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Abstract

Current toxicological methods often miss contaminant effects, particularly when immune suppression is involved. The failure
to recognize and evaluate indirect and sublethal effects severely limits the applicability of those methods at the population level.
In this study, the Vitality model is used to evaluate the population level effects of a contaminant exerting only indirect, sublethal
effects at the individual level. Juvenile rainbow troOGncorhynchus mykigsvere injected with 2.5 or 10.0 mg/kg doses of the
model CYP1A inducerg-naphthoflavone (BNF) as a pre-stressor, then exposed to a challenge dodenfl@pfu/fish of
infectious hematopoietic necrosis virus (IHNV), an important viral pathogen of salmonids in North America. At the end of the
28-d challenge, the mortality data were processed according to the Vitality model which indicated that the correlation between
the average rate of vitality loss and the pre-stressor dose was S&¥on:9944. Average time to death and cumulative mortality
were dependent on the BNF dose, while no significant difference between the two viral dosages was shown, implying that the
history of the organism at the time of stressor exposure is an important factor in determining the virulence or toxicity of the
stressor. The conceptual framework of this model permits a smoother transfer of results to a more complex stratum, namely the
population level, which allows the immunosuppressive results generated by doses of a CYP1A inducer that more accurately
represent the effects elicited by environmentally-relevant contaminant concentrations to be extrapolated to target populations.
The indirect effects of other environmental contaminants with similar biotransformation pathways, such as polycyclic aromatic
hydrocarbons (PAH), could be assessed and quantified with this model and the results applied to a more complex biological
hierarchy.
© 2004 Published by Elsevier B.V.

Keywords: Toxicity models; Population dynamics; Immunotoxicity; IHNV; Fish; Multiple stressors
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1. Introduction the effects elicited by environmentally-relevant con-s
taminant concentrations. To meet these goals required
No one questions the presence of low-level contam- an experimental design using a contaminant and chak-
ination in our aquatic ecosystems, only its significance. lenge stressor of appropriate doggs\aphthoflavone s
Biologists, biochemists, ecologists, toxicologists, pol- (BNF), an aryl hydrocarbon receptor (AhR) agonist.
icy makers and others wrestle with the potential ef- that is widely used, was selected as the contaminant.
fects that these contaminants could produce in resi- It is a model compound with relatively low toxicity s
dent biota and human consumers. Scales or models towhich is widely used for studying other classes of enss
help categorize the damage caused by chemical stresvironmental contaminants, such as polycyclic aromatie
sors can be useful tool#/pudgal et al., 2003; Bailer  hydrocarbons (PAH). Infectious hematopoietic necros
et al., 2000; Swartz et al., 19pFoxicity models that  sis virus (IHNV) was used as the lethal challenge stress
are based on specific endpoints generated by labora-sor. In this experiment, we exposed rainbow trout frys
tory assays are supposed to predict the risk of expos-to a controlled dose of BNF delivered via a single in-o
ing wildlife to treated, diluted effluent. Assay data are traperitoneal (i.p.) injection. Two days later, these trout:
used to define concentrations below which no effects were given a challenge dose of IHNV, also delivered.
are expected (i.e. the “no observed effect concentra- viai.p. injection. By initiating the induction of CYP1A
tion” (NOEC)), and to predict “effect concentration” by injection of BNF and then exposing the trout to an.
(ECy) (Crane etal., 2000A potential problemwiththe  endemic pathogen by the same method, noise can ke
NOEC is that standard toxicological assays generally minimized for a clearer representation of the interactioes
do not treat or observe indirect effects. Consequently, between contaminant and pathogen. We can determige
a contaminant that, by itself, would have no measur- if this model can be used to quantify this relationships
able effect on an organism in a standard assay could, inand the cumulative effect(s) on the targets and the pop-
combination with another have significant biological ulations they represent. 70
effects which could easily be overlooke@rist et al.,
2003; Kooijman and Bedaux, 19p6The EG estab-

lishes that concentration of a contaminant producing 2. Materials and methods n
an obvious endpoint, usually mortality, to a stipulated
percentage, of the test cohort. An example isthe me- 2.1 Vitality model -

dian lethal concentration, Lfg. Such metrics assess
toxicity in the absence of other stressors, and do notin-  |n this model, every individual begins its life with an 7
corporate past experiences of the target organisms andamount of “vitality.” Vitality, in the parlance of struc- 7
therefore, depart from the reality that aquatic organ- tural equation modeling-oyle, 1993, is a latent vari-
isms face in polluted environments. A comprehensive aple related to the intrinsic ability of an organism toss
review of various strategies and other metrics as well self-organize adaptively, and so avoid death. This Vi
as some of the limitations with these two examples can tality fluctuates stochastically over the course of thes
be found inKooijman and Bedaux (1996) organism’s life, influenced by experiences, both posrs
Sumpter (1998)lescribes the lack of information itive and negative. Eventually, at some point in timego
surrounding population-level effects in discussing the it inevitably drops to zero, signaling death. Quantitas:

environmental impact of xenoestrogens. This lack of tively, probability of surviving to ageis given by 2
information applies to other contaminants and their in-

direct effects as well. A recent modélrfderson, 200D S(r) = <¢ (i (1- rt)>
s/t

provides a vehicle by which the indirect, sublethal (at Vit
the individual level) effects of a contaminant can be 2 1 .
assessed. — exp(s—2> o) <_s_ﬁ a+ rt))) e (1) e

The goal of this research was to apply the Vital-
ity model (Anderson, 200Pto a two-stressor system  where® is the cumulative normal distributiom; the &
and assess its utility for evaluating indirect biolog- mean rate of vitality losss, the stochastic drift inten- s
ical effects of doses that more accurately represent sity of the vitality loss rate; ank the rate of accidental &
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mortality. Accidental refers to death whose cause is in- whererg now expresses the valuerdfi the presence of 12
dependent of the history of the organism. Of particular the challenge but not the stressor. That is to say, if the
interest here is that, whén r (accidental death plays  mechanism by which the stressor acts on mortality is
a minor role), life expectancy, or mean time to death, not affected by the lethal challenge (the converse need

is closely approximated by not be true), we can assess the impact of the stressas
1 1 1

t=— (2) OlS]_ =% 7 = (7) 127
r tSl lo

Studies also suggest that stressors could afféot  This laboratory-derived result can now be applied tes
a linear or very nearly linear mannerdgmel, 2001;  calculate the (direct) effect d& on a natural popu- s

Anderson, 2000 Thus, wherey is the value ofr in lation: Note, where$ is the average population-levelio
the absence of a stressor, stressor intensify endo mortality rate, that” is defined by 131
characterizes the impact per unit stressor 55
—ot 0 5 (8) 132
r=ro+aC. (3 * ; i i
Thus,§=In2#", and the increase in mortality rate duess
Thus, to exposure to the stressor is 134
1 In2  In2
— =rg+«aC. 4) A= — — — =«a(In2)$1 (9) s
* 51 I

Challenge experiments based on this model presentReturn to Eq.(4), and now considen stressorsS;, 1
a new and powerful way to characterize the effects of S, ..., S, in the presence of a lethal challenge. If wes
stressors on organisms’ survival in their natural envi- presume that stressor impacts are not so strong as:to
ronment. The approach involves exposing organisms to require third and higher order terms, we obtain 139
known, sublethal concentrations of a stressor, and ap-

plying a lethal secondary challenge, then tracking time ~ , — ,; + Z S + Z Z” ( ) o
to death. Write as a function of a stress@®; and the i=19S; i=14~j=1\0S5;0S

lethal challen , Then, using the Taylor expansion n n n
g& g y p SiSi=ro+ Zi:laisi + Zi:lzj:lﬁ,"/s;s.j. (10) 1a
r =r(S1, S¢) = r(0, 0)

Challenge experiments involving a combination of conz.

+ ( or ) Se+ (32 ) 24+ } taminants can now be used to calcula{e 1£*), and s
dSc 5?2 the results regressed ¢} and{SS} to obtain the 1.

T /s 2y direct effects of eacha}, and their interaction§f}. s

+ <_r> S1+ ( ) 51 +- :| Finding methods to accurately evaluate a populas
01 1 tion’s response to multiple stressors merits attention:
g2 The recent advent of risk assessment in aquatic toxis

+ ( il ) ScS1+ -+ ] , (5) cology has shifted the focus from individual responsg
3ScdS1 to predictions and measures of population effects, bist

where all derivatives are evaluatedsat 0, S. = 0. But with varying degrees of success. This success is further
if S; is a weak stressor, and if the impactSfonr is compromised by the complexity resulting from stress.
unaffected by&, or vice versa (so that the last term, SO interaction. Substantial under-estimation of stress
above, is close to zero), then the above, in accord with SOT effects has resulted when assuming a summation4f
Anderson’s finding of a linear relation (E()), can be effects, and these errors are positively related to stres-

closely approximated by sor intensity Power, 199Y. An organism’s capacity iss
to adequately respond to an immunological challenge

or or in addition to other stressors is yet another conceria

r |:r(0 0+ (35 ) Sc:| + (351) S1grotad Epidemiological and experimental studies have linkee

immunosuppression and reduced disease resistancedn
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fish with exposure to environmental contaminants, and BNF shows a similar potency and specificity of induczs
the population level effects of this interaction are be- tion to the carcinogenic PAHs such as besdiojrene 20
ing addressedXrkoosh et al., 1998; Spitzbergen etal., (Scholtz and Segner, 199%et itis a preferred inducer 2o
1988. since it is widely regarded as being non-carcinogenie
(McKillop and Case, 1991

Chemicals were purchased from AsrOrganics, 2o
Pittsburgh, Pennsylvania. Doses of BNF were prepared
at ambient temperature in corn oil as a carrier, and
loaded in 1 ml tuberculin syringes (Becton Dickin-u
son, Franklin Lakes, NJ). The doses were: 10 mg/kg;
2.5mg/kg, and 0 mg/kg (oil only). Pilot studies conzs

This acute rhabdovirus is the cause of numerous firmed literature that these BNF doses are sublethal
high mortality epizootics in salmonids of the northern and can be transferred to targets of this size via this
Pacific coast where itis endemic and is considered to be carrier. B-Naphthoflavone doses for three fish weights
one of the mostimportant viral pathogens of salmonids classes<3.59g, 3.5-4.59>4.59, were prepared for 217

207
3. Stressors

3.1. Infectious hematopoietic necrosis virus
(IHNV)

in North America Bootland and Leong, 1999; LaPatra,
1998; Wolf, 1988. Viral strains exhibit varying degrees
of virulence and susceptibility to IHNV differs between
the numerous salmonid speciégdyer et al., 2000;
Bootland and Leong, 1999The IHNV isolate used
in this research was 220-90, an M genogroup strain
from Hagerman Valley, ID, which has been shownto be
highly virulent in rainbow troutl(aPatra et al., 1994
This pathogen is an effective challenge model since
it reproducibly causes 70-95% mortality to exposed
juvenile rainbow trout@ncorhynchus mykiys

The IHNV challenge strain 220-90 was propagated
in the epithelioma papulosum cyprini (EPC) cell line
(Fijan et al., 198Band titered by plaque assay as pre-
viously described l(@aPatra et al., 1994 Inocula for
50nl/fish challenge doses were prepared with serial
dilutions of virus stock (titer % 10° pfu/ml) for chal-
lenge doses of Bpfu/fish and 16 pfu/fish, determined
in pilot studies to produce similar mortalities and time
to death results.

3.2. B-Naphthoflavone and dosage preparation

B-Naphthoflavone (BNF; 5,6-benzoflavone, CAS
6051-87-2) has been extensively used in toxicolog-
ical investigations at a wide range of administered
doses, from 5.0 mg/kg to 200 mg/kdéyer et al.,
2002; Lemaire et al., 19961t is a potent inducer
of Cytochrome P450 CYP1A, a heme-containing en-

zyme that catalyzes Phase | oxidative and reductive 15°C.
metabolic reactions of a broad spectrum of substrates,

many of which are anthropogenic contaminants such
as petrochemicalsBuhler and Wang-Buhler, 19%8

each dose in order to maintain uniform injection vol»s
ume of 50ul/fish.

219

3.3. Animal treatment 220

Fish were obtained from Clear Springs Foods (Buhk:
ID). Healthy, disease-free six-week-old rainbow trouk:
fry were delivered to Seattle, WA and held in aerategs
tanks of flowing water at 15C. The mean weight of 2.
the fry upon receipt was 0.8 g. The fry were fed daily:s
with commercial feed (BioDiet, Warrenton, OR; pro=zs
tein, 48.0%, fat, 15.0%, carbohydrate, 7.0%). At injecz
tion, the mean weight of individual fish in three groupss
of 10 randomly selected fish was 4.541.29 g.

Thirteen groups of 44 (22/duplicate containenko
rainbow trout fry were size-selected for uniformityza
From each group, individuals were removed and anes-
thetized in a solution of50 mg/l tricaine methane sul- 233
fonate (MS222; Argent Chemical Laboratories, Redss
mond, WA), weighed, and injected intraperitoneallyss
with a 25G5/8 needle (Becton Dickinson) to adminzss
ister BNF/oil according to the test groups shown gy
Table 1 Appropriate series of groups were injecteebs
with phospho-buffered saline (PBS), the carrier fass
IHNV, as a procedural control, and additional contrcho
groups were left unhandled. Following injection ané:
recovery in freshwater, groups of 22 fish were transs
ferred into 4L challenge buckets of flowing water ais

229

244

Forty-six hours after BNF injection individuals werezs
anesthetized and injected with the IHNV challenges
doses and returned to the proper challenge buckets s

AQTOX 1689 1-11
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Table 1
Rainbow trout test groups with doses of BNF and challenge doses of IHNV shown

Challenge stressor: IHNV doses following BNF or PBS

Prestressor: BNF injecte® BNF (oil only), 0 IHNV 0 BNF (oil only), 13 pfu/fish IHNV 0 BNF (ail only), 1¢ pfu/fish IHNV Unhandled
before IHNV

2.5mg/kg BNF, 0 IHNV 2.5 mg/kg BNF, Epfu/fish IHNV 2.5 mg/kg BNF, 16pfu/fish IHNV
10.0mg/kg BNF, 0 IHNV 10.0 mg/kg BNF, 2@fu/fish IHNV 10.0 mg/kg BNF, 16pfu/fish IHNV

PBS control PBS, 0 IHNV PBS, £®fu/fish IHNV PBS, 16 pfu/fish IHNV

Each test group was conducted as duplicate buckets of 22 fish each (44 fish per test group).

Fish were fed 1% per body wt. commercial feed ducted between the two viral dosages (i.e2 40d 2
(BioDiet) daily. Amounts dispensed were based on an 10# pfu/fish) for each BNF dosage group to determing:
average fish wt of 4g, and number of fish per con- if there were significant differences between groups:
tainer. This quantity was modified to maintain a con- The data were exported to VitalityModelFitting.ss@ss
sistent feed rate as fish were lost due to mortality. The (Salinger et al., 20Q3vhere they were processed. Thisss
testorganisms were monitored and mortalities removed program uses S-Plus 2090and provides the formula zss
and recorded every 4h for 28 d. After 28 d, the ex- for computing the variance of the parameter estimates,

periment was terminated, and any surviving fish were j e, the Hessian inverse of the negative log-likelihood
euthanized in an excess of tricaine methane sulfonateevaluated at the parameter estimates. In the event.@f

(MS222). close correlation betweens, andk, a standard error 2o
approximation method estimates the standard errorif
3.4. Data analysis the above method fails due to close correlation. Stop-

ping tolerances were adjusted to 0.000001; standard

Data were entered in Micros8ftExcel 2000. Sin-  error and Pearson C type test for goodness of fit wese
gle factor analyses of variance (ANOVA) were con- calculated in model fitting. 275

100

Cumulative Mortality (%)

20 —X—0 BNF

—e— 2.5 mg/kg BNF
—0—10.0 mg/kg BNF

0 50 100 150 200 250 300 350 400 450 500 550 600
Elapsed Time (hr)

Fig. 1. Cumulative mortalities for three different dosageg-ofaphthoflavone for the entire viral challenge (28 d).

AQTOX 1689 1-11
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Survival Data and Vitality Model Fitting: 10 mg/kg BNF

Survival Fraction
OO

o

100 200 300 400 500 600
Hours

Fig. 2. Survival data after fitting in VitalityModelFitting.ssc for 10 mg/8gnaphthoflavone and IHNV.

Survival Data and Vitality Model Fitting: 2.5 mg/kg BNF

1.0

0.6

Survival Fraction
0.4

0.2

0000 00 00 ® o o 0 0 @

T T T T T T |
0 100 200 300 400 500 600
Hours

Fig. 3. Survival data after fitting in VitalityModelFitting.ssc for 2.5 mgf&gaphthoflavone and IHNV.
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Survival Data and Vitality Model Fitting: 0 BNF

1.0

0.8
1

Survival Fraction

0.0

0 100 200 300 400 500 600

Fig. 4. Survival data after fitting in VitalityModelFitting.ssc for 0 mg/Renaphthoflavone (oil) and IHNV.

Survival Data and Vitality Model Fitting: PBS

1.0

0.8
|

Survival Fraction
0.4
1

0.2

0 100 200 300 400 500 600
Hours

Fig. 5. Survival data after fitting in VitalityModelFitting.ssc for PBS (carrier for IHNV) and IHNV.
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BNF Dose Correlation to r

=hrs)

r(t't

0.008 -~~~ y = 0.0003x + 0.0065| -
0.0055 i R? = 0.9944
0.005 : : | : -
0 2 4 6 8 10 12

BNF Dose (mg/kg)

Fig. 6. Correlation of3-naphthoflavone dosagett@nd trendline (linear regression). Standard error bars represent the standard error generated
by VitalityModelFitting.ssc for the total test cohort for that BNF dosage §8).

4. Results pected and confirmed the results of viral dosage pin
lot studies. Due to the acute nature of IHNV infecz:

No mortalities occurred in control groups with no tion, these challenge doses were sufficient to sati
viral exposure. Cumulative survival (%) for both IHNV  rate the innate immune response of these younger,
dosage groups at the same BNF dosage showed namore susceptible target organisms. Consequently, se-
significant differencesp< 0.05). This was not unex-  sults from both IHNV dosage groups were combinegs

BNF Dose Correlation to s

0.045
0.04
0.035

0.03

o 0.025

DB o o L R S LS S S e

L y =-0.0011x + 0.0378]
T s s S s ey R?=0.8758

0 2 4 6 g 10 12
BNF Dose (mg/kg)

Fig. 7. Correlation of3-naphthoflavone dosage $@nd trendline (linear regression). Standard error bars represent the standard error generated
by VitalityModelFitting.ssc for the total test cohort for that BNF dosage 88). The standard error for 2.5 mg/kg was below reporting levels
for VitalityModelFitting.ssc.
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for each BNF dose to examine the contaminant’s both in vitro and in vivo Gravato and Santos, 200232
effect. Hawkins et al., 2002; Meyer et al., 2002; Navas angs
The cumulative mortalities from these groups as Seger, 2000; Rbergh et al., 2000; Weimer et al., 20005z
well as the timelines along which they occurred can be Goksgyer and&tlin, 1992. In rainbow trout, BNF in- a3
seen inFig. 1 During the active phase of the mortality duces CYP1A, uridine diphosphate glucuronosyltranss
curves, dose-dependent effects of the BNF dosage areferase (UDPGT), and NAD(P)H-quinone oxidoreducss.
evident relative to controls not exposed to BNF. The tase (also known as DT-diaphorase, or DTDgraire  sss
patterns exhibited by 2.5 mg/kg and 0 mg/kg dosages et al., 1998. BNF stimulates the production of thesess
overlap at the beginning, then diverge~at50 h. enzymes with few documented toxic effects such as
Results of data fitting in VitalityModelFitting.ssc  those exhibited by other accepted inducers such as the
are shown irFigs. 2-5 and a BNF dose-dependentre- PAH benzof]pyrene orthe PCB mixture, Aroclor 125434
sponse is evident The fit to the model prediction for (Paolinietal., 1994; Ong etal., 1980n the absence of s
all dosages is close; this alignment becomes closer other compounds, it manifests few other consequences
with increasing dosage showing almost no deviation (NIEHS, 1998. Regarding potential genotoxicity, lit- as
at 10mg/kg BNF dosageFi{g. 2). A slight depar- tle information can be found in recent reviews of thes
ture from the model is apparent at 2.5mg/kg BNF literature NIEHS, 1998. Earlier studies have shownas
(Fig. 9, yet the association is clear and maintained. that BNF, over a wide range of concentrations, did net
Of note are the similarities between 0 BNFid. 4) produce mutagenicity i8. typhimuriunstrains TA98, s
and PBS Fig. 5), in both degree of disparity from  TA100, TA1535, TA 1537, or TA1538 with or without sso
the model and the times at which these incongruities Aroclor 1254-induced SBrown and Dietrich, 1979 s
transpire. As BNF is not used industrially, extrapolations of reless:
There is an unmistakable correlation between the vant results to a population require further testing witls
contaminantdose (i.e., BNF) and an increase in the rate contaminants of concern to that cohort. 354
of vitality loss,r, shown inFig. 6. The relationship be- Viral infection leads to potent stimulation of thesss
tween the stochastic component of the Vitality model, immune system, particularly with the induction of in-sss
s, and the BNF dosage is not as definite, with alow®r R  terferons. The kinetics of this induction in responser
and lacking the linearity of that found with(Fig. 7). to IHNV infection have been reported ansen and zss
However, it merits attention since the random element La Patra (2002)The results of their research suggests
of the model decreases with increasing BNF dosage. that IHNV infection in trout can stimulate interferon-sso
As sis the variance of the mean rate of vitality decline mediated response®’Farrell et al. (2002used an- s
(r), it is important to consider that the variance is a other rhabdovirus, viral hemorrhagic septicemia virus.
measure of heterogeneity. This is reflected in the dose- (VSHYV), to study the rainbow trout response to a virabs
dependent decrease in physiological variation from the infection. Their research determined that the interferan
anticipated response, as indicatedrigs. 2—4(0, 2.5, pathway is the predominant component of the rainbows
10mg/kg). Thas decreases with increasing BNF dose trout antiviral response, particularly in the diseasess
is a measure of how distinct the results were (a measureearly stages. Another protein involved in this immune-
of immune competence disparity between individuals) response is the ubiquitin-like product encodedigy3. zes
and how these responses became more predictable (adThis protein is highly similar to interferon-responsivess
hered more closely to predicted values) to increasing ISG15, yet its functional homology to this mammalian
concentrations of this CYP1A inducer. protein is as yet unknown. an
One of the connections between the rainbow troeit
antiviral innate immune response and the effects of
BNF is protein demand. Induced catabolic enzymes afe
newly synthesized protein$S{vanson and Bradfield, s7s

5. Discussion and conclusions

The results of this study clearly indicate that expo-
sure to BNF affects the rate of vitality loss, the variance
of this rate, and the average time to death from IHNV.
The toxicity and behavior of BNF are well documented

1993, and the highest levels of CYP1A are found twers
days following i.p. injection of BNFllemaire et al., a7
1996. Interferon-inducible genes are central to the ink+s
tial immune response of the rainbow trout challengeg
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