30 0.5 30 0.5 180 0.995 180 0.3 0.7
(b) (0.5,0.3,1 ) 0.995 30 0.5 30 0.995 180 0.7 180 0.3 0.7
(c) (0.4,0.4,1.2) 0.5 0 0.5 0 0.7 0 0.995 15 0.3 0.7
(d) (0.5,0.2,1) 0.5 ° 0.5 0 0.9 90 0.995 90 0.35 0.65
(e) (0.5,-0.7,1) 0.995 30 0.5 30 0.995 270 0.7 270 0.4 0.7
(f) (0.5,-0.7,1) 0.5 30 0.5 30 0.9 180 0.995 180 0.3 0.7
(g) (0.5,0.3,1) 0.5 90 -0.995 90 -0.995 90 0.995 90 0.3 0.7
(h) (0.6,0.2,1) 0.995 90 0.995 270 0.995 270 0.995 90 0.4 0.6

of 8 surrogate parameters. The continuity of the fractal-multifractal representation is key in
this regard as nature exhibits precisely the same property. This implies that one should be
able to encode nearby patterns (in time) via fractal-multifractal combinations which have
nearby parameters. Moreover, it seems that one could use the same fractal-multifractal
parameterization (e.g. with the same number of interpolating points and structure) for
subsequent patterns.

It must be remembered that the multifractal measures used to drive the method are
of importance in the field of turbulence. This implies that the observed patterns may be
interpreted as reflections of turbulence. Clearly, this fact provides a reasonable physical
statement: turbulence is ever present in hydrology (geophysics) and what we see is indeed
related to it. The fractal-multifractal procedure ought to be thought on such light: what we
see are reflections (transformations) of physico-chemical- biological (turbulent) mechanisms
which take place within the appropriate medium (the atmosphere for rainfall).

Although it may be argued that geometry is not enough to characterize the rainfall
process, it must be emphasized that natural complex geometries (as opposed to Euclidean
ones) hardly repeat. There are no two clouds that are the same, but there are indeed several
(spherical) soap bubbles that look the same. There are no two clouds that are just the same.
They all have the property of being "clouds", but their infiniteness and uniqueness are
ever present. This quality of natural patterns is preserved by the geometric representation.
By varying its parameters, the fractal-multifractal procedure leads to an infinite number of
distinct (but similarly looking) outcomes.

As previously pointed out, the measures given by the fractal-multifractal approach are
easily found and are neither self-similar nor self-affine. That one can find patterns that look
reasonable employing few surrogate parameters has been extensively illustrated in this re-
port. All these complexity is accomplished without using differential equations or stochastic
methods. As pointed out in the introduction, there is room for improvement when deal-
ing with the dynamics of hydrologic (geophysical) systems. Even though the approach via
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partial differential equations is physically correct, it is not uncommon to have situations in
which the overall structure of the available records are not preserved. Of course this does
not mean that the physical principles used are wrong, but rather that there are problems
with: (a) the specification of boundary conditions and parameters, (b) the proper selection
of a representative elementary volume, and (c) the "closure" problem in turbulence (Lesieur,
1990).

As with the physics of convection (Libchaber, 1982), which of course is described by
partial differential equations, it is in the realm of the "New Physics" (Davies, 1989) that
hydrologic phenomena may be understood by means of alternative approaches. If the fractal-
multifractal procedure or a similar approach proves successful, simple expressions among the
surrogate parameters may be discerned just by plotting them as a function of time. It
is indeed conceivable that the "geometric effects" may be "filtered-out" when seen at the
surrogate (geometric) level, and that simple expressions for the evolution of patterns may be
obtained in terms of surrogate parameters of subsequent patterns. These expressions may
provide (perhaps universal) laws which become explicit at the surrogate level. This would
lead to a new approach to hydrologic (geophysical) dynamics. Given that diffusion, dispersion
and advection are among the most important physical mechanisms taking place in nature,
it is expected that such processes may be translated in terms of the surrogate parameters,
which then will have an acceptable "physical" interpretation. It may be, however, that the
important parameters are variables that are not to be measured in the field, but rather
surrogates of measurable quantities.

Whether or not a procedure like the one proposed here is a dual of the classical approach
via partial differential equations is an open question. The dynamics of a heavy storm in
northern California which took place in January 1995 are being studied based on the ideas
outlined in this section.

4 Summary, Conclusions, and Recommendations

A geometric framework for the description of complex hydrologic (geophysical) data has been
reviewed. The method relies on the use of fractal-geometric techniques and in particular on
the combination of fractal interpolation functions and multinomial multifractal measures.
It has been illustrated that although the procedure appears to be just geometrical, it may
also have a physical significance. This is because the two components that make up the
method are being found of importance to understand nature and in particular turbulence.
The physical realism of the outcomes produced by the procedure is further emphasized by
the unexpected connection that plane-filling and space-filling fractal interpolating functions
provide between "disorder" (turbulence) and "harrnony'TGaussian behavior).

Faithful representations for three high resolution storms based on the fractal-rnultifractal
procedure have been presented in this work. Detailed statistical analysis of the real and
predicted time series reveals that the predicted series not only preserve relevant statistical
and multifractal characteristics of the original records, but also the overall geometric details
of the highly intermittent observations. This implies that there is no need to separate
trends and presumably unimportant small oscillations when dealing with rainfall records.
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In fact, the results in this work suggest a new global perspective for understanding rainfall,
a perspective in which major features and noisy details are captured jointly. Clearly, the
analysis suggests that a stochastic framework for rainfall modeling may not be necessary.

It has been shown that the fractal-rnultifractal representation results in weighted pro-
jections which, depending on the procedures' surrogate parameters, may be classified as
low-dimensional and chaotic, or as multi-dimensional and stochastic. Although the fractal-
multifractal representation gives deterministic outcomes, none of these behaviors can be
anticipated beforehand. In fact, having a chaotic or an stochastic character in the unique
(and hence deterministic) derived measures is not trivial, but is clearly dependent on the
degree of filtering that a fractal interpolation function does on the parent multifractal mea-
sure. The fact that some forms of chaotic and stochastic behavior may be obtained by the
fractal-rnultifractal procedure suggests that such an approach, or a similar one based on
weighted projections, may be key in understanding nature.

By means of some spatial simulations it has been argued that the fractal-multifractal
approach may be used to: (i) represent rainfall's spatial patterns, and (ii) to study the
space-time dynamics of storms. Clearly, the fractal-multifractal methodology, or a similar
one, would be relevant in our ability to predict if dynamics are sufficiently nonlinear such that
details matter. It seems certainly conceivable that a dynamic description may be developed
based on geometric encodings of actual rainfall (hydrologic) data in space. This means,
perhaps, bypassing the use of (stochastic) partial differential equations for relevant physical
processes, and instead concentrating on the time evolution of surrogate geometric parameters
of rainfall shapes which reflect the physico-chemical-biological processes taking place within
the atmosphere. This particular issue is important in practice and deserves attention in the
future.

It is clear to the author that the fractal-multifractal procedure may be applied to model
a great variety of geophysical processes. If doing dynamics from geometry is found viable in
hydrologic studies, it could also be applied to a great variety of other natural sciences. The
proposed methodology is universal in the sense that it concentrates on geometry. After all,
as James Clerk Maxwell said in 1879,

... geometry itself is part of the science of motion, and [that] it treats, not of
the relations between figures already existing in space, but of the process by
which these figures are generated by the motion ... This method of regarding
geometrical figures seems to imply that the idea of motion underlies the idea of
form ...

and therefore capturing geometry appears to be the key.
The search for efficient algorithms to properly describe real hydrologic data sets is vital.

Of course the merit of this work will rest on our ability to solve an inverse problem in the
least possible amount of time, specially when dealing with dynamics.

The results in this report suggest that the fractal-multifractal framework should be ap-
plied to represent not only high resolution rainfall records, but also more readily available
data sets, i.e. those gathered every few minutes and which contain periods of no rain.
Replacement of the parent multifractal measures with continuous domains by Cantorian
measures represents the next idea to try in relation to these data sets.
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