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Errorless irrationality: removing error-driven components from the inverse
base-rate effect paradigm

Lenard Dome (lenarddome@gmail.com)
Andy J. Wills (andy.wills@plymouth.ac.uk)

School of Psychology
University of Plymouth, Research Way, Plymouth, PL6 8BU

Abstract

The inverse base-rate effect is a robust irrational bias that arises
when people face ambiguity. The most prominent theories of
this irrational bias depend on prediction error. In this study,
we gradually removed elements of a predictive learning design
to test the extent to which error-driven processes underlie this
bias. In our first experiment, we removed explicit feedback by
implementing the inverse base-rate effect in an observational
learning procedure. In our second study, we further removed
any causal relationship between stimulus features and category
labels by moving towards an unsupervised learning procedure.
This removed any information participants could use to iden-
tify category labels. In both experiments, the inverse base-rate
effect persisted and remained robust. This outcome suggests
that this irrational bias is independent of supervised learning
procedures. We propose that any theories and models of the in-
verse base-rate effect must manage information encoding and
connection updates without explicit prediction error. We end
by proposing two clear paths for future investigations.
Keywords: irrationality; prediction error; inverse base-rate ef-
fect; categorization; contingency learning

Introduction
The inverse base-rate effect (IBRE, Medin & Edelson, 1988)
is an irrational tendency in humans to overweigh rare events
when faced with ambiguity. In a traditional design, people
learn to categorise two overlapping sets of features under two
distinct category labels. These sets share a single feature, A,
and possess a unique feature, B and C, predictive of their re-
spective category label. The training thus can be summarised
under two trial types, which we will express as AB→ common
and AC → rare. During learning, these sets of features occur
at different frequencies. The features under the common la-
bel usually occur three times as often as features under the
rare label (Kruschke, 1996). Following training, people cat-
egorise features presented by themselves and in novel com-
binations. People tend to optimally label uniquely predictive
features, B and C, with their respective common and rare la-
bels when presented by themselves. Responses on the shared
feature A tend to show the base-rate following, A → common.
But when uniquely predictive features are paired, BC, people
tend to respond with the rare category label. According to
Classical Probability Theory, the rational response is to cate-
gorize this ambiguous combination under the common label,
because it is the most frequently occurring label. This rare
bias on ambiguous combinations of BC has been observed
across a variety of experimental manipulations (Kalish, 2001;
Don & Livesey, 2017, 2021; Inkster, Mitchell, Schlegelmilch,
& Wills, 2022; Wills, Lavric, Hemmings, & Surrey, 2014).

For a more thorough introduction to this irrational bias, see a
review by Don, Worthy, and Livesey (2021).

Assumptions of theories of the IBRE
The most prominent theories of the IBRE involve an an at-
tentional meachanism that drives both learning and respond-
ing. These theories are formal models. They are: a neural
network with exemplar-mediated attention to distinctive in-
put, EXIT (Kruschke, 2001b), a three-layer neural network
with competitive attentional gating, and a four-layer neural
network with an additional rapid attentional shift (Paskewitz
& Jones, 2020). All these explanations rely on a process that
relocates attention in response to prediction errors - they up-
date attentional values according to gradient descent. Their
explanation is simple. During learning, people learn to la-
bel the AB compound first, but they are still learning to label
the AC compound. The presence of A tends to push partic-
ipants to generalize what they learned about AB, so they la-
bel AC as common, which results in an error. After making
this error, attention relocates towards the uniquely predictive
feature C to reduce future errors. This results in C acquir-
ing higher attentional salience than B. When the ambiguous
BC compound is presented, this attentional allocation persists
and thus C will dominate responding. This results in an irra-
tional tendency to respond with the rare label. According to
these models, this irrationality results from an optimisation
process that tries to reduce the errors people make. This pro-
cess creates an asymmetric cognitive representation that can
be summarized as AB belongs to common, AB → common,
and C belongs to rare, C → rare (Kruschke, 2001a).

Current Study
In this work, we intend to test this basic assumption of these
theories. In the following two experiments, we will gradu-
ally remove components from the design traditionally asso-
ciated with prediction error. Our overarching goal is to in-
vestigate whether we can still observe the IBRE, even if we
experimentally remove a crucial assumption of already exist-
ing accounts. In our first attempt, we implement the canonical
IBRE design with a caveat that category labels are presented
in unison with features.

In our second attempt, we further remove the causal rela-
tionship between features and category labels. The goal was
to remove any design component that might affect attentional
allocation or the development of asymmetric representation
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in response to errors. Any presumption of a causal relation-
ship might inadvertently relocate attention in line with the
direction of causality between features and labels.

Related Work
To our knowledge, there is only one attempt to implement the
standard trial-by-trial IBRE procedure without explicit feed-
back. In terms of a clear observational-learning version of
the IBRE, Johansen, Fouquet, and Shanks (2007) included
the result of a short pilot experiment in their Appendix. Un-
fortunately, there is no statistical analysis confirming that the
IBRE is reliably observed. Johansen et al. (2007) report a
sample size of 16. If we use an effect size of d = 0.46 ob-
served by Inkster, Milton, Edmunds, Benattayallah, and Wills
(2022) and an α of 0.05 with a non-directional alternative hy-
pothesis, the experiment has 24% power1. Given this infor-
mation, this pilot experiment is underpowered. There are also
no details about the procedure of this experiment. Therefore,
we cannot make direct comparisons.

Nonetheless, Johansen et al. (2007) demonstrated that the
inverse base-rate effect can occur without the traditional pre-
dictive learning design. In one of the conditions in their Ex-
periment 3, the canonical inverse base-rate design (includ-
ing the shared cue) was implemented in a list format. In this
format, the trial-by-trial presentation of training items was
turned into a list of 12 items fitted on a single page. Subse-
quently, participants made judgements about new cases on a
separate page. In this condition, participants still exhibited a
rare preference on BC trials. In another condition of Experi-
ment 3, participants received the information about outcome
frequencies as a summary before testing. This summary was
presented as prose. After learning about feature-label infor-
mation in this manner, participants did not show the IBRE but
was matching the base rate. These experiments give us evi-
dence about another boundary condition for the IBRE - item-
ized rather than summerized presentation of training items.

Additionally, there are at least three studies which directly
look at error-driven processes in the IBRE. Don, Beesley, and
Livesey (2019), demonstrated that on AC trials, people fixated
on C longer than on A both pre-responding during stimulus
presentation and post-responding during feedback (see also
Kruschke, Kappenman, and Hetrick (2005)). This fixation
bias increased with more training. They also observe greater
fixation on C on AC trials, relative to B on AB trials. Further-
more, Wills et al. (2014) in an EEG study observed posterior
selection negativity and concurrent frontal positivity for C rel-
ative to B, which gave evidence for an error-driven selective
attentional learning process. These studies gave evidence that
attentional reallocation occurs in line with the mechanisms of
EXIT-like models. Inkster, Milton, et al. (2022) carried out a
direct investigation into brain regions underlying error-driven
learning in the IBRE. Their region of interest (ROI) analy-
sis explicitly targeted areas that were hypothesized to be in-

1We used the method provided by the R package pwr (Champely,
2020) to calculate power.

volved in the computation of prediction error. They showed
that these areas exhibited greater activation during the test
phase for C relative to B. Given these findings, it is reason-
able to suggest that prediction-error-driven attentional reallo-
cation occurs in a standard supervised learning paradigm and
it is driven by prediction error.

Experiment 1
Below, we detail our first attempt to test whether we could
observe the rare response bias to BC without an explicit error-
driven psychological mechanism. The design component
which is most likely to result in any error-driven tuning is
feedback. To remove feedback, Experiment 1 will present
category labels simultaneously with their respective features.
We retain the sequential property of the experiment, which
means that participants learn about feature and category rela-
tionships on a trial-by-trial basis. We substantially simplified
our implementation by removing the doubled-up design and
reducing the number of test items to 6.

Method
Participants Participants were undergraduate students who
received course credit for their participation. We recruited
169 participants online through the SONA recruitment sys-
tem.

Apparatus The experiment was programmed in JsPsych
(De Leeuw, 2015) to be run in a web browser. Participants
completed the experiment on their personal computers. The
experiment did not allow the use of tablets and smartphones.

Stimuli Category labels corresponded with response keys
and were called Disease Z and Disease L. Category features
were symptoms: fever, headache, and rash. These physical
features were randomly allocated to abstract features, A, B,
and C at the beginning of each session. Features and labels
appeared in full sentences, such as ’John has fever and rash,
which belongs to disease Z’. Names were randomly drawn
from a pool of male and female first names. The list was
compiled from an online repository of popular baby names2.
We selected the 50 most popular male and female names
from 2021. Disease names corresponded to response keys
and were randomly allocated to either the common or rare
category label at the beginning of each session.

Procedure Table 1 summarizes the abstract design of the
experiment. This design is the simplest implementation of the
IBRE procedure to date. Participants completed two phases:
a training and a test phase. In the training phase, they en-
countered descriptions of people, the symptoms they experi-
enced, and their respective diseases. These descriptions ap-
peared in the format of ’John has fever and rash, which be-
longs to disease Z’. Participants studied these examples and
when they were ready to move on, they pressed the space-
bar. They needed to complete reading the description within

2The list was taken and later curated from a GitHub repository:
https://github.com/aruljohn/popular-baby-names.
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5 seconds. If the 5 seconds threshold was passed, a screen
appeared with the message ’Please respond faster!’. In each
training block, participants encountered 6 common diseases
(common category exemplars) and 2 rare diseases (rare cate-
gory exemplars). After the second block of training, partici-
pants were given a choice. They could either move straight to
the test phase or complete another training block. A prompt
appeared saying that ’Now you have the option to skip the rest
of the training phase and move straight to the test phase. If
you think you need some more time, you can continue train-
ing and study more patients.’. There were a maximum of 5
blocks they could complete.

In the test phase, participants judged individual symptoms
and novel combinations of old symptoms, see Table 1. Symp-
toms appeared in a sentence, such as ’John has a fever.’, with
a prompt asking participants to say what disease the person
has, ’Does the patient have disease Z or disease L?’. Partic-
ipants had to respond by pressing either Z or L on the key-
board. They had 10 seconds to do so, otherwise, a ’Please
respond faster!’ message appeared. After the button press,
there was no feedback, Each unique test item and training
item (occurring in the test phase) was repeated 20 times. So,
the test phase included 120 trials, which were broken down
into 5 blocks of 24 trials.

Table 1: Abstract design of Experiment 1 including both test
and training phases.

Training (Relative Frequencies) Test
AB → common1 (x 3) A, B, C,
AC → rare1 (x 1) AB, AC, BC x 20

Analysis In order to test for the presence of the IBRE,
we calculated a Bayes Factor for a one-sample design. We
calculate the probability of responding with the rare label on
the critical BC test item, P(rare|BC), for each participant.
Then we tested this distribution of probabilities against the
null, mu = 0.5, which denoted random responding. If the
Bayes Factor fell below 1/3, we concluded that participants’
responses are not different from random responding. If the
Bayes Factor fell above 3, we concluded that participants’
responses reliably differ from null. If the mean probability
of P(rare|BC) is higher than 0.5, we conclude that we
observed the IBRE. Values lower than 0.5 would indicate
base-rate following. We used the method implemented in the
BayesFactor R package (Morey & Rouder, 2022).

Exclusion To match performance with the predictive learn-
ing implementations of the IBRE, we decided to exclude par-
ticipants whose test performance on the training items fell
below 0.75 accuracy. This level of accuracy was the lowest at
which the evidence that the participant performed better than
chance was above the Bayes Factor of 3. We calculated the

Bayes Factor for binomial proportions via the method imple-
mented in BayesFactor R package (Morey & Rouder, 2022).

Results and Discussion
After exclusion, 125 participants made it into our main anal-
ysis. In summary, the qualitative pattern in our results cor-
responds to the base result of the IBRE. Table 2 shows the
group-level probabilities for each item. Predictive features
and training items are classified into their respective category.
Participants exhibited a reliable common preference for A,
MA = 0.68, 95% HDI [0.63,0.73], BF10 = 2.45× 107. For
this cue, people explicitly followed the base rate - responded
rationally according to Probability Theory. In contrast, partic-
ipants showed a reliable rare preference for BC, MBC = 0.67,
95% HDI [0.62,0.72], BF10 = 1.11×107. This gives us a suf-
ficient amount of evidence to conclude that we have observed
the IBRE.

Table 2: Group-level mean probabilities for each stimulus
presented during the test phase in Experiment 1 after exclu-
sion.

P(common) P(rare)
A 0.69 0.31

AB 0.94 0.06
AC 0.08 0.92

B 0.94 0.06
BC 0.33 0.67

C 0.04 0.96

Thus the current study strongly confirms that the IBRE can
be observed in an observational procedure. In the current ex-
perimental design, the IBRE emerged in the absence of an
explicit prediction error that drives the development of atten-
tional allocation. All EXIT-like theories of the IBRE rely on
the assumption that this irrational rare preference arises as a
result of optimising accuracy during the training phase. In
the absence of this explicit prediction error, EXIT-like theo-
ries cannot predict the presence of the IBRE.

One aspect of the current design is that participants might
still experience internally-generated prediction errors from
feature to categories on a trial-by-trial basis. Given that the
general assumption is that diseases cause symptoms, partic-
ipants could likely assume a causal link between symptoms
and diseases. This assumed causal relationship can encour-
age participants to make not an explicit but a silent prediction.
Informally, participants might think of a certain feature–label
causal relationship while reading the sentences. People then
resolve errors between the expected and the observed feature–
label causality by allocating attention to rare features to dis-
tinguish diseases.

In Experiment 2, we adress this by removing any design
component that makes it clear to participants what the cate-
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Figure 1: Simple geometric shapes used as stimuli in Experi-
ment 2.

gory label is. And we also use stimuli that reduces the chance
of people assuming any causal relationship between its fea-
tures.

Experiment 2
In this experiment, we implemented the IBRE in a way most
similar to cued-recall tasks. Previous category labels were
treated as features. And features were selected to be solid
black geometric shapes. The task asked participants to mem-
orize the arrangement of these shapes. On each trial, we ran-
domized the position of the geometric shapes in the arrange-
ment. This further minimized the chances of having any de-
sign component suggestive of which feature is the category
label.

Method
Participants We recruited 171 undergraduate students
who completed the experiment for partial course credit.
Recruitment was done via the SONA recruitment system.

Stimuli Stimuli were common solid geometric shapes,
shown in Figure 1. Common and rare category labels were
turned into features X and Y respectively. Each shape was
randomly allocated to one of the abstract features shown in
Table 3.

Table 3: Abstract design of Experiment 2 including both test
and training phases. X and Y are in place of the category
labels common and rare. During the test phase, participants
needed to select either X or Y to complete the features shown
below.

Training (Relative Frequencies) Test
ABX x 3 A, B, C,
ACY x 1 AB, AC, BC x 20

Procedure Table 3 depicts the abstract experiment design.
Similar to the previous experiment, participants completed
two phases: an encoding/training and a test phase. In the
training/encoding phase, participants were repeatedly ex-
posed to the exemplars and were asked to memorize the ar-
rangement of geometric shapes. Compared to Experiment
1, exemplars were composed of three geometric shapes. On
each trial, geometric shapes appeared in random order so the

position of features on the screen was completely counterbal-
anced. This resulted in 24 trials within each block, which
contained 18 common trials and 6 rare trials. Similar to
Experiment 1, participants could complete a maximum of 5
blocks. After the first block, they were given a chance after
completing each block to move straight to the test phase. The
trial structure and response deadlines corresponded to Exper-
iment 1.

In the test phase, participants were shown incomplete ar-
rangements of geometric shapes and were asked to complete
them. On each test trial, they were asked to select either X
or Y to complete the arrangement. Similar to Experiment 1,
each test item (incomplete arrangement of shapes) appeared
20 times. Various arrangement of shapes appeared in the
middle of the screen. The response options X and Y with
the corresponding shapes were shown below. The prompt
asked participants to pick one of the shapes to complete the
arrangement. Participants could respond by pressing either X
or Y on the keyboard. The test phase was composed of 120
trials presented across 5 blocks of 24 trials.

Analysis and Exclusion We applied the same analysis and
exclusion methods as in Experiment 1.

Results and Discussion

After exclusion, 86 participants made it into our analysis. The
group-level mean probabilities are shown in Table 4. The
results are a qualitative and ordinal match to Experiment 1.
Participants showed a clear common preference for stimuli
A, MA = 0.78, 95% HDI [0.73,0.83], BF10 = 5.37×1013.

Table 4: Group-level mean probabilities for each stimulus
presented during the test phase in Experiment 2 after exclu-
sion.

P(common) P(rare)
A 0.78 0.22

AB 0.95 0.05
AC 0.08 0.92

B 0.92 0.08
BC 0.27 0.73

C 0.07 0.93

Participants also showed a reliable rare preference on am-
biguous BC trials, MBC = 0.73, 95% HDI [0.67,0.79], BF10 =
8.12× 108. This gives us a sufficient amount of evidence to
conclude that we have observed the IBRE.

Here, we further demonstrated that the IBRE can arise
without experimental-design components that explicitly pro-
mote an error-driven process.
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Discussion
In this study, we tested a central assumption of the most
prominent theories of the IBRE. This central assumption was
that the IBRE is caused by the presence of prediction error.

In our first experiment, we implemented an observational
learning version of the canonical IBRE procedure. This
meant that features and category labels appeared on the
screen at the same time. Participants learned about categories
by reading complete sentences that described what symptoms
people exhibited and what diseases they had. The experi-
ment included no feedback and required no responses from
participants during training. From a theoretical perspective,
there was no opportunity for making an explicit error. Never-
theless, we observed the inverse base-rate effect. One lim-
itation of this approach was that there are assumed causal
relationships between features (symptoms) and labels (dis-
eases). These relationships might predispose participants to
make feature-to-label predictions, which could result in pre-
diction error and attentional reallocation.

In our second experiment, we further removed the causal
relationship between features and labels by changing the
stimuli and their presentation. Here, participants saw nothing
but an arrangement of geometric shapes, where previous cat-
egory labels were treated as features. There were no causal
links between features and labels. When participants were
asked to complete incomplete arrangements of these shapes,
they still exhibited a rare bias on BC trials. We still observed
the IBRE.

The two experiments together suggest that the necessary
conditions to observe the IBRE are fewer than previously es-
tablished. In Experiment 2, the only remaining conditions
are the two uniquely predictive features, an overlapping fea-
ture, sequential presentation and the base rate. One hypothe-
sized way asymmetric representation is manifested is the at-
tentional tuning of cognitive representation of category ex-
emplars. This is not necessarily absent in our experiments
but is not directly tested. Our experiments do not give direct
evidence against the role of attention in developing asymmet-
ric representation or in its contributions to the emergence of
the IBRE. Nonetheless, it must not happen through an error-
driven process as conceptualized in the most prominent the-
ories of the IBRE. To further investigate this, the cued-recall
procedure could incorporate eye-tracking to measure dwell
time and order of information encoding. EXIT-like theories
can informally predict longer fixations on C relative to B dur-
ing training, but it is unclear what mechanism underlies this
attentiontal allocation without an explicit error-driven pro-
cess. In addition, brain imaging could further elaborate on
the overlap of activations between cued-recall and supervised
learning procedures. This would enable us to pinpoint the
networks that uniquely underlie this rare preference but are
independent of task demands.

In both our experiments, the IBRE occurred without any
explicit detail in the experimental procedure that would result
in prediction error. Therefore, any theorized error-driven pro-

cess must be able to operate without explicit feedback. Most
prominent theories and their corresponding formal specifi-
cation rely on relocating attention in response to prediction
error. They are unable to accommodate the current experi-
ments because they are not designed to encode information
presented without feedback. Our results suggest that there
could be a secondary cause of the IBRE not captured by pre-
vious process models.

Alternative Theories without Prediction Error

There are alternative theories of the IBRE that do not rely
on processes that calculate prediction error. A version of the
dissimilarity-similarity generalized context model DGCM,
Stewart and Morin (2007) modified by O’Bryan, Worthy,
Livesey, and Davis (2018) has been proposed as an expla-
nation of the IBRE. From the perspective of DGCM, the
main processes behind the rare preference are a combination
of attention, memory strength of exemplars and dissimilarity
from exemplars (stored category representations). BC → rare
arises due to the combination of the following factors: the
high salience of C relative to B and the impact of the dissim-
ilarity of BC to the most remembered common category ex-
emplar on the decision process. Nonetheless, the model can
accommodate these results only informally because it does
not specify the mechanisms which encode information and
produce the attentional values of each stimulus. DGCM is a
model of the test phase. In that sense, the current experimen-
tal manipulations cannot be represented in the model. This is
the same challenge we encountered with process models - the
specifications of these theories are unable to incorporate the
changes to the experimental procedure.

Another alternative explanation is an eliminative-inference
model (ELMO, Juslin, Wennerholm, & Winman, 2001).
This approach considers the BC → rare bias to result from
rule-learning and post-training inferential processes during
BC trials. The process is most similar to strategic guessing
(Kruschke & Bradley, 1995). Because of the dissimilarity of
BC to the most frequently applied rule, B → common, par-
ticipants use the most similar rule applicable to BC from a
”guessing set”, C → rare. This results in the BC → rare
bias. Informally, ELMO could accommodate the observa-
tional learning paradigm, because of the presence of feature-
to-label causality. Participants could extract the same rules
hypothesised to underlie the rare bias in the standard proce-
dure. Due to this presumed causality, ELMO could hypoth-
esise that people encode rules about symptoms and diseases,
which will similarly result in BC → rare during test. But it
is unclear how it could deal with the cued-recall implemen-
tation, as there is no clear-cut feature-to-label relationship in
the stimuli presentation that drives rule formation. In addi-
tion, ELMO also predicts the IBRE in the absence of a shared
cue, even though humans do not show the IBRE under those
conditions (Kruschke, 2001a).
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Conclusion

Across two experiments, we investigated whether the demon-
stration of the IBRE requires the prediction-and-feedback
components of the standard experimental procedure. In Ex-
periment 1, we conducted a successful conceptual replication
of Johansen et al. (2007), which gave evidence for the IBRE
being independent of supervised learning procedures. In ad-
dition, Experiment 2 further suggests that the IBRE general-
izes beyond simple predictive-learning (e.g. Medin & Edel-
son, 1988; Kruschke, 1996; Wills et al., 2014) and decision-
making (Johansen et al., 2007) paradigms. This further sug-
gests prediction error in terms of explicit feedback is not a
necessary condition. Theories of IBRE are inadequate to ac-
count for these findings, largely because of their inability to
extend beyond supervised learning.

Open Science

We have made available the two experiments written in
javascript, the analysis code, the raw data, and all other sup-
plementary materials both on the Open Science Framework
and GitHub. Experiment 1 is shared on https://osf.io/auwvt/,
and https://github.com/lenarddome/ply216-observational-
ibre. Experiment 2 is similarly shared on https://osf.io/2tmc4/
and https://github.com/lenarddome/ply222-non-causal-ibre.
The main repository that includes this manuscript and
links to the materials for the two experiments can be
found on https://github.com/lenarddome/pu093-errorless-
attentionless-ibre.
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