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  Scope Statement

Understanding and forecasting complex freight mode choice behavior under various industry, policy, and technology contexts is
essential for freight planning and policymaking. A common challenge for researchers is the absence of a heuristic and efficient
method to discern and define these complex relationships in the logit model specifications. This often results in models that might
be deficient in both predictive power and interpretability. To bridge this gap, we develop an MNL model for freight mode choice
using the insights from machine learning (ML) models. ML models can better capture the nonlinear nature of the decision-making
process, and recent advances in ‘explainable AI’ have greatly improved their interpretability. We showcase how interpretable ML
methods help enhance the performance of MNL models and deepen our understanding of freight mode choice. We evaluate this
approach through a case study for Austin, Texas, where SHAP results reveal multiple important nonlinear relationships.
Incorporating those relationships into MNL model specifications improves the interpretability and accuracy of the MNL model.
Findings from this study can be used to guide freight planning and inform policymakers on how key factors affect freight decision-
making.
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  Abstract

Word count: 246

 

Understanding and forecasting complex freight mode choice behavior under various industry, policy, and technology contexts is
essential for freight planning and policymaking. Numerous models have been developed to provide insights into freight mode
selection, the majority of which use discrete choice models such as multinomial logit (MNL) models. However, logit models often
rely on linear specifications of independent variables, despite potential nonlinear relationships in the data. A common challenge for
researchers is the absence of a heuristic and efficient method to discern and define these complex relationships in logit model
specifications. This often results in models that might be deficient in both predictive power and interpretability. To bridge this
gap, we develop an MNL model for freight mode choice using the insights from machine learning (ML) models. ML models can better
capture the nonlinear nature of many decision-making processes, and recent advances in 'explainable AI' have greatly improved
their interpretability. We showcase how interpretable ML methods help enhance the performance of MNL models and deepen our
understanding of freight mode choice. Specifically, we apply SHapley Additive exPlanations (SHAP) to identify influential features and
complex relationships to improve the MNL's performance. We evaluate this approach through a case study for Austin, Texas,
where SHAP results reveal multiple important nonlinear relationships. Incorporating those relationships into MNL model
specifications improves the interpretability and accuracy of the MNL model. Findings from this study can be used to guide freight
planning and inform policy-makers on how key factors affect freight decision-making.
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Abstract 15 

Understanding and forecasting complex freight mode choice behavior under various industry, policy, 16 
and technology contexts is essential for freight planning and policymaking. Numerous models have 17 
been developed to provide insights into freight mode selection, the majority of which use discrete 18 
choice models such as multinomial logit (MNL) models. However, logit models often rely on linear 19 
specifications of independent variables, despite potential nonlinear relationships in the data. A common 20 
challenge for researchers is the absence of a heuristic and efficient method to discern and define these 21 
complex relationships in logit model specifications. This often results in models that might be deficient 22 
in both predictive power and interpretability. To bridge this gap, we develop an MNL model for freight 23 
mode choice using the insights from machine learning (ML) models. ML models can better capture the 24 
nonlinear nature of many decision-making processes, and recent advances in ‘explainable AI’ have 25 
greatly improved their interpretability. We showcase how interpretable ML methods help enhance the 26 
performance of MNL models and deepen our understanding of freight mode choice. Specifically, we 27 
apply SHapley Additive exPlanations (SHAP) to identify influential features and complex relationships 28 
to improve the MNL’s performance. We evaluate this approach through a case study for Austin, Texas, 29 
where SHAP results reveal multiple important nonlinear relationships. Incorporating those 30 
relationships into MNL model specifications improves the interpretability and accuracy of the MNL 31 
model. Findings from this study can be used to guide freight planning and inform policy-makers on 32 
how key factors affect freight decision-making. 33 

  34 
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1 Introduction 35 

Freight transportation, or the movement of goods, is a major component of the economy and has direct 36 
impacts on the transportation system, public well-being, and economic growth (Plumeau et al., 2012; 37 
Uddin et al., 2021). In the U.S., the transportation system moved a daily average of about 55.2 million 38 
tons of freight valued at more than $54.0 billion in 2019, and the tonnage shipped is anticipated to 39 
grow at about 1.4% per year between 2019 and 2050 (Bureau of Transportation Statistics, 2019). 40 
Furthermore, the freight system is constantly experiencing disruptions with emerging technologies, 41 
changing business models, and behavior shifts. For example, emerging autonomous truck technology 42 
has the potential to greatly affect freight operations by reducing labor costs and increasing operational 43 
efficiency. Indeed, freight is anticipated to be the leading sector for autonomous vehicle adoption in 44 
the U.S. (Viscelli, 2018).  In addition, with the growth of e-commerce and online shopping, the share 45 
of smaller-sized shipments is also increasing (Keya et al., 2019). Given the magnitude of the existing 46 
freight system, these changes will have dramatic impacts across economic sectors. Assessing the 47 
potential implications of these changes and other technology advancements on future freight demand 48 
requires understanding how current freight decisions are being made. 49 

Among all freight-related decision-making, mode choice is one of the most important issues and has 50 
critical implications for transportation and energy systems (Uddin et al., 2021). In the U.S., freight 51 
travels over an extensive network of highways, railroads, waterways, pipelines, and airways (Bureau 52 
of Transportation Statistics, 2019). Shifts in freight demand by mode drive infrastructure requirements 53 
across multiple networks. Moreover, freight mode selection can greatly affect energy and 54 
environmental impacts of freight systems, given that the energy intensity of various modes can vary 55 
by an order of magnitude (Bushnell and Hughes, 2020). Although trucks are less energy-efficient, they 56 
make up the dominant freight mode. In the U.S., trucks transport 60% of commodity by tonnage, 57 
resulting in about 300 billion vehicle miles traveled (VMT), accounting for 25% of total highway 58 
energy use in 2019 (Bureau of Transportation Statistics, 2019). One way in which public policy can 59 
directly impact freight energy use is through regulation or incentives to improve truck energy 60 
efficiency. However, policies that only target trucks may not guarantee systemwide energy savings, as 61 
the choice to ship goods via truck rather than other possible modes is driven by a range of factors. A 62 
rebound effect in energy use may emerge if demand shifts from more energy efficient modes (e.g. rail) 63 
to trucks, potentially offsetting the benefits of these policies (Bushnell and Hughes, 2020). A well-64 
constructed freight mode choice model can provide accurate freight demand predictions to help inform 65 
policy-makers about potential freight mode shifts in the case of new regulation or policies under 66 
consideration. 67 

Numerous freight mode choice models have been developed to date, offering insights into how mode 68 
decisions are made (de Jong and Ben-Akiva, 2007; Pourabdollahi et al., 2013; Stinson et al., 2017; 69 
Jensen et al., 2019; Keya et al., 2019; Bushnell and Hughes, 2020; Holguín-Veras et al., 2021; Uddin 70 
et al., 2021). The major influential factors on freight mode choice identified in those studies can be 71 
broadly categorized into four groups: 72 

• Industry categorization: representing industry classification of the shipper; 73 
• Commodity characteristics: including commodity type, shipment size, and value of goods being 74 

transported; 75 
• Shipping characteristics by mode: including locations of shippers, buyers and carriers; travel 76 

distance, time, shipping cost; and service quality by different modes; 77 
• Infrastructure characteristics: including characteristics such as network density of highway and 78 

railway, and the presence of intermodal facilities, ports, and warehouses. 79 
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Most of these previous freight mode choice models relied on discrete choice models, especially logit 80 
models, which have long been the gold standard in transportation behavior studies (Aboutaleb et al., 81 
2021; Jin et al., 2022). These models are theory-driven, provide clear subject-matter interpretation, and 82 
hint at causal relationships for meaningful extrapolation of behavioral outcomes (Aboutaleb et al., 83 
2021). Therefore, those models are well established for policy analysis and allow users to fully 84 
scrutinize the results and recommend potential amendments. One common form of logit model used is 85 
the multinomial logit (MNL) model, which is based on random utility maximization and assumes that 86 
individuals choose an alternative with the highest utility among all possible options (Ben-Akiva and 87 
Lerman, 1985). Due to their practicality and interpretability, MNL models are widely used by 88 
transportation agencies, consultants, and researchers to simulate travel behaviors in activity-based or 89 
agent-based modeling frameworks (Stinson et al., 2017; Laarabi et al., 2023). However, the estimation 90 
of logit models often relies on linear specifications of independent variables, as defining nonlinear 91 
specifications in MNL or other forms of discrete choice models is often an unwieldy task (Han et al., 92 
2022) and requires careful treatment of the formulation and interpretation (Liao et al., 2020). Among 93 
existing freight mode choice models, Pourabdollahi, et al. (Pourabdollahi et al., 2013) adopted 94 
nonlinear transformations of distance, cost and value for mode choice and shipment size after 95 
comparing performance from three candidate specifications (linear, categorical or logarithmic). Jensen, 96 
et al. (Jensen et al., 2019) incorporated nonlinear transformations of costs in mode choice modeling 97 
after comparing several pre-defined cost functions. Keya, et al. (Keya et al., 2019) created shipment 98 
weight bins for joint freight mode and size models to allow for nonlinear impacts of shipment size. In 99 
these referenced studies, formulating and comparing the specifications for MNL models is a non-trivial 100 
task, often requiring researchers to explore a large set of factor combinations with limited technical 101 
and methodological guidance available. An approach to guide model selection and refinement early on 102 
in the process would greatly improve the ability of researchers to quickly identify critical relationships 103 
in explanatory factors driving mode choice and, therefore, improve the accuracy and applicability of 104 
these models much more efficiently. 105 

Recently, machine learning (ML) methods have attracted great interest in travel behavior analysis and 106 
often outperform logit models in terms of predictive accuracy (Zhao et al., 2020; Javadinasr et al., 107 
2023). Unlike logit models, which are parametric and require a pre-defined model specification, ML 108 
models often allow a more flexible structure and capture the complex and nonlinear relationships of 109 
influential features. Some preliminary studies have applied ML methods to model freight mode choice 110 
and achieved satisfactory predictive accuracy (Uddin et al., 2021). However, applications of ML 111 
methods in behavior analysis are still limited due to a lack of theoretical base for the extrapolation of 112 
findings and the low transparency and interpretability of their results (Choudhury et al., 2018; 113 
Aboutaleb et al., 2021). This hampers the ability of model users to understand the potential implications 114 
of various policies on behavior shifts. ML models have proven useful in capturing the correlations in 115 
the variable space where data is available, and in making accurate predictions (Aboutaleb et al., 2021), 116 
however, they cannot substitute for discrete choice models in policy analyses where causal mechanisms 117 
are required to justify the results under domain-knowledge assumptions. Furthermore, implementing 118 
high-dimensional ML models in existing travel demand modeling frameworks can be challenging, and 119 
many transportation agencies may lack the technical and financial resources to support the adoption of 120 
advanced modeling methods in general (Miller, 2023). Because of these limitations, ML approaches 121 
are unlikely to completely replace MNL methods in travel demand modeling. Instead, fundamental 122 
advances are needed to integrate both approaches, enhancing knowledge and practice on freight-related 123 
decision-making. A promising integration of MNL and ML involves using high-dimensional ML 124 
methods for model specification and refinement. This produces an improved MNL model specification 125 
while preserving the interpretability and microeconomic grounding of traditional methods. There have 126 
been early successes that directly couple ML and MNL in modeling travel behaviors of passengers to 127 
improve parameter estimation of MNL and enhance model performance in terms of prediction (Han et 128 
al., 2022; Kim et al., 2022). Those studies rely on pre-defined model specifications and the final 129 

In review



 
4 

This is a provisional file, not the final typeset article 

interpretations are still based on MNL parameters, which does not fully reveal the complex 130 
relationships of influential features captured within ML models. In addition, such direct linkages may 131 
be prone to higher estimation bias for out-of-distribution samples if insufficient samples in the input 132 
space are used to train ML methods (Han et al., 2022). Therefore, the integration of MNL and ML 133 
models should be guided by a deep understanding of each model by themselves, relying heavily on the 134 
interpretability and transparency of ML models and resulting insights.  135 

Recent advances in ‘explainable AI’ have greatly improved the interpretability of ML results in high-136 
dimension spaces (Lundberg et al., 2017, 2020). Thus, it has become possible to apply ML methods to 137 
boost the performance of traditional logit models. Specifically, SHAP (SHapley Additive exPlanations) 138 
is a game theoretic approach to interpret the output of any machine learning model (Lundberg et al., 139 
2017). With the SHAP approach, a model prediction can be explained by assuming that each factor 140 
value of the observation is a “player” in a game where the prediction is the payout (Hart, 1989; 141 
Lundberg et al., 2017). Using SHAP, complex and nonlinear relationships between behavior outcomes 142 
and various plausible factors can be unveiled. The SHAP approach also supports most modern ML 143 
algorithms, which allows us to select the best-performing ML methods and to make informed decisions 144 
on travel behavior outcomes based on accurate prediction of the underlying trends. The insights from 145 
SHAP can be used to improve the model specification in traditional logit models to help enhance model 146 
performance (e.g., model goodness of fit, accuracy, etc.). To date, only a handful of studies have 147 
adopted the SHAP approach for passenger travel behavior analysis (Zima-Bockarjova et al., 2020; Jin 148 
et al., 2022; Lee, 2022). However, its application in understanding freight behavior (Ahmed and 149 
Roorda, 2022), especially in freight mode choice, remains limited. 150 

In this study, we develop an MNL-based freight model choice model using insights from ML models. 151 
Inspired by prior work on passenger vehicle behavior (Jin et al., 2022), the MNL model specification 152 
is informed by results from several off-the-shelf ML models combined with SHAP interpretation. The 153 
findings from both MNL and ML interpretation are also compared to investigate whether the 154 
interpretations from ML models are supported by travel behavior theory, and if convergence of results 155 
can be achieved between MNL and ML on how key factors affect freight mode choice. To our 156 
knowledge, this is the first study employing this approach in the context of freight mode choice. We 157 
used the public-use data from the 2017 Commodity Flow Survey (CFS2017) (U.S. Census Bureau, 158 
2020) to develop both MNL and ML models of freight mode choice. The CFS2017 is a collaborative 159 
effort between the Bureau of Transportation Statistics (BTS) and the U.S. Census Bureau. The CFS 160 
data are widely used by policy-makers and transportation professionals for assessing demand for 161 
transportation facilities and services, energy use, safety, and environmental concerns (Bureau of 162 
Transportation Statistics et al., 2020). Using ML models combined with the SHAP approach, we 163 
identify influential factors affecting freight mode choice and their relationship with specific modes. 164 
These findings are subsequently applied to revise the MNL model specification for better performance.   165 

The study aims to address the following research questions related to freight mode choice: 166 

• Understanding key factors related to freight mode decision-making: Multiple influential 167 
factors and their relationships with freight mode choice are identified, revealing nonlinear and 168 
interactive relationships among factors that are not sufficiently addressed in prior studies. 169 

• Advancing freight behavior analysis with ML approaches: Several tree-based ML approaches 170 
are evaluated based on their performance in predicting freight mode choice and the validity of 171 
interpretation from ML models using traditional econometric models. The evaluation not only 172 
quantifies the improvement in prediction accuracy that can be achieved using ML compared to 173 
MNL methods, it also investigates if ML applications in freight mode choice provides consistent 174 
interpretation with the theory-based discrete choice approach.  175 
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• Improving the state-of-the-practice for mode choice estimation: The performance of the 176 
traditional MNL model is enhanced using insights from the ML methods and SHAP approach. The 177 
enhanced MNL model better captures the nonlinear and complex relationships between various 178 
factors and freight mode selection. Moreover, the efficiency gained from the SHAP approach 179 
allows for a significant reduction in technical effort.  180 

The proposed workflow is demonstrated using a case study for Austin, Texas. The case study shows 181 
the effectiveness of the proposed approach and evaluates the major drivers in regional freight mode 182 
decision-making. The outcomes from this study can be used to inform policy-makers and practitioners 183 
on key factors that affect freight mode decision-making and the variation of impacts under different 184 
factor levels. The enhanced model can provide valuable insight regarding potential mode shifts that 185 
might be anticipated under various policy changes, and the nonlinear impacts of certain policy levers 186 
on mode choice. For example, one such insight derived from our results is that policies targeting short-187 
haul shipments may have a greater impact on mode choice than policies targeting long-haul shipments. 188 
This study also provides a practical workflow that is applicable for other regions and countries with 189 
similar data to improve their modeling practice. 190 

2 Materials and Methods 191 

In this study, the freight mode choice model is estimated using CFS2017 data using two approaches: 192 
(1) a conventional logit model, and (2) a machine learning (ML) guided approach that advances logit 193 
models using ML and SHAP interpretation. With the interpretable ML approach, nonlinear 194 
relationships between various factors and mode selection are identified and applied in the MNL model 195 
to improve model specifications. The extent to which model performance improves by incorporating 196 
the identified nonlinear relationships in the MNL model specification is evaluated. Also, the 197 
interpretations from best-performing ML and MNL are compared to investigate if ML-generated 198 
interpretations are aligned with conventional econometric models under theory-based assumptions. 199 
The proposed approach is demonstrated using an Austin, TX case study, with a focus on regional 200 
industry characteristics and freight flow between Austin and the rest of U.S. The general workflow is 201 
illustrated Figure 1. First, the data pre-processing steps, including cleaning, imputation, and variable 202 
selection, are performed for all mode choice models. Then, exploratory data analysis is performed to 203 
identify influential factors on mode choice. Next, a conventional MNL model is estimated using all 204 
available factors. In parallel, several ML classifiers are trained, and the SHAP interpretations are 205 
generated using the best-performing ML model. Nonlinear relationships identified in SHAP results are 206 
used to improve the baseline MNL model. Finally, the accuracy measures from both MNL models and 207 
ML models applied in this study are compared to evaluate model performance. The joint insights from 208 
the improved MNL model and SHAP interpretation are used to provide policy-relevant findings and 209 
recommendations in Section 3. 210 

2.1 Data Cleaning and Imputation 211 

In this study, the shipments originating from and/or attracting to the greater Austin region, including 212 
Austin-Round Rock (CFS code 48-12420), San Antonio-New Braunfels (CFS code 48-41700), and the 213 
remainder of Texas (CFS code 48-99999) are selected from CFS2017 (U.S. Census Bureau, 2020) as 214 
the primary data source to estimate the freight mode choice model. A shipment in CFS2017 is defined 215 
as a single movement of goods, commodities, or products from an establishment to a single customer 216 
or to another establishment owned or operated by the same company as the originating establishment. 217 
Each shipment record includes detailed shipment characteristics, such as shipment weights, distance, 218 
Standard Classification of Transported Goods (SCTG) commodity types, and industry code (NAICS) 219 
of the shippers.  All of those characteristics are essential drivers of freight mode choice decision-220 
making as discussed in the introduction. By surveying 103,877 establishments nationwide, a total 221 
number of 5,964,040 shipments are reported in CFS2017, providing a modal picture of disaggregated 222 
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national freight flows and representing the only publicly available source of multimodal commodity 223 
flow data (Bureau of Transportation Statistics et al., 2020).  224 

2.1.1 Data Cleaning and Pre-processing 225 

The raw Austin-region dataset consists of 253,810 shipments by 15 transportation modes.  Several data 226 
cleaning measures are undertaken before model development to ensure data quality and practicality of 227 
model estimation. First, the modes representing less than 0.3% of the sample are dropped due to their 228 
low market share. Therefore, modes such as waterways and pipelines are excluded.  Samples with 229 
missing critical information, such as shipment weights and commodity types, are also excluded. In 230 
addition, the data removal rules described by Stinson et al. (Stinson et al., 2017) are applied to remove 231 
potentially erroneous records, such as air shipments above 15,000 lbs or rail shipments less than 1,500 232 
lbs. Finally, international shipments are excluded due to gaps in generating factors (e.g., travel time 233 
and cost) to account for their shipping characteristics. The remaining shipments are categorized into 234 
five modes, including (1) for-hire truck, (2) private truck, (3) intermodal rail (both rail and 235 
InterModal truck+rail eXchange [IMX]), (4) air, and (5) parcel.  The two rail-based modes are 236 
combined into one rail intermodal (rail/IMX) mode, as each of them separately does not have a 237 
sufficiently large sample size and may lead to difficulty in estimation if modeled separately. The final 238 
sample size and mode split are summarized in Figure 2. The cleaned Austin data contains 247,073 239 
shipments, with 2.6% of samples removed as a result of the above-described data cleaning steps. 240 

2.1.2 Explanatory Variable Selection and Imputation 241 

The 2017 CFS dataset provides key shipment characteristics to be used as explanatory variables in 242 
mode choice models. The variables included for the model estimation, as well as their summary 243 
statistics by freight mode (weighted by CFS scaling factors), are provided in Table 1 and Figure 3. 244 
Regarding shipment distance, private trucks are typically used for short-distance shipments, while 245 
longer-distance shipments are often made by rail, parcel, and air. Regarding shipment weights, trucks 246 
(private and for-hire) are used more often for shipments greater than 150 lbs. Trucks' share declines 247 
and shifts to rail when shipment weights reach 30,000 lbs.  Finally, both trucks and rail are more often 248 
used for shipping lower-value-density commodities, while parcel and air are more often used for 249 
higher-value goods. All of these factors play essential roles in freight mode decision-making and are 250 
included in the mode choice model.   251 

Furthermore, several categorical variables are derived to reduce the dimensionality of the input 252 
features, including commodity type and industry type. The 41 commodity types in CFS2017 are 253 
grouped into five categories based on shared characteristics: (1) bulk commodities, (2) interim products 254 
and food, (3) fuels, fertilizers, and other chemical products, (4) manufactured goods, and (5) others 255 
unclassifiable commodities. The categorization of commodity types is presented in Appendix A Table 256 
A1. As shown in Figure 3, those commodity groups have different preferences for freight mode, with 257 
trucks and rail mainly adopted for bulk goods and parcel modes primarily used for manufactured goods. 258 
Regarding industry type, the 2-digit North American Industry Classification System (NAICS) codes 259 
of the shippers are used to represent broader industry types. As shown in Figure 3, the mining industry 260 
relies heavily on truck and rail/IMX modes, while retail, management and information industries prefer 261 
the parcel mode. The transportation/warehouse industry has a high parcel shipment share as CFS2017 262 
only surveyed freight trucking and warehousing establishments in this category (Bureau of 263 
Transportation Statistics et al., 2020). Those establishments mostly perform local pickup and delivery, 264 
sorting and terminal operations, and line haul, leading to substantial parcel shipments. 265 

Besides the attributes obtained directly from CFS2017, two level-of-service variables, specifically 266 
shipping costs and shipping time, are used in the mode choice model. These variables are estimated 267 
based on methods described by Stinson et al. (Stinson et al., 2017) for truck and rail, and by Keya 268 
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(Keya, 2016) for air and parcel (as the former study combined air and parcel into a single mode). The 269 
detailed parameters of shipping time and cost imputation are provided in Appendix A Table A2. As 270 
those variables are imputed using empirical values and may not capture shipment-level variation, they 271 
are included as generic variables in model estimation. The nonlinear relationships for mode preferences 272 
by shipping time and costs are not explicitly studied in this work. Shipping time is composed of in-273 
vehicle travel time (IVTT) plus delays/idling time for most modes except for parcel. The IVTT is 274 
estimated using distance and mode-specific average speed, as presented in Equation (1). The 275 
delay/idling time are estimated using values from empirical studies.  276 

 !	 = 	 !$ +
&

'
 (1) 

● ! is total shipping time 277 
● !$ is delay time 278 
● & is the distance in miles 279 
● ' is the mode average speed in mph 280 

For parcel mode, Keya (Keya, 2016) calculated that the shares of shipping speeds of overnight (1-day), 281 
express (3-day) and ground service (5-day) were 18%, 9%, and 73%, respectively, based on FedEx 282 
data. Shipments are randomly assigned to the three options using this time distribution. According to 283 
Figure 3, private trucks and air are primarily used for shorter trips within the day, while for-hire trucks, 284 
rail and parcel are more often used for multi-day shipments. 285 

The shipping cost for all modes other than parcel is composed of a minimum charge and an elastic 286 
charge based on the shipping rate and shipment quantify, as shown in Equation (2). The minimum 287 
charge and shipping rate can vary by shipment characteristics, such as weight and distance.  288 

 ( = )*+(-$, -/ ∗ +)  (2) 
● ( is the total shipping cost 289 
● -$ is minimum charge 290 
● -/ is shipping rate 291 
● + is the quantity of shipment (weight for truck/rail or weight*distance for air/parcel) 292 

For parcel mode, an exponential function is applied to generate shipment cost based on parcel weight. 293 
Based on Figure 3, shipping costs for parcel modes are generally cheaper, while for-hire trucks are 294 
often more expensive.   295 

2.2 Conventional Approach of Freight Mode Choice 296 

Conventional discrete choice models are based on Random Utility Theory, which assumes decision-297 
makers select the alternative with the highest utility (Ben-Akiva and Lerman, 1985). Those utilities are 298 
not known with certainty and are treated as random variables. In the case of freight mode choice, using 299 
the MNL approach as presented in Equation (3), the utility 234 of choosing mode 5 for shipment 6 300 
takes the following form: 301 

 234 = '34 + 734 = 84 + 94:3 + ;4<34 + =>34 + 734 (3) 
● 234 is the utility derived from selecting mode 5 for shipment 6  302 
● '34 is the systematic component of the utility 303 
● 734 is the unobserved error term, assumed to follow the Gumbel distribution 304 
● 84 is the alternative-specific constant vector 305 
● :3 is the vector of shipment-level factors, including commodity group, shipper industry group, 306 

shipment weight, and value density 307 
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● 94 is the alternative-specific coefficient vector associated with shipment-level attributes 308 
● <34 is the vector of joint shipment-level and alternative-specific factors, notably shipment 309 

distance (routed distances for truck and rail and great circle distances for parcel and air) 310 
● ;4 is the vector of shipment distance coefficients 311 
● >34 is the vector of imputed level-of-service factors, including travel time and shipping costs 312 
● = is the generic coefficient vector for travel time and shipping costs 313 

The probability ?34 of choosing mode 5 from a set of @3 available alternatives for shipment 6 can then 314 
be specified as shown in Equation (4). 315 

 ?34 =
A+?('34)

∑ A+?('34)4∈DE

 (4) 

Mode availability constraints are imposed to individual shipments to generate the available choice set, 316 
@3, based on the following rules, as suggested by CFS2017 data: 317 

● Parcel mode is only available to shipments below 150 lbs. 318 
● Air mode is only available to shipments below 410 US tons. 319 
● Private truck mode is only available to shipments within 500 miles. 320 

2.3 Machine-Learning Guided Approach 321 

The second pathway to estimate the freight mode choice model is using the insights from ML classifiers 322 
to improve the specifications in MNL models. This approach provides broader benefits beyond 323 
improving model prediction accuracy demonstrated in prior studies (Zhao et al., 2020; Uddin et al., 324 
2021; Javadinasr et al., 2023). It also offers a practical way of visualizing and understanding the 325 
complex relationships between various factors and behavioral outcomes and capturing those complex 326 
relationships into the conventional logit model structure. 327 

2.3.1 Machine-Learning Method Selection and Estimation 328 

In this study, three tree-based ML methods are selected for the freight mode choice estimation due to 329 
their (1) suitability for resolving nonlinear relationships observed in high-dimensional data with high 330 
accuracy, and (2) seamless connection with SHAP TreeExplainer (Lundberg et al., 2020) to ensure 331 
interpretability. Tree-based methods partition the factor space into a set of rectangles and then fit a 332 
simple model (like a constant) in each one (Hastie et al., 2009).  There are three major advantages of 333 
the tree-based methods in the context of modeling freight mode choice: (1) tree-based methods have 334 
advantages in handling mixed data types, missing values, and outliers, which are known issues within 335 
CFS data (Bureau of Transportation Statistics et al., 2020); (2) tree-based methods are computationally 336 
efficient and do not require intensive computational resources; and (3) when boosted or ensembled, 337 
tree-based methods can fit high-dimensional data with high accuracy.  In previous applications, tree-338 
based models consistently outperformed standard deep learning models on tabular-style datasets where 339 
features are individually meaningful and do not have strong multi-scale temporal or spatial structures 340 
(Lundberg et al., 2020). They also outperform many other ML classifiers and achieve similar accuracy 341 
to Deep Neural Networks in the area of travel behavior (Wang et al., 2021). Therefore, they are 342 
promising in predicting mode choice with the CFS2017 data.  Specifically, the following tree-based 343 
ML models are selected for this study: 344 

Random forest (RF): RF (Breiman, 2001) is a substantial modification of bagging that builds a large 345 
collection of de-correlated trees and then averages them. RF often performs similarly to boosting 346 
methods, and they are simpler to train and tune. In a previous benchmark effort comparing the 347 
performance of various ML and discrete choice models in travel behavior studies, the RF method was 348 
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the most computationally efficient, thus balancing between prediction and computation (Wang et al., 349 
2021). 350 

Boosting Trees: The motivation for boosting was a procedure that combines the outputs of many 351 
“weak” classifiers to produce a powerful “committee”, by constructing an ensemble predictor using 352 
gradient descent in a functional space (Hastie et al., 2009; Prokhorenkova et al., 2017). There are many 353 
implementations of boosting tree classifiers, such as XGBoost, pGBRT, LightGBM, and CatBoost 354 
(Chen and Guestrin, 2016; Prokhorenkova et al., 2017). In this study, two boosting tree methods are 355 
selected due to their scalability for large datasets and demonstrated model accuracy in prior studies.  356 

● XGBoost: XGBoost is a scalable ML system for tree boosting, which is computationally 357 
efficient, provides scalable solutions to many complex problems, and is suitable for handling 358 
sparse data (Chen and Guestrin, 2016). Those advantages are particularly relevant for the 359 
freight mode choice model, especially given that most shipments are heavily skewed towards 360 
regional travel, manufactured products, and a subset of industries, as indicated in Table 1.   361 

● CatBoost: CatBoost is another tree-based boosting method that implements an ordered 362 
boosting algorithm for processing categorical data (Prokhorenkova et al., 2017). With such an 363 
implementation, CatBoost addresses the ‘prediction shift’ of other boosting methods, in which 364 
the distribution of prediction shifts from training data to testing data. CatBoost often 365 
outperforms other boosting methods in modeling categorical data and thus is selected for 366 
estimating the freight mode choice model. 367 

The selected ML methods are trained and tested in Python, using input factors described in Table 1.  A 368 
stratified sampling is used to generate the 80%/20% training/testing split by mode to include sufficient 369 
observations within each mode. The hyperparameter selection and cross-validation are performed 370 
using the ‘HalvingGridSearchCV’ function from Python's ‘scikit-learn’ package (Pedregosa et al., 371 
2011) on training data. Essential model hyperparameters, such as learning rate, regularization terms 372 
and tree size, are selected to provide the highest cross-validation accuracy. Model performances are 373 
demonstrated using the out-of-sample testing data. 374 

2.3.2 Model Interpretation and Enhancing Specification using SHAP TreeExplainer 375 

Besides accuracy, these ML methods are also expected to be interpretable and explain how the model 376 
uses the input features to make predictions (Lundberg et al., 2017). While the tree-based method 377 
provides feature importance to rank the global contributions of input factors on the output, there often 378 
lacks a way to provide local explanations that show the direction of impacts of input factors on 379 
individual predictions or interactions among input factors. To address this, the SHAP TreeExplainer is 380 
introduced to provide local explanation for tree-based models (Lundberg et al., 2020). It facilitates the 381 
exact computation of optimal local explanations for tree-based models, captures factor interaction, and 382 
provides a set of visualization tools to understand global model structure based on local explanations. 383 
In TreeExplainer, Shapley values (the attributions of output to factors) are computed by introducing 384 
each factor into a conditional expectation function FG of the output as presented in Equation (5). 385 

 FG = FG(H) ≈ J[F(+)|+M] (5) 
● F(. ) is the estimated model 386 
● + is a specific input 387 
● H is the subset of factors (or independent variables) 388 

Using the conditional expectation functions in Equation (5), the Shapley values in TreeExplainer are 389 
defined as in Equation (6). 390 
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 P3(F, +) = Q
|H|! (S − |H| − 1)!

S!
[FG(H ∪ {6}) − FG(H)]

M⊆Z\{3}

 (6) 

● P3(F, +) is the attribution (or Shapley value) of 6th factor to tree-based model F among input + 391 
● \ is the set of all factor ordering 392 
● H is the subset of all factors that do not include factor 6  393 
● S is the number of input factors for the model 394 

After calculating the SHAP values for ML classification models, the attribution of each factor towards 395 
the preference of each mode, P3(F, +) can be generated for each observation to understand the local 396 
impact of these factors. A series of SHAP visualization tools is demonstrated in Figure 4, using SHAP 397 
values from the CatBoost model, to illustrate how to interpret ML outcomes using TreeExplainer and 398 
to leverage those insights for MNL specifications. First, an example of SHAP interpretation of a single 399 
observation is provided in Figure 4(a), which illustrates the SHAP values for a single shipment and 400 
selection of a single mode. The model output of the single shipment, in this case, the log odds of 401 
choosing private truck, is captured in the blue line. The expected log odds corresponding to values on 402 
the x-axis are generated after introducing each factor, and the final values after including all factors is 403 
color coded on the line. Each row represents how individual factors shift the model output to its final 404 
values; for example, travel time and distance decrease the log odds of choosing private truck while 405 
shipment weight increase its log-odds. The value in parenthesis annotates the current values of each 406 
factor, for example, the distance is around 900 miles for this shipment. Overall, most factors contribute 407 
negatively to the log odds of choosing private trucks, with travel time having the largest negative 408 
impact. Some factors do not affect the preferences of selecting private trucks in this case, such as all 409 
the industry indicators. After performing a logit conversion of the model output and decomposing 410 
factor contributions by the probability of choosing private truck in Figure 4(b), the trends are even 411 
clearer. Introducing travel time to the model led to the expected probability of choosing private truck 412 
shift from 0.6 to 0.1, while distance, travel cost and value density also contributed negatively but to a 413 
lesser extent. In summary, SHAP TreeExplainer helps define how the combination of input factors 414 
contributes to individual observations, and is useful to help users understand the local effects of various 415 
factors in estimating results.  416 

To support the specification of the MNL, which captures the global trends of all observations, the 417 
SHAP interpretations of each observation and mode need to be ensembled to generate the final insights. 418 
In addition, the SHAP value is calculated using output log odds of choosing each mode from the ML 419 
model, which provides a direct connection between the SHAP interpretations from the ML model and 420 
functional forms of mode utilities in MNL model. Three sets of summary results are provided to show 421 
the relationship between the predicted outcomes and input factors (Lundberg et al., 2020), and can be 422 
used to guide the development of MNL specifications: 423 

(a) Global measure of feature importance for variable selection  424 

Global feature importance is generated by averaging the absolute SHAP values across the entire 425 
dataset, as illustrated in Figure 4(c). It indicates the global importance of all input factors and is often 426 
used as a reference for variable selection. The variables with ‘CMD’ refers to the commodity types, 427 
while variables with ‘IND’ are industry indicators. The factors ranked on the top of the figure, such as 428 
travel time, distance and cost, has substantial impacts on mode selection, and should be kept in MNL 429 
specifications. The lower-ranked factors with low feature importance, such as management and 430 
information industry, have negligible impacts on the results and can be dropped from model 431 
specifications. 432 

(b) One-dimensional scatter plots (or Beeswarm plots) for identifying the direction of impacts 433 
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The Beeswarm plots provide both the magnitude and prevalence of a factor’s effect for each output 434 
class as illustrated in Figure 4(d). Each point represents the SHAP values of a single factor towards 435 
each mode within a single observation, and the vertical spread of each swarm represents the density of 436 
the points. The direction of such effects can also be revealed by adding color that reflects the raw factor 437 
values. The directions of impacts are labeled for the top 8 influential factors, based on the sign of SHAP 438 
values under various factor values. For example, lower travel time tends to have positive SHAP values 439 
on log odds of private trucks, suggesting a negative correlation between travel time and preference 440 
towards private trucks. The Beeswarm plots can be used to validate the direction of impacts in MNL 441 
estimations, and to identify potential mixed impacts if no clear directions are identified in the plots.  442 

(c) Dependence plots of individual features for nonlinearity identification  443 

Plotting the factor’s values on the x-axis and the factor’s SHAP values on the y-axis for all observations 444 
produces a SHAP dependence plot that shows how much a selected factor impacts the prediction of a 445 
candidate mode, as illustrated in Figure 4(e). By color-coding each dot with a secondary factor, the 446 
interactive effects of several factors can also be revealed. The direction of the scatter shows the 447 
direction of impacts for selected factors, with a downward trend indicating the negative impacts of this 448 
factor on selecting the specific modes, and vice versa. The slope of the scatterplots indicates if potential 449 
nonlinearity is observed for selected factors on choosing this mode, and intervals of factor values with 450 
different slopes suggest potentially heterogeneous effects to be captured by MNL. The vertical spreads 451 
under fixed factor values indicate the degree of interactive effects associated with this factor value, 452 
color-coded by factors with the highest interactive effects. The dependence plots are useful in 453 
determining nonlinear functional forms of mode-specific variables in MNL specifications, and the 454 
turning points of SHAP dependence plots can be used to define the nonlinear bins in MNL. The color 455 
code from SHAP can also inform potential interactive factors to be included within MNL 456 
specifications. 457 

In summary, the insights from SHAP TreeExplainer can be used to enhance the specifications of the 458 
MNL model. The potential new specifications may include (1) selecting factors based on feature 459 
importance, (2) generating nonlinear specifications, such as using binary variables with binning/turning 460 
points identified from SHAP dependence plots, and (3) adding interaction terms. Not all the observed 461 
relationships can be estimated in the MNL model, as an MNL has a much longer run time and becomes 462 
computationally impossible to fit with large sample sizes, high input dimensions, or simulation-based 463 
estimation (Wang et al., 2021).  464 

Finally, the performances of each model (both MNL and ML) are evaluated using several accuracy 465 
measures on the out-of-sample testing dataset, including overall accuracy, precision, recall, and F1-466 
Score. The accuracy measures can be combined for all modes either through the flat average of mode-467 
specific measures (macro average) or weighted by sample size in each mode (weighted average). The 468 
detailed formulation of each performance metric can be found in Appendix B of the supplementary 469 
materials. In addition, result interpretations from best-performing ML and MNL models are also 470 
compared against each other to investigate if both models suggest similar mode preferences with 471 
respect to key influential factors. The directions of impacts from both sets of models are compared, 472 
together with findings from empirical studies, to examine if correlation derived from ML is supported 473 
by causal relationships defined through the econometric approach and if convergences can be drawn 474 
from two distinct approaches. 475 

3 Results 476 

The methodology described above is implemented in the Austin region to develop MNL and ML 477 
models and provide insights into freight mode choice decision-making. Specifically, a baseline MNL 478 
model (‘bMNL’) is estimated using the conventional approach described in Section 2.2, while an 479 
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advanced MNL (‘aMNL’) is estimated with ML-guided improvements to the baseline as described in 480 
Section 2.3.  In this section, the model performances of both MNL and ML models are compared to 481 
evaluate the accuracy of different approaches.  Next, results from SHAP TreeExplainer are 482 
demonstrated with the best-performing ML model to investigate the relationships between various 483 
factors and freight mode choice.  Finally, the bMNL and aMNL results are compared to the insights 484 
from the SHAP interpretation.  The final conclusions and recommendations are drawn based on the 485 
SHAP results and the aMNL estimations. 486 

3.1 Performance Measures 487 

The performance measures of all models are illustrated in Figure 5, with performance metrics generated 488 
from out-of-sample testing data. Regarding overall classification accuracy, RF and CatBoost have the 489 
highest accuracy, followed by XGBoost, and the tree-based models outperform the MNL models.  The 490 
aMNL has higher accuracy than the bMNL, with additional parameters capturing nonlinear 491 
relationships.  Regarding detailed accuracy measures such as precision, recall and F1-Score, MNL 492 
models generally have lower accuracy than ML models. The aMNL model provides a better balance 493 
between precision and recall (as they move in opposite directions) compared to the bMNL, leading to 494 
slightly higher F1-Scores in aggregate.  Finally, regarding accuracy by modes, ML methods generate 495 
accurate predictions for all modes, while the accuracy of the two truck modes are slightly lower (as 496 
they share great similarities and existing factors may be insufficient to distinguish them).  Compared 497 
to ML, MNL models have larger prediction errors with respect to air and rail/IMX modes, potentially 498 
due to their low sample size.  The aMNL model helps improve F1-Scores for for-hire truck and rail 499 
compared to the bMNL, while F1-Scores for other modes do not change.  In general, ML models 500 
outperform MNL models in all performance measures, but partially including the nonlinear 501 
relationship into the MNL specifications helps increase the accuracy of MNL.  502 

3.2 Machine Learning Model Performance and Interpretation 503 

In this study, SHAP interpretations are generated from the CatBoost model for a close examination of 504 
the results.  Among the three ML models, CatBoost demonstrates the best performance (and is similar 505 
to RF) and supports the exact estimation of SHAP values (while SHAP values of the RF model can 506 
only be approximated due to high computational burden). The outputs of CatBoost provide log odds 507 
for each output class (freight mode in this study), and SHAP values are estimated for each mode to 508 
demonstrate the attribution of factors to expected log-odds for all five freight modes (regardless of 509 
mode availability).  Positive SHAP values indicate increases in the log-odds of the predicted freight 510 
mode, or preferences towards this mode, and vice versa. First, the global feature importance using 511 
mean SHAP values is shown in Figure 4(c), color-coded by mode to show the attribution of those 512 
factors to each freight mode.  Travel time, cost, shipment weight, distance, and value density are the 513 
top-5 factors that majorly affect freight mode choice. Industries such as management, information, and 514 
mining have negligible impacts on freight mode choice, potentially due to their low presence in the 515 
region as indicated in Table 1.   516 

Next, the Beeswarm plots in Figure 6 demonstrate the importance ranking of input factors and the 517 
direction of impacts toward each freight mode. The factors on the top with a wider range of SHAP 518 
values are the most important factors influencing a selected freight mode; the density of the dots shows 519 
the numbers of observations, and the color of the dot shows in which direction the factor drives the 520 
mode choice. For for-hire trucks, which is used as the base alternative in MNL, higher shipment weight 521 
and distance increase the likelihood of choosing for-hire truck while higher value density decreases the 522 
preferences towards this mode. The shipment distance has the opposite impacts on private versus for-523 
hire trucks, while impacts of other top influential variables remain similar between the two truck 524 
modes. Rail mode shows great similarity to for-hire trucks in terms of major factors and directions of 525 
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impact, except that travel time is often positively correlated with rail due to its longer delays. Air and 526 
parcel modes show different use cases from truck and rail, and are more likely to be used for high-527 
value and light-weight goods.  Most industry and commodity variables show relatively small impacts 528 
on the mode selection. A few notable findings include shipments containing manufactured goods or 529 
from manufacturing industries exhibit a negative preference towards private trucks and a positive 530 
preference for air.  All of these relationships are aligned with observed trends from Figure 3.  Finally, 531 
the Beeswarm plots suggest some nonlinear relationships between factors and mode selection, 532 
especially when asymmetrical positive versus negative SHAP values are observed.  For example, in 533 
the case of rail mode, the higher shipment weight segment has a long tail of positive SHAP values, 534 
while the lower weight segment has negative SHAP values close to 0, suggesting the higher weight 535 
segment has a more profound impact on choosing rail. 536 

The dependence plots in Figure 7 provide a clear view of intricate relationships between each freight 537 
mode and top influential continuous factors (excluding travel time and cost, as they are imputed and 538 
not individual-specific). The shapes of the curves show the relationship between input factors and 539 
predicted log-odds of freight mode. The vertical spread at a fixed factor level indicates how much 540 
interactive effects of the selected factor has with other factors towards freight modes. Some of the plots 541 
are zoomed in to show the location of turning points (e.g., air and parcel modes are mostly used for 542 
small shipments, so the ranges of weight are truncated). For distance, weight, and value density, almost 543 
all the relationships demonstrated are nonlinear, and some are non-monotonic. In general, when 544 
distance increases, the likelihood of private trucks decreases, while the likelihood of for-hire trucks 545 
and air increases. Rail and parcel modes show some mixed and non-monotonic changes. However, 546 
after a 500-mile range, the SHAP curves turn flat for almost all modes, and the increment of distance 547 
no longer causes major shift in mode preferences. For shipment weight, the likelihood of choosing 548 
truck and rail increases with higher weights while the likelihood of parcel and air decreases. For all 549 
freight modes, there appears to be a weight threshold (e.g., 150 lbs. for air), and the level of impacts 550 
almost stay constant after that threshold. For value density, the directions of impacts under low-value 551 
density (<= $5/lb.) are mixed, especially for for-hire trucks and rail. The level of impacts almost 552 
remains constant after $25/lb., and additional value density does not seem to bring substantial changes 553 
to the mode preferences. Finally, some interesting interactive effects are also observed in Figure 7. For 554 
example, for private trucks, the SHAP values under the low distance range with longer travel time 555 
(perhaps long-haul trips across the region) declined faster than the curve under short travel time. This 556 
suggests that private trucks are less preferred if the trips are external to the region and face more 557 
potential delays. A similar relationship is also found in for-hire trucks, as longer travel time with 558 
overnight delay will discourage the use of for-hire trucks under the same distance range. For the two 559 
truck modes, the changes of impacts of value density are much less under the long travel time cases, 560 
potentially due to elevated travel costs in those cases offsetting the attributions of value density. 561 
Similarly, for air mode, the SHAP values of value density are lower under the longer travel time cases, 562 
suggesting that the longer travel time lowers the likelihood for air even if the value density is high. 563 
Finally, for air mode, the SHAP curve of weight is also flat under the long travel time case, and the 564 
influence from weight is less significant when travel time is high. Those interactive effects may result 565 
from how the travel time and costs are imputed and their high correlation with other factors. 566 
Nevertheless, as travel time and costs capture major differences in modal service quality and have 567 
potential impacts on mode choice, they should be collected in future survey efforts to advance the 568 
modeling practice. 569 

3.3 MNL Model Results and Comparisons of Interpretation 570 

Without considering insights from SHAP, bMNL is estimated using all the factors, combined with 571 
necessary binning to prevent collinearity of variables (e.g., the weight bins are adopted to prevent 572 
collinearity with shipping costs). The estimation results are provided in Table 2. Overall, the bMNL 573 
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model has a reasonable performance with adjusted ]^ = 0.567. Most coefficients are aligned with the 574 
SHAP values in terms of directions of impacts, with some nuances to interpretation needed as MNL 575 
models capture relative preferences compared to the omitted alternative while the SHAP values reflect 576 
the absolute preferences towards all individual modes. Therefore, for example, although long distance 577 
generally increases the preference for rail, it is still less preferred than for-hire truck and thus has a 578 
negative coefficient in bMNL. In general, the results from MNL models do not capture the intricate 579 
relationship demonstrated in Figure 7. For example, the value density has non-monotonic and 580 
substantial impacts on rail, while bMNL does not generate a significant result due to such a mixed 581 
effect. For parcel, bMNL fails to generate a significant coefficient for value density, despite the strong 582 
impacts indicated in Figure 7. Rather, several industry indicators such as management and information 583 
have significant estimation. Those low-impact factors may be correlated with more influential factors, 584 
thus absorbing their effects and the estimated coefficients may be arbitrary and can mislead the result 585 
interpretation.  586 

Next, the insights from the SHAP interpretation are incorporated to revise the specifications of the 587 
bMNL model to improve its performance, and the estimation results of the aMNL model are provided 588 
in Table 3. Overall, with four more parameters estimated, the aMNL model achieves higher adjusted 589 
]^ = 0.576 than the bMNL model. The likelihood ratio test also suggests aMNL is significantly better 590 
than bMNL at the 99% confidence level. The SHAP results help remove nine low-impact factors, such 591 
as most industry indicators for parcel and rail. In addition, binned specifications are introduced for 592 
distance and value density for most modes, which helps reveal significant relationships between those 593 
modes and explanatory factors. In general, the directions of impacts for majority of variables aligned 594 
with SHAP interpretations from CatBoost model as illustrated in Figure 6 and Figure 7. There are a 595 
few exceptions where trends are visible in Figure 7 but are not found to be significant in aMNL models, 596 
such as long distance for air, potentially due to lack of observations and impacts from confounding 597 
factors. 598 

For shipping distance, after using a piecewise linear function for parcel in aMNL, the linear portion 599 
under the low distance range shows a higher coefficient than the bMNL model, indicating more 600 
substantial impacts of distance during this range for choosing parcel over for-hire truck. Also, after 601 
applying a binned approach for rail distance, the aMNL model demonstrates a significant positive 602 
impact of distance on rail within the 500-mile range, which is aligned to the interpretations from 603 
CatBoost in Figure 7 and similar to findings from a prior study (Pourabdollahi et al., 2013). The 604 
disutility of distance in aMNL for private trucks over for-hire trucks remains unchanged compared to 605 
bMNL, and consistent with SHAP interpretations and findings from the prior study that adopts CFS 606 
and same truck mode definitions (private versus for-hire trucks) (Keya et al., 2019). 607 

For value density, after introducing bins into the specification, both parcel and rail have significant 608 
coefficients estimated in aMNL. For parcel, although value density already shows some positive 609 
impacts in choosing parcel under a low value-density range, the coefficient of value density within $5-610 
25/lbs. is even larger than values below $5/lbs. After $25/lb., a positive constant coefficient is 611 
estimated, and adding more value density does not further increase the likelihood of parcel. The 612 
increasing likelihood of choosing parcel and air under higher value density is also aligned with findings 613 
from prior studies, where modes like air that carry smaller shipments are preferred for high-valued 614 
goods (de Jong and Ben-Akiva, 2007; Pourabdollahi et al., 2013). For rail, value density has negative 615 
impacts on rail preference if lower than $1/lb., but the impacts become positive if value density is 616 
between $1-$10/lb., which is aligned with the mixed influences in Figure 7. In prior studies, it has been 617 
shown that preference for rail over trucks generally decreases with a higher value of goods (Jensen et 618 
al., 2019), while results in this study provide a more complex response to value density for rail mode. 619 
The coefficient for private truck only shows a constant negative impact under the high-value density 620 
case.   621 
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For shipment weight, while the original weight bin definitions are kept, a linear weight specification is 622 
applied to the lowest weight bin to capture greater sensitivity to weight within that range. In general, 623 
those weight bins capture major turning points as indicated in Figure 7, with estimated coefficients 624 
remaining similar. Incorporating weight multipliers help explain the strong negative impacts of weight 625 
on air and parcel modes, and the positive impact on private trucks within the low-weight range. While 626 
numerous prior studies have performed joint modeling of shipment size bin and mode choice (de Jong 627 
and Ben-Akiva, 2007; Pourabdollahi et al., 2013; Stinson et al., 2017; Keya et al., 2019), the results 628 
from this study suggest the preferences of modes (especially air and parcel) are highly sensitive to 629 
weight and more disaggregated specification of shipment size for these modes is potentially needed. 630 
Finally, the positive impact of weight on choosing rail over truck has been demonstrated in prior studies 631 
(Samimi et al., 2011), while the results from this study further demonstrate the more substantial impacts 632 
over higher weight range.   633 

In general, the aMNL model provides more explanatory power for factors that displayed nonlinear 634 
relationships with mode choice compared to bMNL, and removes the factors that may mislead model 635 
interpretation. However, not all the SHAP relationships can be successfully implemented in MNL, 636 
potentially due to (1) lack of observations for some cases causing singularity in model estimation (e.g., 637 
long distance interacted with multi-day travel of private trucks is omitted due to lack of sample); (2) 638 
collinearity among variables causing counterintuitive results for key factors. In this study, the 639 
maximum number of parameters with meaningful interpretation were retained in the aMNL model, 640 
capturing some of the most important non-linear relationships indicated by SHAP interpretations. 641 

4 Conclusions and Discussions 642 

In this study, we estimate a logit-based freight mode choice model using the CFS2017 survey, informed 643 
by results from state-of-the-art ML models and interpretable ML methods. The influential factors and 644 
their relationship with individual freight modes are identified using ML and SHAP TreeExplainer and 645 
applied to the MNL model specification to improve its performance. The workflow is demonstrated 646 
using a case study for Austin, Texas. In general, ML models outperform MNL in both overall accuracy 647 
and mode-specific accuracy measures. By applying the CatBoost model and SHAP TreeExplainer, we 648 
evaluate the relationship between the predicted outcomes and input features and then identified factors 649 
like travel time, cost, shipment distance, weight, and value density as the most influential. In contrast, 650 
industries such as management, information, and mining show negligible impacts on mode selection. 651 
For shipment distance, weight, and value densities, non-linear relationships are observed across all 652 
modes. Additionally, value densities display mixed, non-monotonic impacts on the selection of both 653 
rail and for-hire trucks. Upon applying some of those insights to refine the MNL specifications, the 654 
MNL model’s interpretability and accuracy surpass that of the baseline model. Moreover, the advanced 655 
MNL model reveals significant and complex relationships that are hidden in the baseline model, such 656 
as the impact of value density on the selection of rail and parcel. The directions of impacts yielded by 657 
the aMNL and CatBoost results are often aligned with findings from empirical studies, and help reveal 658 
more intricate relationships between some factors and mode preferences. 659 

4.1  Contributions to Freight Mode Choice Applications 660 

The methodology and results from this study can help advance freight mode choice applications in 661 
several ways. First, the comparison of results interpretations in this study demonstrates some 662 
convergence between MNL and ML results since the insights from the two approaches are generally 663 
aligned with each other. Some of the nuanced trends from ML methods may not lead to significant 664 
parameter estimates in MNL, but the major trends/behavior preferences can be captured in MNL and 665 
supported by a more theory-based approach. Although ML methods cannot be directly used to 666 
demonstrate causal relationships, the joint insights from ML and ML-guided MNL approaches suggest 667 

In review



 
16 

This is a provisional file, not the final typeset article 

ML methods are still useful in identifying potential hypotheses for testing in econometric approaches. 668 
Second, ML methods combined with SHAP interpretations can also help prioritize highly influential 669 
factors and vice versa. This approach enhances the refinement of MNL models, helps prevent arbitrary 670 
variable selection, and reduces the risk of incorrect interpretation caused by confounding factors. It 671 
also saves time and effort needed to develop MNL specifications, which is pertinent to users and 672 
practitioners that operate within a limited timeframe and computational resources, as training discrete 673 
choice models on a large dataset can be computationally challenging (Wang et al., 2021). Furthermore, 674 
the ML methods and SHAP interpretations approach serve as more practical and intuitive methods for 675 
data exploration, in addition to the conventional cross-tabulation approach and often more aggregate, 676 
and is especially powerful in revealing individual-level heterogeneity of preference instead of only 677 
showing generalized trends (Lundberg et al., 2020). Finally, the technical workflow demonstrated in 678 
this paper could also support freight model choice modeling in other regions or countries with 679 
analogous data, thereby advancing the state of the practice in this domain. 680 

4.2 Policy Implications 681 

The findings from this study can help inform freight-related policymaking, and deepen the 682 
understanding of how potential policies might influence mode shift and subsequent transportation 683 
externalities (e.g., congestion, energy, emissions) in specific contexts. First, by including non-linear 684 
relationships into model specification and achieving better accuracy, the MNL model becomes more 685 
helpful in revealing complicated trade-offs between mode selection and influential factors. For 686 
example, with a non-linear relationship between weight and air/parcel, the bundling or consolidation 687 
of packages may have greater impacts on mode shift from air/parcel to trucks in lower weight range 688 
versus higher weight packages. On the other hand, policies targeting very long distance, heavy 689 
shipments or high-valued goods may be less effective as the preferences towards each mode are more 690 
stable in those ranges, and additional changes of those factors do not lead to sizeable mode shift. By 691 
further integrating the freight model choice model derived in this study with traffic simulation tools 692 
(Spurlock et al., 2024), the system-level impacts of those policies can be further investigated at the 693 
regional level, such as congestion mitigation, energy efficiency and environmental impacts. Finally, 694 
from a theoretical perspective, the empirical findings and domain knowledge derived from various 695 
contexts and datasets can serve as a priori, whereas the findings from interpretable ML methods can 696 
provide additional evidences or insights into the trends from a specific dataset as posteriori. Both sets 697 
of insights and findings are valuable for developing a comprehensive understanding of the mechanism 698 
of freight mode choice and supporting MNL model estimation, interpretation and amendment.   699 

4.3 Future Research Directions 700 

The findings and insights drawn from this study are constrained by the limited number of factors 701 
available from the survey data, with potential impacts of unobserved factors yet to be revealed through 702 
future work. Additional influential factors, such as shipping reliability and quality of service (Holguín-703 
Veras et al., 2021), should be accounted for in the model if available from more recent data source. In 704 
addition, the current analysis is based on the 2017 data, and the prevalence of freight modes is 705 
constantly changing, especially due to the COVID-19’s disruptions on road, air and rail freight 706 
transportation (Borca et al., 2021; Khan et al., 2022). The freight mode choice model will be revisited 707 
and updated if more recent data and additional attributes become available. 708 

The existing methodology can also be further enhanced to achieve better modeling performance and 709 
advance our understanding of freight mode choice behavior. Potential future work includes (1) 710 
improving the travel time and cost estimation by incorporating local transportation data, either 711 
observed or modeled, to enhance the accuracy of the model and capture the local congestion patterns; 712 
(2) exploring other high-performance ML models, such as deep neural network and the ensemble of 713 
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several ML classifiers, to further improve the model accuracy and reveal additional complex 714 
relationships potentially not yet discovered in current models; (3) generating policy insights by running 715 
the estimated model under potential policy scenarios and measure the effectiveness of those policies 716 
in shifting freight mode choice behavior, and (4) utilizing SHAP interpretations on advanced forms of 717 
discrete choice models that can better capturing heterogeneity of mode preferences, such as mixed logit 718 
model or latent class models, and developed more automatic and streamlined ML and discrete choice 719 
model integration pipeline that improves both prediction accuracy and result interpretability. 720 
Furthermore, if a panel survey on freight decisions is available, the ML and SHAP interpretations can 721 
help reveal the complex decision-making process of mode choice through time under changing 722 
firmographics and economic trends. A prior study has applied SHAP interpretation on panel survey of 723 
vehicle ownership, and revealed how major life events can affect household vehicle ownership 724 
decisions (Jin et al., 2022). If such panel data is available for freight movements, similar techniques 725 
can be used to identify how major firm events (relocation, revenue growth), economic trends and 726 
infrastructure development can affect the preferences towards each freight mode. These improvements 727 
will require additional data, computational resources, and inputs from stakeholders and experts, paving 728 
the way for a more profound understanding of the domain. 729 
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Table 1. Summary statistics for selected explanatory variables (Blue - lowest, Red - highest) 

Variable Variable Definition Mean and standard deviation (std. in parenthesis) 
All modes Air Parcel Private truck For-hire truck Rail 

Distance Shipment distance in 
miles 

618.20 
(582.00) 

1,098.55 
(514.88) 

902.51 
(509.58) 

67.36 
(91.74) 

424.42 
(564.84) 

1,294.15 
(566.07) 

Weight Shipment weight in lb 2,857.51 
(71,411.46) 

10.65 
(56.16) 

8.51 
(16.81) 

4,627.98 
(17,110.55) 

7,193.22 
(16,598.42) 

190,381.10 
(1,467,300.60) 

Value Density Value density in $/lb 34.62 
(386.10) 

136.94 
(694.78) 

45.92 
(480.33) 

10.68 
(64.22) 

27.05 
(266.71) 

1.05 
(3.51) 

Shipping Cost Imputed shipping cost 
in $ 

53.51 
(226.49) 

57.03 
(50.35) 

37.60 
(45.07) 

30.46 
(98.70) 

132.32 
(503.36) 

94.83 
(25.73) 

Shipping Time Imputed shipping time 
in hr 

64.24 
(49.93) 

14.00 
(0.94) 

99.16 
(36.87) 

12.74 
(6.23) 

24.35 
(19.66) 

94.83 
(25.73) 

Commodity-Bulk Bulk goods 0.028 
(0.165) 

0.003 
(0.056) 

0.009 
(0.096) 

0.037 
(0.188) 

0.070 
(0.256) 

0.526 
(0.499) 

Commodity-
Fuel_fert 

Fuel, fertilizer and 
chemical products 

0.165 
(0.371) 

0.027 
(0.161) 

0.075 
(0.264) 

0.348 
(0.476) 

0.211 
(0.408) 

0.156 
(0.363) 

Commodity-
Interim_food 

Interim products and 
food 

0.064 
(0.245) 

0.019 
(0.136) 

0.017 
(0.131) 

0.174 
(0.379) 

0.069 
(0.254) 

0.069 
(0.253) 

Commodity-
Mfr_good Manufactured goods 0.694 

(0.461) 
0.948 

(0.222) 
0.866 

(0.341) 
0.343 

(0.475) 
0.612 

(0.487) 
0.229 

(0.420) 

Commodity-Other Other commodities 0.049 
(0.216) 

0.003 
(0.059) 

0.032 
(0.176) 

0.099 
(0.298) 

0.038 
(0.191) 

0.021 
(0.142) 

Industry-Wholesale Wholesale industry 0.512 
(0.500) 

0.655 
(0.475) 

0.295 
(0.456) 

0.892 
(0.310) 

0.693 
(0.461) 

0.125 
(0.331) 

Industry-
Manufacturing Manufacturing industry 0.090 

(0.286) 
0.139 

(0.345) 
0.082 

(0.274) 
0.045 

(0.208) 
0.166 

(0.372) 
0.405 

(0.491) 

Industry-Mining Mining industry 0.009 
(0.093) 

0.000 
(0.000) 

0.000 
(0.000) 

0.010 
(0.098) 

0.029 
(0.169) 

0.465 
(0.499) 

Industry-Retail Retail industry 0.286 
(0.452) 

0.166 
(0.372) 

0.466 
(0.499) 

0.045 
(0.207) 

0.049 
(0.216) 

0.000 
(0.000) 

Industry-Information Information industry 0.005 
(0.068) 

0.001 
(0.031) 

0.006 
(0.076) 

0.000 
(0.021) 

0.007 
(0.082) 

0.000 
(0.000) 

Industry- 
Mgt_companies 

Management company 
industry 

0.002 
(0.041) 

0.001 
(0.024) 

0.002 
(0.048) 

0.001 
(0.025) 

0.001 
(0.035) 

0.000 
(0.004) 

Industry-
Trans_Warehouse 

Transportation and 
warehouse industry 

0.097 
(0.296) 

0.039 
(0.194) 

0.149 
(0.356) 

0.007 
(0.085) 

0.054 
(0.227) 

0.004 
(0.066) 
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Table 2. Baseline MNL mode choice model estimation results for Austin, TX 1 

Variables 
Mode (for-hire truck as the base) 

Air Parcel Private Truck Rail/IMX 
ASC -5.05*** 0.472*** 1.395*** -5.49*** 

Distance (mile) 0.002*** 0.001*** -0.005*** -6.1e-5 

Value density ($/lb.) 1.4e-5***  -0.001***  

Weight between 150 and 1,500 lbs. -3.211***   1.798*** 

Weight between 1,500 and 30,000 lbs. -3.784***  0.044** 3.352*** 

Weight between 30,000 and 45,000 lbs.   -0.67*** 2.627*** 

Weight greater than 45,000 lbs.   -1.207*** 4.296*** 

Commodity is bulk  -1.107*** -0.78*** -2.094*** 

Commodity is fuel, fertilizer or other chemical   -0.77*** -0.338*** -1.296*** 

Commodity is interim product or food -0.98*** -1.312***  -3.077*** 

Commodity is manufactured goods 0.882***  -0.912*** -1.458*** 

Information industry  0.126** -0.968***  

Manufacturing industry  0.327*** -0.319*** -0.558*** 

Management industry  0.325*** 0.202* -2.185*** 

Retail industry 0.558*** 2.459*** 1.08***  

Transport and Warehouse industry    -2.311*** 

Wholesale industry   0.493*** -1.403*** 

Shipping Costs -0.001*** 

Shipping Time -0.003*** 

Number of parameters  47 

Number of observations 247,073 

Log-likelihood -157,515 

Adjusted !" 0.567 

Note: *p<0.1, ** p<0.01, *** p<0.001 2 

  3 
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Table 3. Advanced Austin-region MNL mode choice model using SHAP results 4 

Variables 
Mode (for-hire truck as the base) 

Red cell highlights removed variables in aMNL 
Air Parcel Private Truck Rail/IMX 

ASC -5.258*** 0.237*** 1.405*** -6.366*** 

Distance*(Distance <= 500 miles) 0.004*** 0.004*** -0.005*** 0.001*** 

Distance*(Distance > 500 miles) 0.002*** 0.001***   

(Distance > 500 miles)    0.321*** 

Value density*(Value density <= $5/lb.) -0.114* 0.012 0.009  

(Value density > $5/lb.)   -0.301***  

Value density*($5/lb.<Value density<= 

$25/lb.) 

0.039*** 0.025***   

(Value density>$25/lb.) 1.557*** 0.372***   

Value density*(Value density <= $1/lb.)    -0.223* 

Value density*($1/lb.<Value density<= 

$10/lb.) 

   0.124*** 

Weight*(Weight <= 150 lbs.) -46.389*** -33.591*** 2.815***  

Weight between 150 and 1,500 lbs. -3.329***    

Weight between 1,500 and 30,000 lbs. -3.619***   2.151*** 

Weight between 30,000 and 45,000 lbs.   -0.749*** 1.606*** 

Weight greater than 45,000 lbs.   -1.281*** 3.232*** 

Commodity is bulk   -0.732*** -1.273*** 

Commodity is fuel, fertilizer or other chemical  -0.329*** -0.248*** -0.843*** 

Commodity is interim product or food -0.642** -0.790*** 0.144*** -2.681*** 

Commodity is manufactured goods 0.354*** 0.089** -0.847*** -1.049*** 

Information industry   -1.100***  

Manufacturing industry  0.155*** -0.375*** 0.519*** 

Management industry     

Retail industry -1.625***    

Transport and Warehouse industry     

Wholesale industry   0.469***  

Shipping Costs -0.001*** 

Shipping Time -0.003*** 

Number of parameters 51 

Number of observations 247,073 

Log-likelihood -145,857 

Adjusted !" 0.576 

Note: *p<0.1, ** p<0.01, *** p<0.001 5 
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