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ABSTRACT. This is an entry for The Encyclopedia of Statistics in Be-

havioral Science, to be published by Wiley in 2005.

1. HIERARCHICAL DATA

Data are often hierarchical. By this we mean that data contain information

about observation units of various levels, where the lower-level units are

nested within the higher-level units. Some examples may clarity this. In

repeated measurement or growth curve data we have several observations

in time on each of a number of different individuals. The time-points are

the lowest level and individuals are the higher level. In school effectiveness

studies we have observations on students (the lowest or first level), on the

schools in which these students are enrolled (the second level), and maybe

even on school districts these schools are in (a third level).

Once we have data on various levels, we have to decide at which level to an-

alyze. We can aggregate student variables to the school level or disaggregate

school variables to the student level. In the first case we loose potentially
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large amounts of useful information, because information about individual

students disappears from the analysis. In the second case we artificially

create dependencies in the data, because students in the same school by

definition get the same score on a disaggregated school variable.

Another alternative is to do a separate analysis for each higher-order unit

separately. For example, we do a student-level regression analysis for each

school separately. This, however, tends to introduce a very large number

of parameters. It also ignores the fact that it makes sense to assume the

different analyses will be related, because all schools are functioning within

the same education system.

Multilevel models combine information about variables of different levels

in a single model, without aggregating or disaggregating. It provides more

data reduction than a separate analysis for each higher-order unit, and it

models the dependency between lower-order units in a natural way. Multi-

level models originated in school effectiveness research, and the main text-

books discussing this class of techniques still have a strong emphasis on

educational applications [4, 13]. But hierarchical data occur in many dis-

ciplines, so there are now applications in the health sciences, in biology, in

sociology, and in econometrics.
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2. LINEAR MULTILEVEL MODEL

A linear multilevel model, in the two-level case, is a regression model speci-

fied in two stages, corresponding with the two levels. We start with separate

linear regression models for each higher order unit, specified as

(1a) y
j
= X j β j

+ ε j .

Higher order units (schools) are indexed byj , there arem of them. Unit

j containsn j observations (students), and thus the outcomesy
j

and the

error termsε j are vectors withn j elements. The predictors for unitj are

collected in ann j × p matrix X j .

In our model specification random variables, and random vectors, are un-

derlined. This shows clearly how our model differs from classical sepa-

rate linear regression models, in which the regression coefficientsβ j are

non-random. This means, in the standard frequentist interpretation, that if

we were to replicate our experiment then in the classical case all replica-

tions have the same regression coefficients, while in our model the random

regression coefficients would vary because they would be independent re-

alizations of the same random vectorβ
j
. The difference are even more

pronounced, because we also use a second level regression model, which

has the first order regression coefficients as outcomes. This uses a second
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set ofq regressors, at the second level. The sub-model is

(1b) β
j
= Z j γ + δ j ,

where theZ j are nowp× q andγ is a fixed set ofq regression coefficients

that all second order units have in common.

In our regression model we have not underlined the predictors inX j and

Z j , which means we think of them as fixed values. They are either fixed by

design, which is quite uncommon in social and behavioral sciences, or they

are fixed by the somewhat artificial device of conditioning on the values of

the predictors. In the last case the predictors are really random variables,

but we are only interested in what happens if these variables are set to their

observed values.

We can combine the specifications in (1a) and (1b) to obtain the linear

mixed model

(2) y
j
= X j Z j γ + X j δ j + ε j .

This model has both fixed regression coefficientsγ and random regression

coefficientsδ j . In most applications we suppose that both regressions have

an intercept, which means that allX j and all Z j have a column with ele-

ments equal to one.
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For the error termsδ j andδ j in the two parts of the regression model we

make the usual strong assumptions. Both have expectation zero, they are

uncorrelated with each other within the same second-level unit, they are un-

correlated between different second-level units. We also assume that first-

level disturbances are homoscedastic, and that both errors have the same

variance-covariance matrix in all second-level units. ThusV(ε j ) = σ 2I

and we writeV(δ j ) = �. This implies that

E(y j ) = X j Z j γ,(3a)

V(y j ) = X j �X′

j + σ 2I .(3b)

Thus we can also understand mixed linear models as heteroscedastic re-

gression models with a specific interactive structure for the expectations

and a special factor analysis structure for the covariance matrix of the dis-

turbances. Observations in the same two-level unit are correlated, and thus

we have correlations between students in the same school and between ob-

servations within the same individual at different time-points. We also see

the correlation is related to the similarity in first-order predictor values of

unitsi andk. Students with similar predictor values inX j will have a higher

correlation.
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To explain more precisely how then j × q design matricesU j = X j Z j for

the fixed effects usually look, we assume thatZ j has the form

Z j =



h′

j 0 · · · 0

0 h′

j · · · 0

...
...

. . .
...

0 0 · · · h′

j


,

whereh j is a vector withr predictor values for second-level unitj . Thus

q = pr , andβ
js

= h′

j γs + δ js. With this choice ofZ j , which is the usual

one in multilevel models, the matrixU j is of the form

U j =

[
x j 1h j | · · · | x j ph′

j

]
,

i.e. each columnsU is the product of a first-level predictor fromX and a

second-level predictor fromH . All p × r cross-level interactions get their

own column inU . If the X j have their first column equal to one, and the

h j have their first element equal to one, then it follows that the columns

of X j themselves and the (disaggregated) columns ofH are among thepq

interactions.

In the balanced case of the multilevel model all second-level unitsj have the

samen × p matrix of predictorsX. This happens, for example, in growth

curve models, in whichX contains the same fixed functions (orthogonal

polynomials, for instance) of time. In the balanced case we can collect our
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various observations and parameters in matrices, and writeY = BX′
+ E

andB = Z0 + 1 or Y = Z0X′
+ 1X′

+ E. Here the outcomesY are in a

matrix of orderm× n, individuals by time-points, and the fixed parameters

are in aq × p matrix 0. This shows, following Strenio et al. [17], how

multilevel ideas can be used to generalize the basic growth curve model

of Pothoff and Roy [12].

3. PARAMETER CONSTRAINTS

If p andq, the number of predictors at both levels, are at all large, then

obviously their productpq will be very large. Thus we will have a linear

model with a very large number of regression coefficients, and in addition

to the usual residual variance parameterσ 2 we will also have to estimate the

1
2 p(p+1) parameters in�. The problem of having too many parameters for

fast and stable estimation is compounded by the fact that the interactions in

U will generally be highly correlated, and that consequently the regression

problem is ill-conditioned. This is illustrated forcefully by the relatively

small examples in Kreft and de Leeuw [7].

The common procedure in multilevel analysis to deal with parameter glut

is the same as in other forms of regression analysis. Free parameters are

set equal to zero, or, equivalently, we use variable selection procedures.

Setting regression coefficients (values ofγ ) equal to zero is straightforward,
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because it simply means that cross-level interactions are eliminated from

the model. Nevertheless, the usual variable selection problem applies, if we

havepq variables to include or exclude, we can make 2pq possible model

choices and for largepq there is no optimal way to make such a choice.

[7] argue forcefully that either multilevel modelling should be limited to

situations with a small numbers of variables or it should only be applied in

areas in which there is sufficient scientific theory on the basis of which to

choose predictors.

Another aspect of variable selection is that we can set some of the random

coefficients inδ j to zero. Thus he corresponding predictor inX only has a

fixed effect, not a random effect. This means that particular row and column

of � corresponding with that predictor are set to zero. It is frequently useful

to use this strategy in a rather extreme way and set the random parts of all

regression coefficients, except the intercept, equal to zero. This leads to

random intercept models, which have far fewer parameters and are much

better conditioned. They are treated in detail in Longford [10].

If we set parts on� to zero, we must be careful. In Kreft et al. [6] it is shown

that requiring� to be diagonal, for instance, destroys the invariance of the

results under centering of the variables. Thus, in a model of this form, we

need meaningful zero points for the variables, and meaningful zero points
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are quite rare in social and behavioral applications. (crossref to centering

entry)

4. GENERALIZATIONS

The linear multilevel model can be, and has been, generalized in many dif-

ferent directions. It is based on many highly restrictive assumptions, and by

relaxing some or all of these assumptions we get various generalizations.

First, we can relax the interaction structure ofU j = X j Z j and look at the

multilevel model for generaln j × q design matricesU j . Thus we consider

more general models in which some of the predictors have fixed coefficients

and some of the predictors have random coefficients. We can write such

models, in the two-level case, simply as

y
j
= U j β j + X j δ j + ε j .

It is possible, in fact, that there is overlap in the two sets of predictorsU j

and X j , which means that regressions coefficients have both a fixed part

and a random part. Second, we can relax the homoscedasticity assumptions

V(ε j ) = σ 2I . We can introduceσ 2
j , so that the level of error variance is

different for different second-level units. Or we can allow for more general

parametric error structuresV(ε j ) = 6 j (θ), for example by allowing auto-

correlation between errors at different time point with the same individual.
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Third, it is comparatively straightforward to generalize the model to more

than two levels. The notation can become somewhat tedious, but when

all the necessary substitutions have been made we still have a linear mixed

model with nested random effects, and the estimation and data analysis pro-

ceed in the same way as in the two-level model.

Fourth, the device of modelling parameter vectors as random is strongly

reminiscent of the Bayesian approach to statistics. The main difference is

that in our approach to multilevel analysis we still have the fixed parame-

tersγ, σ 2 and� that must be estimated. In a fully Bayesian approach one

would replace these fixed parameters by random variables with some prior

distribution and one can then compute the posterior distribution of the pa-

rameters vectors, which are now all random effects. The Bayesian approach

to multilevel modeling (or hierarchical linear modeling) has been explored

in many recent publications, especially since the powerful Markov Chain

Monte Carlo tools became available.

Fifth, we can drop the assumption of linearity and consider nonlinear multi-

level models or generalized linear multilevel models. Both are discussed in

detail in the basic treatises of Raudenbush and Bryk [13] and Goldstein [4],

but discussing them here would take us to far astray. The same is true for

models with multivariate outcomes, in which the elements of the vectory j
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are themselves vectors, or even matrices. A recent application of multilevel

models in this context is analysis of fMRI data [2].

And finally, we can move multilevel analysis from the regression context to

the more general framework of latent variable modeling. This leads to mul-

tilevel factor analysis and to various multilevel structural equation models.

A very complete treatment of current research in that field is in Skrondal

and Rabe-Hesketh [16].

5. ESTIMATION

There is a voluminous literature on estimating multilevel models, or, more

generally, mixed linear models [15]. Most methods are based on assuming

normality of the random effects and then using maximum likelihood esti-

mation. The likelihood function depends on the regression coefficients for

the fixed variables and the variances and covariances of the random effects.

Itis easily minimized, for instance, by alternating minimization overγ for

fixed σ 2 and�, and then minimization overσ 2 and� for fixed γ , until

convergence. This is sometimes known as IGLS, or Iterative Generalized

Least Squares [3]. It is also possible to treat the random coefficients as miss-

ing data and apply the EM algorithm [13], or to apply Newton’s method or

Fisher Scoring to optimize the likelihood [8, 9].
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There is more than one likelihood function we can use. In the early work

the likelihood of the observations was used. Thus is a function ofσ 2, � and

γ . The disadvantage of the FIML estimates obtained by maximizing this

full information likelihood function is that variance components tend to be

biased, in the same way, and for the same reason, why the maximum like-

lihood of the sample variance is biased. In the case of the sample variance,

we correct for the bias of the estimate by maximizing the likelihood of the

deviations of the sample mean. In the same way, we can study the likelihood

of a set of linear combinations of the observations, where the coefficients of

the linear combinations are chosen orthogonal to theX j . This means that

γ disappears from the residual or reduced likelihood, which is now only a

function of the variance and covariance components. The resulting REML

estimates, originally due to Patterson and Thomson [11], can be computed

with small variations of the more classical maximum likelihood algorithms

(IGLS, EM, Scoring), because the two types of likelihood functions are

closely related.

Of course REML does not give an estimate of the fixed regression coeffi-

cients, because the residual likelihood does not depend onγ . This problem

is resolved by estimatingγ by generalized least squares, using the REML
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estimates of the variance components. Neither REML nor FIML gives esti-

mates of the random regression coefficients or of the random effects. Ran-

dom variables are not fixed parameters, and consequently they cannot be

estimated in the classical sense. What we can estimate is the conditional

expectation of the random effects given the data. These conditional expec-

tations can be estimated by plug-in estimates using the REML or FIML

estimates of the fixed parameters. They are also known as thebest linear

unbiased predictorsor BLUP’s [14].

There is a large number of software packages designed specifically for lin-

ear multilevel models, although most of them by now also incorporate the

generalizations we have discussed in the previous section. The two most

popular special purpose packages are HLM, used in Raudenbush and Bryk

[13], and MLWin, used in Goldstein [4]. Many of the standard statistical

packages, such as SAS, SPSS, Stata, and R now also have multilevel exten-

sions written in their interpreted matrix languages.

6. SCHOOL EFFECTIVENESSEXAMPLE

We use school examination data previously analyzed with multilevel meth-

ods by Goldstein et al. [5]. Data are collected on 4,059 students in 65

schools in Inner London. For each student we have a normalized exam

score (normexam) as the outcome variable. Student-level predictors are
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gender (coded as a dummygenderM ) and standardized London Read-

ing Test score (standlrt ). The single school-level predictors we use

is school gender (mixed, boys, or girls school, abbreviated asschgend ).

This is a categorical variable, which we code using a boyschool-dummy and

a girlschool-dummy.

Our first model is a simple random intercept model, with a single variance

component. Only the intercept is random, all other regression coefficients

are fixed. The model is

normexam i j = α j + standlrt i j β1 + gender i j β2 + εi j ,

α j = schgendboys j γ1 + schgendgirls j γ2 + δ j

We compare this with the model without a random coefficient

normexam i j = α j + standlrt i j β1 + gender i j β2 + εi j ,

α j = schgendboys j γ1 + schgendgirls j γ2

REML estimation of both models gives the followign table of estimates,

with standard errors in parentheses. This is a small example, but it illus-

trates some basic points. The intra-class correlationρ is only 0.132 in this

case, but the fact that it is nonzero has important consequences. We see

that if the random coefficient model then the standard errors of the regres-

sion coefficient from the fixed model are far too small. In fact, in the fixed
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source Random Model Fixed Model

intercept -0.00 (0.056) -0.03 (0.025)

standlrt 0.56 (0.012) 0.56 (0.017)

genderM -0.17 (0.034) -0.17 (0.034)

schgenboys 0.18 (0.113) 0.18 (0.043)

schgengirls 0.16 (0.089) 0.17 (0.033)

ω2 0.086 –

σ 2 0.563 0.635

ρ 0.132 –

model the schoolvariables schgenboys and schgengirls are highly signif-

icant, while they are not even significant on the 5% level in the random

model. We also see that the estimate ofσ 2 is higher in the fixed model,

which is not surprising because the random model allows for an additional

parameter to model the variation. Another important point is that the actual

values of the regression coefficients in the fixed and random model are very

close. Again, this is not that surprising, because after all in REML the fixed

coefficients are estimated with least squares methods as well.
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7. GROWTH CURVE EXAMPLE

We illustrate repeated measure examples with a small dataset taken from

the classical paper by Pothoff and Roy [12]. Distances between pituitary

gland and pterygomaxillary fissure were measured using x-rays inn = 27

children (16 males and 11 females) atm = 4 time points, at ages 8, 10, 12,

and 14. Data can be collected in an × m matrix Y. We also use am × p

matrix X of the first p = 2 orthogonal polynomials on them time-points.

The first class of models we consider isY = B X′
+ E with B a n ×

p matrix of regression coefficients, one for each subject, and withE the

n × m matrix of disturbances. We suppose the rows ofE are independent,

identically distributed centered normal vectors, with dispersion6. Observe

that the model here tells us the growth curves are straight lines, not that the

deviations from the average growth curves are on a straight line.

Within this class of models we can specify various submodels. The most

common one supposes that6 = σ 2I . Using the orthogonality of the poly-

nomials in X, we find that in this case the regression coefficients are es-

timated simply byB̂ = Y X. But many other specifications are possible.

We can, on the one hand, require6 to be a scalar, diagonal, or free ma-

trix. And we can, on the other hand, require the regression coefficients to

be all the same, the same for all boys and the same for all girls, or free (all
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different). These are all fixed regression models. The minimum deviances

(minus two times the maximized likelihood) are shown in the first three

rows of Table 1. In some combinations there are too many parameters. As

in other linear models this means the likelihood is unbounded above and the

maximum likelihood estimate does not exist [1].

B equal B gender B free

6 scalar 307(3) 280(5) 91(55)

6 diagonal 305(6) 279(8) −∞(58)

6 free 233(12) 221(14) −∞(64)

random 240(6) 229(8) −∞(58)

TABLE 1. Mixed Model Fit

We show the results for the simplest case, with the regression coefficients

“free” and the dispersion matrix “scalar”. The estimated growth curves are

in Figure 1. Boys are solid lines, girls are dashed. The estimatedσ 2 is 0.85.

We also give the results for the “gender” regression coefficients and the

“free” dispersion matrix. The two regression lines are in Figure 2. The

regression line for boys is both higher and steeper than the one for girls.

There is much less room in this model to incorporate the variation in the

data using the regression coefficients, and thus we expect the estimate of

the residual variance to be larger. In Table 2 we give the variances and
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FIGURE 1. Growth Curves for the Free/Scalar Model

correlations from the estimated6. The estimated correlations between the

errors are clearly substantial.

8 10 12 14

Correlations 1.00

0.54 1.00

0.65 0.56 1.00

0.52 0.72 0.73 1.00

Variances 5.12 3.93 5.98 4.62

TABLE 2. 6 from Gender/Free Model



FROM
JA

N’S
DESK

FROM
JA

N’S
DESK

LINEAR MULTILEVEL MODELS 19

8 9 10 11 12 13 14

21
22

23
24

25
26

27

age

di
st

an
ce

FIGURE 2. Growth Curves for the Gender/Free Model

The general problem with fixed effects models in this context is clear from

both the figures and the tables. To make models realistic we need a lot of

parameters, but if there are many parameters we cannot expect the estimates

to be very good. In fact in some cases we have unbounded likelihoods and

the estimates we look for do not even exist. Also, it is difficult to make

sense of so many parameters at the same time, as Figure 1 shows.

Next consider random coefficient models of the formY = BX′
+ E, where

the rows ofB are uncorrelated with each other and with all ofE. By writing

B = B + 1 with B = E(B) we see that we have a mixed linear model of
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the formY = B X′
+1X′

+ E. Use� for the dispersion of the rows of1. It

seems that we have made our problems actually worse by introducing more

parameters. But allowing random variation in the regression coefficients

makes the restrictive models for the fixed part more sensible. We fit the

“equal” and “gender” versions for the regression coefficientsB, together

with the “scalar” version of6, leaving� “free”.

Deviances for the random coefficient model are shown in the last row of

Table 1. We see a good fit, with a relatively small number of parameters. To

get growth curves for the individuals we compute the BLUP, or conditional

expectation,E(B|Y), which turns out to be

E(B|Y) = B̃[I − �(� + σ 2I )−1
] + B̂�(� + σ 2I )−1,

whereB̃ is the mixed model estimate and̂B = Y X is the least squares esti-

mate portrayed in Figure 1. Using the “gender” restriction on the regression

coefficients the conditional expectations are plotted in Figure 3.

We see they provide a compromise solution, that shrinks the ordinary least

squares estimates in the direction of the “gender” mixed model estimates.

We more clearly see the variation of the growth curves for the two genders

around the mean gender curve. The estimatedσ 2 for this model is 1.72.



FROM
JA

N’S
DESK

FROM
JA

N’S
DESK

LINEAR MULTILEVEL MODELS 21

8 9 10 11 12 13 14

18
20

22
24

26
28

30
32

age

di
st

an
ce

FIGURE 3. Growth Curves for the Mixed Gender Model
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