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The transmission and persistence of

‘urban legends’: sociological application

of age-structured epidemic models.

Andrew Noymer∗

April 26, 2001

(Working paper — comments welcome.)

Abstract

This paper describes two related epidemic models of rumor trans-
mission in an age-structured population. Rumors share with commu-
nicable disease certain basic aspects, which means that formal models
of epidemics may be applied to the transmission of rumors. The results
show that rumors may become entrenched very quickly and persist for
a long time, even when skeptics are modeled to take an active role in
trying to convince others that the rumor is false. This is a macrophe-
nomeon, because individuals eventually cease to believe the rumor, but
are replaced by new recruits. This replacement of former believers by
new ones is an aspect of all the models, but the approach to stability is
quicker, and involves smaller chance of extinction, in the model where
skeptics actively try to counter the rumor, as opposed to the model
where interest is naturally lost by believers. Skeptics hurt their own
cause. The result shows that including age, or a variable for which
age is a proxy (e.g. experience), can improve model fidelity and yield
important insights.
Keywords: Rumors—mathematical models; rumors—age-structure;
rumors—persistence.

∗PhD student, Department of Sociology, University of California at Berkeley, 2232
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1 Introduction

Word-of-mouth spread of news and rumors is the simplest form of mass

diffusion of information. Although rumor-spreading can be abetted by tech-

nology, the essence of rumors is person-to-person contact. The large-scale

dynamics of rumor spread and persistence are, however, poorly understood.

Why are some rumors short-lived, while others never seem to die? This

paper addresses this question by comparing two models of the spread of

a special class of rumors called ‘urban legends’—persistent, usually non-

verifiable, short tales spread by word-of-mouth or by cognate means (e.g.,

electronic mail). The persistence of urban legends is the key factor of inter-

est here. I take persistence to be what sets urban legends apart from rumors

more generally, which may disappear almost as soon as they arise.

Urban legends abound. Three examples are: (1) Spider eggs are an

ingredient of a certain brand of soft chewing gum. This rumor was rampant

among children in the United States in the late 1970s and early 1980s when

soft chewing gum, in this case Bubble Yum brand, became more popular

among children than hard chewing gum.1 (2) The actor from a well-known

television commercial died from a lethal combination of candy and Coca-

cola. According to this rumor, the child actor who played the character

Mikey in commercials for Life breakfast cereal died because he ate Pop-

rocks and drank Coca-cola at the same time.2 (Pop-rocks are a candy that

contain bicarbonate of soda, which make a popping sound in the mouth.)

(3) Upon requesting the cookie recipe at the café of an upscale department
1See http://www.topsecretrecipes.com/sleuth/legends/legend2.htm.
2See http://www.snopes2.com/horrors/freakish/poprocks.htm.
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store, a patron was presented with the recipe—for which he was billed $200.

The patron takes revenge by emailing the recipe, gratis, to all his friends and

requests them to do the same. This is the canonical example of an email hoax

or rumor, and some variant of the cookie recipe legend is almost certainly

still in circulation.3 All three of these urban legends are well-documented in

the popular literature and have been experienced by the author. Example

web pages have been provided, and the interested reader can find more such

pages by doing a standard Internet search.

The remarkable persistence of rumors is a macro-phenomenon, not neces-

sarily a micro- one; rumors keep spreading even after their original adherents

become skeptical. The answer to why specific urban legends keep spreading

is not that more-and-more people believe the legend. As with other social

phenomena, the overall system does not mimic the behavior of a single, ide-

alized, actor (for an overview, see, for example, Schelling 1978, Coleman

1990). This paper uses mathematical models to explore the properties of

rumor propagation where data collection is problematic. Incorporating age-

structure into the models yields insights about how rumors can persist at

the population level despite the fact that individuals may cease to believe

the rumor after a certain period. And drawing on the deep, empirically

tested, literature on mathematical models in epidemiology helps insure that

the assumptions made about population mixing are reasonable ones.
3See http://tutor.kilnar.com/hoax/myth/cookie.html.
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2 Rumors and Epidemics

The spread of rumors is analogous to the spread of an epidemic infectious

disease. The similarity between epidemic models and rumor models is obvi-

ous, and long-recognized in both social science and epidemiology literature

(see, e.g., Coleman 1964: 46, Cane 1966, Dietz 1967, Bartholomew 1967,

Frauenthal 1980). Shibutani’s landmark study of rumors (1966) identifies

rumors as a type of “behavioral contagion”.

There are two main strands of mathematical modeling literature in epi-

demiology. The first strand concentrates on the mathematics of epidemics,

and seeks analytical solutions. In this context, the term ‘epidemic’ includes

a wide variety of stochastic processes and deterministic models, some of

which bear little relation to real biological or social phenomena. The second

strand concentrates on epidemiology per se and its real-world relevance. The

archetypal work in the first strand is Bailey’s The mathematical theory of

infectious diseases and its applications (1975); in the second strand a good

example is Infectious diseases of humans: Dynamics and control by Ander-

son and May (1992). In these two overlapping branches of the literature

the goal is essentially either mathematical or epidemiological. In the former

case, numerical solutions are beside the point, and in the latter case, they

are often necessary to arrive at a conclusion.

The models introduced in this paper have four states, are nonlinear, and

are explicit in age and time—such complications necessitate the use of a

computer for numerical solution, and thus place this work, at least nomi-

nally, in the second tradition of epidemic models. Age plays an important
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role in the rumors I investigate. The young are more credulous than the old,

at least according to the assumptions set out here. The first age-structured

epidemic model, of a hypothetical disease, was by Hoppensteadt (1974),

and the more applied strand of the modeling literature has been strongly

influenced by this work, particularly because age is a key factor in vaccine-

preventable diseases.4 The simultaneous inclusion of age and time makes

the models difficult to solve analytically.

Before discussing the model specifics, I review briefly the affinity between

epidemic models and rumor diffusion models. Measles is the representative

infectious disease for the purposes of the present discussion. Measles is

highly contagious, and is spread by infected-to-susceptible contact (specifi-

cally, through airborne transmission of the measles virus). Rumors are also

highly contagious: what differentiates rumors from other pieces of informa-

tion is that the possessor of a rumor has an irresistible urge to tell others.

Dunbar (1996) proposes that human language itself arose out of an inherent

need to gossip. While this hypothesis is clearly speculative, it underscores

the fact that rumor transmission is one of the most natural forms of social

communication.

There are two types of immunity to rumors. Call the first type ‘skep-

ticism’: a skeptic does not accept the rumor as true, neither the first time

she hears it, nor after repeated exposure. The second type of immunity

is ‘acquired immunity’: after being infected with the rumor for a certain
4Schenzle (1984) was the first to study an age-specific model of measles transmis-

sion. McLean and Anderson (1988a,b) applied such models to developing countries, where
measles remains an important cause of death. And Eichner, Zehnder and Dietz (1996)
applied detailed German data on measles to a sophisticated model incorporating many
aspects of transmission.
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length of time, the rumor carrier comes to believe that she has been duped,

and ceases to believe the rumor. Belief in a rumor and desire to spread the

rumor are here taken to be identical, though in practice belief may persist

even after the burning desire to spread a new rumor wanes. The contact

spread of pathogens and the contact spread of rumors is analogous. Skepti-

cism plays the same role in rumor spread that vaccination plays in measles

epidemiology. Acquired immunity is analogous across the two domains.

In two respects, the measles–rumors analogy breaks down. Measles has a

latent (i.e. infected but pre-contagious) period which is unlike most rumors;

with rumors, there is no distinction between infection and contagiousness.

Measles involves recovery (or death) within a few weeks of initial infection,

whereas some rumors may be believed for years. These differences are easy to

deal with from the modeling perspective. In the present model, an individual

is in a state of believing the rumor or not; qualitative aspects of rumor

transmission—e.g., consideration that rumors tend to change content as they

are spread (cf. Buckner 1965), or that rumor ambiguity affects transmission

(cf. Allport and Postman 1946: 502)—are therefore omitted.

3 Model I: an Epidemic Model

3.1 Model description

The present model is a system of four partial differential equations in age

and time (eqns. 1–4). This is a modified version of the classic three-state

SIR (susceptible, infected, recovered/immune) epidemic model of Kermack

and McKendrick (see Murray 1993), the dynamics of which are similar to
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Figure 1: Model schematic. Model states boxed. Boundary conditions shown
with dashed lines, model parameters shown with solid lines. The boundary con-
dition b represents a birth rate and µ represents a mortality rate. In the present
version, births=deaths, and the life table is rectangular, so µ = 0 for all ages except
the oldest age, ω. Mortality occurs in all states, but the population at the oldest
age is primarily in state Z, so for clarity µ is shown only there. Other symbols as
discussed in the text. The nonlinearity of the model comes from the key parameter
λ(t) = β · C(t)/N .
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the familiar Lotka-Volterra predator-prey systems. The additional state in

the present model is those who do not understand the rumor, which from

the point of view of transmission is the same as being immune, except that

it is mostly a very young group; the simulated population is ‘born’ into this

group. The population itself is at equilibrium in size and in age structure

(i.e. what demographers call stationary), and has a rectangular life table.

Births and deaths are treated as boundary conditions.

The corresponding system of difference equations is solved numerically.5

This numerical solution can also be thought of as a deterministic macrosim-

ulation of the rumor dynamics; macro- because the program does not keep

track of simulated individuals, only of flows between stocks, and there are

no integer constraints on these flows. Progression through the states of the

model is age-related, but not completely determined by age, which makes

it worthwhile to include age as well as time in the model equations. If the

model states perfectly determined age, or if there were no relation between

age and the stages of the model, then ordinary differential equations in time

could be used effectively.

The concept of exponential decay plays an important role in models of

this type. Constant rates—implying exponential decay—are the simplest

decrements to include in differential equations, so they are attractive pro-

vided there is good realism in their use. In the epidemiology modeling lit-

erature, constant rates within age-stratified models have proven to be good

matches to available data.
5Using a computer program written by the author in Pascal. Euler’s method is used,

with 52 iterations taken to be one model ‘year’ of age/time.
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The population at age zero is all in group M6, which they leave with age-

specific rate δ(a), a delayed exponential decay into the susceptible group,

S (see eqn. 5). There are two modes of exit from susceptibility: infection

and skepticism. The susceptible population becomes skeptical or immune

(denoted Z because it is the final class, or absorbing state, of the model) with

the age-specific skepticism rate κ(a), also a delayed exponential decay (see

eqn. 6). The motivation for these rates is that up to age ζ all children are too

young to be able to understand the rumor, and above this age there is rapid

(exponential) recruitment into the susceptible class, as the children become

more able to communicate and to understand stories (cf. eqn. 5). Similarly,

below age ξ it is assumed that no child is savvy enough to be skeptical of

a rumor, but above that age some children will not believe everything they

are told (cf. eqn. 6).

The rate between susceptible and infected is the force of infection, λ(t),

and varies over time but not by age. The population is assumed to mix

with itself equally by age. Although children mix mostly with other children

during the day, they spread rumors to their older siblings and to their parents

at home in the evening, and vice versa. Note that class M and class Z are

inert from the point of view of rumor transmission: these classes neither

transmit nor receive the rumor. So the assumption of uniform population

mixing does not mean that, e.g., a rumor about chewing gum is as likely to

be transmitted to an adult as to a school-aged child. The adult may be told

the rumor, but she is, in all likelihood, immune, and will not accept it.

The force of infection is the most important parameter in the model:
6In the measles literature, this group is ‘protected by maternal antibodies’, hence M .
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its variation over time drives the rise and fall of rumor epidemics, and it

is the source of the model nonlinearity. The force of infection makes the

model nonlinear because the rate between states S and C depends on C:

λ(t) = β · C(t)/N , where C(t) is the entire rumor-infected population (all

ages) and N is the total population in all ages and classes. The assumption

of mixing is what makes the model a mass-action model in the language of

mathematical epidemiology, which in turn borrowed the phrase from chem-

istry. Like molecules in a test-tube, people are mixing with each other

constantly. Suppressing age, the net transmission from eqn. 3 is:

λ(t)S(t)dt = β
C(t)
N

S(t)dt

or, the population of susceptibles multiplied by the proportion contagious

in the entire population, multiplied by a mixing parameter, β. The prob-

ability that a susceptible person will mix with a contagious person, condi-

tional on the susceptible contacting any other person, is simply C(t)/N .

The constant β captures both population mixing (i.e. the number of con-

tacts between susceptible people and others in the population per unit

time per susceptible person), and the probability that transmission will

occur, conditional on contact (i.e. that the rumor will be spoken). Thus,

λ(t)S(t)dt = βS(t)(C(t)/N)dt provides a mass-action model of rumor trans-

mission.

Note that as constructed here, mass-action models are concerned with

proportions, not numbers. The total population size, N , simply acts as

a scale factor. Density dependence—absolute numbers affecting model dy-
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Parameter Signifies Value

δ(a) net rate M → S see eqn. 5

ζ minimum age M → S 156 weeks

δ̃ rate M → S, a ≥ ζ 0.0064 week−1

κ(a) net rate S → Z see eqn. 6

ξ minimum age S → Z 312 weeks

κ̃ rate M → S, a ≥ ξ 0.0014 week−1

λ(t) force of transmission β · C(t)/N

β mass-action constant 1.0097 week−1

λ∗ used to calibrate β 0.0012 week−1

ν recovery rate 0.2 week−1

N population size 100,000

ω oldest age 40 years

C(t) total contagious
∫ ω
0 C(a, t)da

Table 1: Summary of parameter values.

namics—gives rise to another class of models, considered in different settings

by (e.g.) Mayhew and Levinger (1976) and de Jong, Diekmann and Heester-

beek (1995).

The β parameter reflects population mixing, and therefore sets the stage

for how quickly or slowly the rumor propagates. The value of β is assigned

by a multiple-equilibrium process. The model is first run at length with

zero rumor transmission, but with all other forces in effect. This initializes

the population with the correct number of M,S, and Z at each age for the

population without rumor transmission, but subject to the other transition

rates of eqns. 1–4. Call this population the ‘starting equilibrium’. Next,
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ask: what would be the mean age of infection with the rumor if it were

spread with a constant rate of infection? That is, suppose that the popu-

lation is at an equilibrium such that λ(t) does not change over time; such

equilibria (of disease transmission) are observed in pre-vaccination popu-

lations. The younger the mean age of infection, the more contagious the

rumor in question. With a candidate value for mean age of infection, 〈a〉,
the approximate corresponding fixed force of transmission, λ∗, is also known.

Compensating for the period up to age ζ when there is no susceptibility, it

follows from calculus that λ∗ ≈ (〈a〉 − ζ)−1. The result would only be ex-

act in a population where δ̃ is very large and κ(a) = 0 for all a, but it is

a good approximation for the present purpose. I then run the model with

full rumor transmission, but with λ(t) ≡ λ∗; from this simulation, β can be

back-calculated as N · (λ∗)/C(t). The simulation is stopped when β reaches

an equilibrium value, β∗, which is taken to be the ‘natural’ β for endemic

rumor transmission with mean age of infection 〈a〉.
This way of setting β by adjusting the mean age of infection and run-

ning the model until equilibrium, is simply a way of assigning a meaningful

value to β by using the commonsense notion of the mean age of infection

under equilibrium conditions. Using this technique, β can be calibrated

to a realistic value without recourse to either trial-and-error or advanced

mathematics.

In the runs of the model, the population is reset to its starting equilib-

rium. A handfull (n = 3) of rumor-infected people are placed in the popula-

tion at age 312 weeks, and β fixed at β∗, with λ(t) now free to change. The

only other model parameter is the constant ν, which is the rate of recovery,
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or the rate of acquired immunity. The resulting dynamics are described

below. Table 1 summarizes all the model parameters.

The rates in the model are not duration-specific (i.e. the transition rates

vary by age, and by time, but not by duration in a given state beyond that

specified by the combination of age and time). The delayed exponential

decay represented by eqn. 5 is a duration-specific effect, because there is

a minimum time of residence in state M before transition to state S can

occur. But this is a coincidence with an age-specific effect, since the whole

population up to age ζ is in class M . Duration-specific effects themselves are

an ill-defined concept in a compartmental model (as these models are some-

times called, after the compartments of figure 1), because the program keeps

track of stocks, not simulated individuals. However, given the complexity of

the model, with age-specific effects, and transition rates that depend on the

state of the model and thus vary over time, the omission of duration-specific

effects does not do violence to any essential aspects of the rumor dynamics.

3.2 Model equations

∂M

∂a
+

∂M

∂t
= −δ(a)M(a, t) (1)

∂S

∂a
+

∂S

∂t
= δ(a)M(a, t) − [λ(t) + κ(a)] S(a, t) (2)

∂C

∂a
+

∂C

∂t
= λ(t)S(a, t) − νC(a, t) (3)

∂Z

∂a
+

∂Z

∂t
= κ(a)S(a, t) + νC(a, t) (4)

where:
a, t : age, time
M : too young to understand rumor
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S : susceptible to rumor
C : infected with rumor, contagious
Z : immune to rumor (absorbing state)

and:

δ(a) =

{
0 a < ζ

δ̃ a ≥ ζ
(5)

κ(a) =

{
0 a < ξ

κ̃ a ≥ ξ
(6)

Mortality and fertility are left out of the above equations. They are

boundary conditions, not part of the differential equations per se. This

version of the model assumes a rectangular life table (no mortality except

at the oldest age, ω), which is an acceptable approximation for developed

countries. For developing countries, a mortality parameter µ(a) would have

to be added to the model equations.

The following transition matrix is equivalent to the model equations (1–

4). The equations are analogous to von Foerster equations (Keyfitz 1985:

139-140), while the transition matrix is analogous to the Leslie matrix.7 Fig-

ure 1 is a flowchart diagram of the system, equivalent to either the equations
7In the present case of a multi-state population projection, I find the von Foerster

equations preferable, though this is a question of taste. The v.F. equations imply the
aging of the Lexis diagram and concentrate on the action of the state changes. The
transition matrix shown here is not a true Leslie matrix because aging is suppressed.
Multi-state Leslie matrices with explicit aging are large and unwieldly; the v.F. equations
are more compact.

14



or the transition matrix.




1 − δ(a) 0 0 0

δ(a) 1 − λ(t) − κ(a) 0 0

0 λ(t) 1 − ν 0

0 κ(a) ν 1




3.3 Epidemic Model Results

Figures 2–6 show the model results. Two runs of the model are considered,

the first under conditions summarized in table 1 (call this ‘case 1’), and the

second when the recovery rate ν has been decreased to 0.04, which also has

the effect of changing β to 0.20208 (‘case 2’). By decreasing the recovery

rate, more contagious people can accumulate at any given time, but because

β also changes in response to the change in ν, the result is not necessarily

much larger epidemics as measured by the height of the peak (cf. figure 3).

That β changes when ν does is a consequence of the equilibrium method for

calculating β, described above.

Figure 2 shows the susceptible population at the end of the starting

equilibrium discussed above. This is the result of the model with no rumor

transmission, so the dynamics leading to the initial conditions are linear.

This initial population does not change when rumor parameters change.

Note that the susceptible population is mostly children and teenagers, but

there are a non-negligible number of adults susceptible to the rumor. Tweak-

ing the model parameters can change the shape of this curve; for instance a

higher value of κ̃ would decrease the proportion of adults. Given that this
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Figure 2: The initial condition of the model: proportion susceptible by age. This
distribution represents the equilibrium state of the model when λ(t) ≡ 0.

is a hypothetical rumor, the curve in figure 2 is acceptable.

The dynamics of the model with rumor epidemics are shown in figure 3.

The initial outbreak—when the rumor is new to all members of the popula-

tion, old and young—is the most intense. But more people infected means,

before too long, more becoming skeptical, and the epidemic burns itself out.

In case 2, the rumor prevalence drops well below 1% of the population, but

never crashes to an extremely low number as in case 1. Over time, many

of these skeptics die, and new cohorts of susceptibles are born. After about

fifteen years, there are enough susceptibles to sustain transmission with a

reproductive rate (R—the number of daughter infections caused by each in-

fection) greater than unity, and a new epidemic occurs (see Anderson and

May 1992 for a detailed discussion of the reproductive rate). As Granovet-

ter (1978: 1420) notes, rumor spreading is a threshold phenomenon. Here,
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R > 1 is the threshold necessary to sustain an epidemic.

The second epidemic is less intense than the first—the oldest in the

population still remember the first time that rumor went around, and they

don’t believe it—but it lasts longer before burning out. The rumor is never

re-introduced explicitly. It persists at low rates in the population, which

can have two interpretations. The first is that there are some diehards who

won’t let the story rest, and who find the occasional recruit, even after a

recent epidemic has wiped out most susceptibles in the population. The

real problem with this interpretation is that persistent adherents to the

rumor are not an explicit part of the model—the recovery rate ν applies

to everyone. The second interpretation is extinction. The simulation uses

decimals, and a number that is well below unity can be taken to mean zero.

In this interpretation, the second epidemic must follow a re-introduction

of the rumor. Historical measles epidemics in island populations followed

the pattern of epidemic, extinction, and re-introduction (Cliff, Haggett and

Smallman-Raynor, 1993).

Later epidemics become more diffuse and the inter-epidemic level be-

comes higher. The long-run trend of such dynamics is stable transmission,

such that there is never an epidemic, but a constant number of people who

believe the rumor at any given time. This type of model shows how an

epidemic-to-endemic path can occur, such that an urban legend can go from

being a new “crazy story” that burns out quickly, only to be resurrected

later, and eventually believed by a constant fraction of the population. The

long-run approach to stability is seen more clearly in case 2 because it has

higher inter-epidemic levels (figure 3). Using this model to explain the per-
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Figure 3: Epidemic curve. The initial outbreak is the most intense, but as the
epidemics decrease in intensity, the rumor tends towards endemicity, with wider
peaks and higher inter-epidemic baselines. Solid curve: case 1; dotted curve: case
2 (see text).

sistence of urban legends is viable, but it requires tolerance of the epidemic-

to-endemic cycles, with the possibility of re-introduction as noted to keep

the rumor going between the first few cycles.

Epidemic curves plot either proportion infected or prevalence (absolute

numbers infected) over time. Only current infections are counted, not those

who ever believed the rumor. This is an important distinction between

epidemic models and the large body of innovation diffusion literature, where

the well-worn result is a logistic or S-shaped adoption curve (Dodd 1952a,b,

Rogers 1995). Adoption is analogous to ever having believed the rumor, the

plot of which would indeed be S-shaped for any given epidemic peak.

The age-structured epidemic model is useful not only because it gener-

ates more realistic dynamics, but because it allows us to break down these
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Figure 4: Epidemic curve—mean age of infection. During outbreaks, the mean
age of infection increases. Solid curve: case 1; dotted curve: case 2 (see text).

dynamics by age. Figure 4 shows the average age of those infected over

time. The average age of infection increases during the epidemics. There

is an interesting point here about gullibility: it depends on time as well as

age. The same rumor may be believed by different age groups, depending on

whether or not the population is in an epidemic state or an inter-epidemic

state. For example, an older teenager may note smugly that a certain rumor

is only believed by younger children (the average age of believers is below

13 after the first or second epidemic in figure 4), when in fact the same ru-

mor had an average age over 16 in its first appearance. The age at which a

group is collectively too wise to believe a rumor depends as much on cohort

experience as it does on any inherent skepticism that comes with age. The

standard deviation of the age distribution of believers is plotted in figure 5;

note that this tends toward a limit along with the mean.
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Figure 5: Epidemic curve—standard deviation of age of infection. Solid curve:
case 1; dotted curve: case 2 (see text).

Figure 6 represents a Lexis surface of the rumor epidemics (case 2).

The Cartesian plane is age and time, and the wire-frame surface is the

prevalence of the rumor (i.e. number infected). This surface provides an

illustration of why the mean age of infection gets older during an epidemic.

The first (leftmost) epidemic in figure 6 is the most peaked, and has a heavy

tail at older ages (age increases front-to-back). The surface of the second

epidemic brings out visually the point about aging and susceptibility. The

age distribution of the second epidemic is markedly younger, and unlike the

first epidemic, there is a drop-off in the surface above age 20. Cohorts, aging

one year in age for each year of time, move diagonally (45◦) up the age-time

plane. Older people became infected in the first epidemic, and hence are

no longer susceptible. Thus, where the heavy tail of the second epidemic

would be, lie the people who were in the height of the first epidemic peak
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Figure 6: Lexis surface, rumor epidemics (case 2). The bottom Cartesian plane
is age and time, and the wire-frame surface is the prevalence (number infected).
Note the younger age distribution of the second and third epidemics compared to
the first.

(and are therefore immune). Epidemics not only consume their own supply

of susceptibles, and thus burn out, but they also clip the magnitude of later

epidemics by converting young people to skeptics, who become immune for

life. In this way, each epidemic has a slightly younger age distribution than

the previous epidemic. Stable equilibrium is achieved when the recruitment

of new (young) susceptibles balances those becoming skeptical. Thus the

mean age and standard deviation are lower at equilibrium than during the

early epidemics (figures 4 and 5).

4 Model II: Autocatalytic Skepticism

The epidemic model of rumor transmission shows how rumors can become

durable, following a period of epidemics. This section develops a modified
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version of the model which has some advantages over the epidemic model.

4.1 Model description

The modified model is mostly the same as the first one, and only the differ-

ences will be touched upon. Suppose, unlike measles, infection with a rumor

does not decay with some constant rate ν. After all, if someone believes a

rumor in the first place, why should she spontaneously stop believing the

rumor? Suppose instead that the rumor is believed indefinitely until it is

challenged through contact with skeptics. Replace the constant ν with the

force of skepticism, ν(t), which is motivated as follows.

The parameter β represents a combination of population mixing and the

probability of successful rumor spread, conditional on contact between a

susceptible and a contagious individual. Call this probability of successful

rumor transmission p, such that

β = pβ̃.

In the model framework, β is already known, so with some value for p the

pure mixing parameter β̃ can be calculated.

Assume that the rate of mixing between susceptibles and contagious is

the same as between contagious and skeptical. This assumption is very

sensible unless the contagious can differentiate, ex-ante, between skeptics

and susceptibles, and seek out the latter, which seems far-fetched. The
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force of skepticism is then defined analogously to the force of infection λ(t):

ν(t) = γ
Z(t)
N

where:

γ = qβ̃.

Since β̃ represents population mixing, q represents the probability that a

contagious person will become a skeptic, conditional on contact with a skep-

tic. Thus, skeptics transmit their immunity to the contagious in the same

fashion that the contagious transmit the rumor to the susceptible. This is

autocatalytic because it is a self-reinforcing process where the force of skep-

ticism increases with the proportion of skeptics. I assumed p = 0.8, and for

q I test a case where those believing the rumor are fairly ready to change

their mind (q = 0.3), and a case where those believing the rumor are loathe

to be skeptical (q = 0.01). Note that a low value for q does not imply high

gullibility at the population level; it means that, conditional on falling for

the rumor in the first place, there is reluctance to be convinced the rumor

is false. All other equations and parameters of the model and procedures of

implementation remain unchanged.

4.2 Autocatalytic Model Results

When q is moderately large, that is, when there is some willingness among

rumor carriers to concede that the rumor is false, the autocatalytic model

behaves a lot like the previous result (figure 7). The solid curve of figure 7

(q = 0.3) would be about the same height as the curves in figure 3 if it
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Figure 7: Epidemic curve, autocatalytic-skeptic model. Solid curve: q = 0.3;
dotted curve: q = 0.01 (see text).

were plotted on the same axes. However, when the resistance to skeptics

is high (i.e., q is very low), the rumor has a huge initial epidemic of 30%

of the population, followed by rapid and cycleless convergence to a stable

equilibrium. Figures 8 and 9 are illustrative. The mean age and standard

deviation of age when q = 0.3 is approximately the same as in the epidemic

models. When there is convergence (q = 0.01), there is a much younger mean

age of infection and much smaller standard deviation of age of infection

than the other models. Figure 10 explains this younger and tighter age

distribution of infecteds: after the initial epidemic, only a narrow rib of

young people continue to believe the rumor. As they age, they become

skeptical, but are replaced by new adherents to the rumor. Figure 11 plots

the equilibrium age distribution from figure 10.

The autocatalytic case leading to quick convergence is worth examining
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Figure 8: Epidemic curve—mean age of infection, autocatalytic-skeptic model.
During outbreaks, the mean age of infection increases. Solid curve: q = 0.3; dotted
curve: q = 0.01 (see text).
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Figure 9: Epidemic curve—standard deviation of age of infection, autocatalytic-
skeptic model. Solid curve: q = 0.3; dotted curve: q = 0.01 (see text).
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more closely. The initial epidemic in this case is large, but that is not a mys-

tery: there is reluctance to become skeptical, so larger numbers believing the

rumor accumulate at any given time. And the age distribution of the initial

epidemic is not markedly different between figures 6 and 10. The reluctance

to give up belief in the rumor is not absolute—as the equilibrium distribu-

tion (figure 11) shows, almost nobody above age 20 believes the rumor. But

the reluctance to change one’s mind is large enough to provide convergence:

again, looking at figure 10, where the first epidemic peak would descend to

an inter-epidemic interval, the infected population instead declines slightly

and plateaus. Because more infected people means more rumor-spreading,

the young are recruited into the rumor almost as soon as they are capable

of understanding it. The result is a push-and-pull between rumor spreaders

and skeptics. The elevated number infected increase recruitment, but the

unlike in the first model, skeptics ensure that as time goes on, fewer-and-

fewer of the infected remain so, and thus the age tail in figure 11 is not

heavy (i.e. compared to the initial outbreak). In the end, there is a perfect

balance between the opposing forces.

Figures 6 and 10, by showing age and time and rumor prevalence, yield

insights that help understand the more simple epidemic curves of propor-

tion versus time. In this case, understanding the stable equilibrium of ru-

mor transmission without examining age would be shortsighted. It is the

constant supply of young susceptibles—provided by births—that drives the

equilibrium. Ironically, when skeptics discourage others from believing the

rumor, the rumor itself just becomes more entrenched in the population and

the mean age of infection shifts to a lower equilibrium value (more suscep-
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Figure 10: Lexis surface, rumor epidemic (q = 0.01). See text.

tibles are to be found at younger ages). Given an equilibrium prevalence

of around 5% of the population, the rumor is clearly alive and well despite

(indeed, perversely, because of) the efforts of the skeptics.

5 Conclusion

The ‘exploding Pop-rocks’ legend persisted for years, and indeed may still be

in circulation. As noted, the ‘cookie recipe’ legend is thought still to persist.

These are not a true accounts, but given enough time, stories, true or false,

seem to get a life of their own—think of the story of George Washington

confessing to cutting down the cherry tree. More generally, however, rumors

are no laughing matter. Rumors, even falsifiable ones, can force actors to

change their behavior. One example from business: Procter & Gamble, the

consumer-products company, conscious of its corporate reputation, removed
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Figure 11: Equilibrium distribution in age of figure 10.

the characteristic moon-and-stars device from its products because of rumors

it was a satanic symbol (Kapferer 1990). Rumors are closely related to

diffusion of new ideas, collective behavior phenomena such as bank panics

and riots, fads and fashions, drug use and crime (Wilson 1985), and other

important social phenomena.

Quantitative data collection in this area would be difficult at best. To

collect survey data, stratified by age, over many years, about knowledge

and belief of a specific rumor, would be a daunting task. Design of such a

study would be dogged by issues of accurately distinguishing belief in the

rumor from knowledge of it. There would be the contaminating effect of the

survey instrument itself (especially if the rumor is plausible). Not to mention

garden variety sample size problems if the rumor is more obscure. This is

why comparing alternative theories through modeling can be a profitable

exercise.
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The ‘data’, broadly construed, that the present models address is the

fact that some rumors are known to have staying power that cannot be ex-

plained by tenacious persistence of belief among individuals. The Pop-rocks

rumor has the look-and-feel of a rumor spread among youth; it is less likely a

topic of conversation at the office watercooler. But the rumor circulated long

enough that its original adherents were already grown up while it was still

in circulation. These observations are not sufficient to validate quantitative

aspects of the results, especially the simulated Lexis surfaces. Nonetheless,

they are social data that can be explained, and the model results are con-

gruent with these observations. Models such as the one in this paper allow

us to experiment in ways that are impossible in the real world. Being able

to borrow techniques from epidemic modeling guides realistic assumption-

making about population mixing, because mathematical epidemic models

have been validated many times with empirical data.

The first two rumors discussed in the introduction were specifically cho-

sen for their youthful character. Though the models are generalizable to any

age group, as implemented here they show rumor spread among the young.

As in other aspects of social life, age in these models acts as a proxy for

experience (Ryder 1965). The cookie recipe legend is an illustration of this,

because susceptibility to an electronic mail hoax seems to decline with the

amount of time someone has been using electronic mail.

Henry Rosovsky (1990: 251) describes a similar phenomenon in the arena

of management, specifically of running a university:

As a group, students have short memories, and the same issues
arise year after year as new student leaders reach the limelight.
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New leaders will, with considerable regularity, accuse adminis-
trators of not being responsive to their demands, even though a
clearly negative reply was given annually for the past decade.

Note that he draws a distinction, as does the present work, between indi-

vidual student memory and collective student memory. What is clearly at

work in the case described by Rosovsky is that new students—one fourth

of the undergraduate population—are recruited each year. These are like

newly-born ‘susceptibles’ in the current framework, and their grievance is

analogous to the rumor. What is important in the collective persistence of

the students seeking redress is not their individual tenacity, but the signifi-

cant annual turnover in the college population. The students’ (in)experience,

not their age, is what is at issue. Stock traders’ susceptibility to rumors in

the market is another example where number of years of experience is more

relevant than age.

As shown by the student grievances, the persistence of any idea can be

thought of like a rumor, whether or not the idea would be called a ‘ru-

mor’ in everyday parlance. Thus there are specific differences—but no clear

boundary—between the study of persistent rumors, as in the present work,

and the study of collective memory (e.g. as conceived by Halbwachs [1992]).

In the present work, I deal with beliefs that persist in a population despite

the fact that original carriers have ceased to believe. In the case of collec-

tive memory, older cohorts (generations) do not necessarily lose their belief.

But in the long-run, everyone is mortal, and collective memory phenom-

ena depend on the transmission of ideas from older ‘infecteds’ to younger

‘susceptibles’.

30



In summary, this paper motivated two simple age-structured nonlinear

models of urban legends, and the most rapid path to endemicity (persistence)

occurs when skeptics play an active role in trying to suppress a rumor, a

process I label ‘autocatalysis’. This is counterintuitive, since autocatalysis

of skepticism should suppress rumors. Rapid convergence to a stable equilib-

rium, without intervening epidemic cycles, occurs under autocatalysis when

those who believe a rumor are reluctant to give up their belief. Reluctance

to change one’s mind about a rumor can occur when there is no dispositive

evidence that the rumor is false, so rumors about distant events may be

more persistent than local rumors. When skeptics try to stop a rumor from

spreading further, the nature of the dynamics changes from epidemic cycles

to endemic transmission; skeptics actions are at cross-purposes to their in-

tentions. These results are only possible when age is included in the model,

because age and time combine to make the cohort concept meaningful, and it

is the influx of younger cohorts that is important here. Viewed another way,

the paradox of long-lived rumors is a micro-macro disconnect. Individuals

do not believe the rumor for a particularly long time, yet the rumor persists

in the population seemingly unabated for years. These models show that

in an age-stratified population, the paradox is much easier to understand.

That this micro-macro phenomenon can be explained by age effects sug-

gests strongly that age structure should be incorporated into mathematical

models whenever practical.
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