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SYYYSSSTTTEEEMMMSSS OOOFFF BEEENNNEEEVVVOOOLLLEEENNNTTT UTTTIIILLLIIITTTYYY FUUUNNNCCCTTTIIIOOONNNSSS

THEODORE C. BERGSTROM
University of California at Santa Barbara

Abstract

This paper studies systems of utility functions in which each per-
son’s utility depends on his or her own consumption as well as on
the utilities of others. We consider the question of when a system
of interdependent utility functions induces unique utility func-
tions over allocations and identifies the class of transformations
on interdependent utility functions that are equivalent in the
sense of inducing the same preferences over allocations. We show
that well-behaved systems of this kind can be studied by means of
the theory of dominant-diagonal matrices and that the theory of
dominant-diagonal matrices with finitely many elements extends
in a satisfactory way to denumerable matrices. The theory of denu-
merable dominant diagonal matrices allows an elegant analysis of
systems of intergenerational benevolence. We also revisit and extend
the theory of two-sided altruism as formulated by Kimball and by
Hori and Kanaya.

1. Introduction

Imagine a society in which people gain pleasure not only from their own
consumption of commodities, but also from observing the happiness of
others. In such a society, if Persons A, B, and C care about each other’s
happiness, then in order to determine how happy Person A is, one would
have to know how happy B and C are. But the happiness of B and of C will
depend in part on the happiness of Person A. If utility functions are to be
used to represent happiness in this society, these functions must consti-
tute a system of simultaneous equations in which the utility of each indi-
vidual depends not only on his or her own private consumption, but also
on the utility of others. For analysis of economic or political decision
making, knowledge of individual preferences over allocations of commod-
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ities across society is likely to be more directly useful than knowledge of
individual preferences over allocations of happiness. Therefore, if we begin
with knowledge about people’s willingness to trade their own consump-
tion for the happiness of others, it is useful to be able to disentangle webs
of interdependent utilities to determine each individual’s preferences over
alternative allocations. In this paper, we show conditions under which
interdependent benevolent utility functions uniquely induce well-behaved
independent utility functions over consumption allocations.

2. Interdependent Utility Functions

We formalize the notion of a system of interdependent utility functions as
follows. Let S be the set of all individuals in the society, let Ci be the
consumption set of individual i ~which is to be interpreted as the set of
consumption bundles that i could conceivably consume! and let C be the
Cartesian product 3i[SCi . An element c [ C is called an allocation. Sup-
pose that each individual j ’s apparent happiness is measured by a real
number Vj and that preferences of any individual i depend on i ’s own
consumption as well as on the apparent happiness of other persons in the
society. For each i [ S, let S;i be the set of all persons in S other than i
and let V;i be a vector of real numbers representing the apparent hap-
piness of each person in S;i .

Let us assume that each individual i has a private subutility function
ui : Ci r ℜ and an interdependent utility function Fi : ℜ6S6 r ℜ such that i ’s
preferences over i ’s own consumption and the apparent happiness of
others are represented by

Fi ~ui ~ci !,V;i !. ~1!

To complete the theory, we must postulate an explicit relationship between
an individual’s utility Ui and his or her apparent happiness Vi . In this
paper we study the simplest nontrivial theory of this kind. We assume that
perceived happinesses Vj accurately mirror preferences so that for all i,
V;i 5 U;i .

1 Then for any allocation of consumption it must be that
utilities satisfy the equation

Ui 5 Fi ~ui ~ci !,U;i !. ~2!

We are interested in whether a system of interdependent preferences
determined by private subutility functions ui ~{! and interdependent util-
ity functions Fi ~{,{! determines a corresponding system of independent

1Several interesting alternative theories come to mind. We could introduce a dynamic theory
in which at any time t, each individual i ’s Vi ~t! is equal to i ’s utility Ui ~t 2 1! in the previous
period. We might alternatively have an expected utility theory with asymmetric information
about the happiness of others, in which each individual’s perception of another’s “happi-
ness” is an estimator.
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utility functions Gi : C r ℜ representing preferences over allocations for
each i. Given independent utility functions Gi ~c! for each i [ S, it is
convenient to define a vector-valued function G : C r ℜ 6S 6 such that the
ith component of G ~c! is Gi ~c! and to define G;i ~c! to be the vector
consisting of Gj~c! for all j [ S;i . With this notation, we can state what it
means for a system of interdependent utility functions to induce an equiv-
alent system of independent utility functions over allocations.

DEFINITION 1: A system of private subutility functions ui : Ci r ℜ and inter-
dependent utility functions Fi : ℜ 3 S will be said to induce a system of
independent utility functions Gi : C r ℜ over allocations if for all allocations
c [ C and for all individuals i [ S,

Gi ~c! 5 Fi ~ui ~ci !,G;i ~c!!

We focus our discussion by asking three questions about the relation
between interdependent utility functions and induced preferences over
allocations.

QUESTION 1: When can a system of interdependent utility functions of the form
described in equation (2) be disentangled to induce exactly one system of indepen-
dent utility functions over allocations?

QUESTION 2: Given that a system of interdependent utility functions described
by equation (2) induces independent utility functions Gi : C r ℜ for each i [ S,
when is it true that each Gi can be written as

Gi ~c! 5 Gi ~ui ~ci !,u;i ~c;i !!, ~3!

where u;i ~c;i ! is the vector whose components are the private subutility functions
uj~cj ! for j Þ i and where Gi is a nondecreasing function of uj for all j [ S ?

It is useful to define normal benevolence in such a way that Questions 1
and 2 can be expressed simply by asking “When is a system of interdepen-
dent utilities normally benevolent?''

DEFINITION 2: A system of interdependent utilities with private subutility func-
tions ui ~ci ! and interdependent utility functions Ui 5 Fi ~ui ~ci !,U;i ! is nor-
mally benevolent if it induces a unique system of independent utility functions
Gi : Ci r ℜ for i [ S such that Gi ~c! 5 Gi ~ui ~ci !,u;i ~c;i !!, where each Gi

is a monotone increasing function of each of the uj ’s.

Although in a theory of interdependent utility functions individuals
must necessarily make interpersonal comparisons of utility, the theory
proposed here remains ordinalist in the sense that the same system of
ordinal preferences over allocations can be represented by more than one
system of interdependent utility functions—so long as these functions are
related to each other by an appropriate class of transformations. Of course
when utility functions are interdependent, we cannot expect preferences
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over allocations to remain unaltered if we simply rescale the utility func-
tion of one individual without making corresponding adjustments in the
way that the rescaled utility function enters the interdependent utility
functions of those who care about the happiness of the person with rescaled
utility. The following definition will be useful:

DEFINITION 3: A system of interdependent utility functions with private subutility
functions ui for each i and interdependent utility functions Fi ~ui ~ci !,V;i ! is
said to be equivalent to another system of interdependent utility functions
defined by private subutility functions Iui ~ci ! for each i and by interdependent
utility functions EFi ~ Iui ~ci !,V;i ! if both systems induce the same preferences over
allocations for all i.

QUESTION 3: When are two different systems of interdependent utility functions
equivalent?

2.1 A Two-Person Example

We can take an instructive first pass at Questions 1–3 by looking at the
case of two consumers, Romeo and Juliet.2 Romeo and Juliet each con-
sume a single commodity, spaghetti. By staring deeply into one anothers’
eyes, each can determine the other’s happiness. Each finds happiness
from consuming spaghetti and from observing the other’s happiness. Their
interdependent utility functions take the additively separable form:

UR 5 FR~uR~cR!,UJ ! 5 uR~cR! 1 aUJ ~4!

UJ 5 FJ ~uJ ~cJ !,UR ! 5 uJ ~cJ ! 1 bUR , ~5!

where cR and cJ are, respectively, Romeo’s and Juliet’s consumption of
spaghetti and where a and b are positive constants.

If ab Þ 1, one can eliminate UR and UJ from the right-hand sides of
equations ~4! and ~5! and solve uniquely for utility functions GR~uR~cR!,uJ ~cJ !!
and GJ ~uR~cR!,uJ ~cJ !! that are defined on allocations. In particular,

UR 5 GR~uR~cR !,uJ ~cJ !! 5 S 1

1 2 ab
DuR~cR ! 1 S a

1 2 ab
DuJ ~cJ ! ~6!

UJ 5 GJ ~uR~cR !,uJ ~cJ !! 5 S 1

1 2 ab
DuJ ~cJ ! 1 S b

1 2 ab
DuR~cR !. ~7!

For this example, the answer to our earlier Question 1 is immediate
from equations ~6! and ~7!. The system of interdependent utility functions
~4! and ~5! induces a unique system of independent utility functions given
by equations ~6! and ~7! over allocations if and only if ab Þ 1.

2This case is also treated in Bergstrom ~1989!.
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The answer to Question 2 for this example is also immediate from
equations~6! and ~7!, which show that GR and GJ are both nondecreasing
functions of uR and uJ if and only if a . 0, b . 0, and ab , 1.

If a . 0, b . 0, and ab . 1, the functions GR and GJ are seen to be
monotone decreasing in their arguments. At first glance, this result seems
puzzling because if uR~{! and uJ ~{! are increasing functions of cR and cJ ,
this would imply that in the independent utility functions over allocations
expressed by equations ~6! and ~7!, both Romeo and Juliet prefer less
spaghetti to more. The apparent paradox is resolved by the observation
that if the interdependence of their utilities is so strong that ab . 1, then
whenever Romeo and Juliet disagree about allocations of spaghetti it is
because each wants the other to take the larger portion. Where ab , 1,
both persons can have independent preferences in which they prefer
more spaghetti to less if and only if uR ~{! and uJ ~{! are decreasing functions
of cR and cJ . In this case, although he would prefer more spaghetti to less
when holding Juliet’s spaghetti consumption constant, Romeo would prefer
less spaghetti to more for himself if Juliet’s utility must be held constant
during the experiment, because the only way to hold Juliet’s utility con-
stant while increasing Romeo’s spaghetti consumption is to reduce Juliet’s
spaghetti consumption by so much as to make Romeo less happy.

Suppose that the private subutility functions for Romeo and Juliet are
recalibrated to take on new values,

IuR~cR ! 5 dRuR~cR ! and IuJ ~cJ ! 5 dJ uJ ~cJ !, ~8!

respectively, where dR . 0 and dJ . 0. With the recalibrated private
subutility functions we can maintain the original preferences over alloca-
tions only if we adjust the responses of each person’s utility to the other’s
recalibrated utility so as to take into account the change in units of
measurement. Specifically, let

Ia 5
dR

dJ

a and Db 5
dJ

dR

b ~9!

and define adjusted interdependent utility functions EFR~{,{! and EFJ ~{,{! so
that:

EFR~ IuR~cR!,Uj ! 5 IuR~cR! 1 aUJ ~10!

EFJ ~ IuJ ~cJ !,UR! 5 IuJ ~cJ ! 1 DbUR. ~11!

The interdependent utility functions ~10! and ~11! induce indepen-
dent utility functions over allocations EGR~{,{! and EGJ ~{,{!, where

EGR~ IuR~cR !, IuJ ~cJ !! 5 S 1

1 2 Ia DbD IuR~cR ! 1 S Ia

1 2 Ia DbD IuJ ~cJ ! ~12!
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EGJ ~ IuR~cR !, IuJ ~cJ !! 5 S 1

1 2 Ia DbD IuJ ~cJ ! 1 S Db

1 2 Ia DbD IuR~cR !. ~13!

Substituting from equations ~8! and ~9! into equations ~12! and ~13!
and noticing that ab 5 Ia Db, we find that the latter two equations are
equivalent to

EGR~ IuR~cR !, IuJ ~cJ !! 5 dRGR~uR~cR !,uJ ~cJ !! ~14!

EGJ ~ IuR~cR !, IuJ ~cJ !! 5 dJ GJ ~uR~cR !,uJ ~cJ !.!. ~15!

Since the induced independent utility functions EGR~{,{! and EGJ ~{,{!
are monotone transformations of the utility functions GR~{,{! and GJ ~{,{!,
it follows that the two interdependent systems of utility functions are
equivalent.

3. Benevolent Interaction with Dominant Diagonals

In the example of Romeo and Juliet, we solve a pair of simultaneous
equations to find the unique independent system of utility functions induced
by the system of interdependent utility functions ~4! and ~5!. More gen-
erally, we will show that if preferences are benevolent, but not too intensely
benevolent, induced independent utility functions can be found by invert-
ing a dominant diagonal matrix.

Interdependent preferences are likely to be particularly strong between
family members. Moreover, intrafamilial utility interdependence often has
an interesting special structure. For example, suppose that parents care
about the happiness of their children and children care about the hap-
piness of their parents. Since the happiness of each generation depends
in part on that of its predecessor and in part on that of its successor, the
generations are indirectly linked far into the distant future and the distant
past. In order to treat intergenerational preferences in an elegant and
convenient way, it is useful to deal with a doubly infinite sequence of
generations—where we consider ancestors running back to an infinite
past and descendants running forward to an infinite future. Even though
we may believe that the true model is one with a long but finite past and
a long but finite future, approximation by an infinite horizon model is
attractive. This procedure allows us to state crisp results that exclude the
complicated but inessential details that arise if each succeeding genera-
tion is a little closer to the end of the world and a little further from the
beginning of the world.

Approximation of models with distant finite horizons by infinite-
horizon models is only appropriate if consumption differences in the
sufficiently distant future and past have arbitrarily small influence on
preferences between two time paths of consumption. Dominant diagonal
matrices with a denumerable infinity of rows and columns are shown to
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be a useful mathematical tool for analysis of systems of benevolent utility
functions extending to the distant past and distant future. Fortunately it
turns out that the powerful and well-known theory of dominant-diagonal
matrices with finitely many entries extends cleanly to denumerable dom-
inant diagonal matrices.

3.1 Additively Separable Interdependent Utility Functions

We begin by considering additively separable systems of interdependent
utility functions. These utility functions can be written as follows:

Ui 5 Fi ~ui ~ci !,V;i ! 5 ui ~ci ! 1 (
jÞi

aij Vj , ~16!

where aij ≥ 0 for all i and j. For our subsequent discussion it is useful to
define the following vector-valued functions.

DEFINITION 4: Define the function u : Cr ℜ6S 6 so that u ~c! is the vector whose ith
element is ui ~ci ! for each i [ S. Define the function F : ℜ 6S 6 3 ℜ 6S 6 so that
F ~u ~c!,V;i ! is the vector whose ith element is Fi ~ui ~ci !,V;i ! for each i [ S.

Where we identify the utility vectors U with the vectors of apparent
happiness V, this system of interdependent utility functions is described by
the matrix equation

U 5 F ~u ~c!,U ! 5 u ~c! 1 AU. ~17!

When ~I 2 A!21 exists, the system ~17! induces an independent system of
utility functions represented by the matrix equation

U 5 ~I 2 A!21u ~c!. ~18!

Therefore the system ~16! is normally benevolent if and only if the matrix
~I 2 A!21 exists and is nonnegative in every element.

3.2 Dominant Diagonal Matrices, Finite and Infinite

The theory of finite-dimensional dominant diagonal matrices is a familiar
tool for economists.3 A matrix that is of the form I 2 A where A . 0 is
dominant diagonal if its row sums are all positive or if it can be postmulti-
plied by a diagonal matrix to produce a matrix with positive row sums. If
I 2 A is a finite-dimensional dominant diagonal matrix, then it turns out
that ~I 2 A!21 exists and is nonnegative in every entry.

To deal with intergenerational models, we need to extend this result,
insofar as possible, to denumerably infinite dominant diagonal matrices.
The notation of linear algebra and its operations extends in the obvious
way to denumerably infinite matrices and vectors. Though many of the

3See McKenzie ~1959! or Gale ~1960!, pp. 294–301!.
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fundamental results of finite dimensional linear algebra carry over to this
environment, there are some nasty surprises. Among these surprises are
the fact that matrix multiplication is not generally associative and the fact
that a matrix may have more than one inverse.4 Fortunately, denumerable
dominant diagonal matrices are much better behaved than denumerable
matrices in general.

For our analysis, a vector x has a denumerable infinity of components,
xi , where the index i runs from 2` to `. A matrix M has components Mij

where i and j run from 2` to `. Matrix multiplication is defined in exact
analogy to the case of finite matrices, with the elements of the product
being the appropriate sums of an infinite series. A matrix is D is said to be
a diagonal matrix if the only nonzero elements of D are the diagonal
elements Dii . A matrix M is said to be bounded if there exists some real
number b such that 6Mij 6 ≤ b for all i and j. Obviously, every finite matrix
is bounded, but a denumerable matrix might not be. ~For example, the
denumerable matrix in which Mij 5 i for all positive integers i and j is not
bounded.!

DEFINITION 5: A denumerable matrix I 2 A such that A ≥ 0 is said to be
dominant diagonal if there exists a bounded diagonal matrix D ≥ 0 such that
the infimum of the row sums of the matrix ~I 2 A!D is positive.

From elementary matrix calculations it can be seen that an equivalent
definition of a denumerable dominant diagonal matrix is as follows:

Remark 1: A denumerable matrix I 2 A such that A ≥ 0 is dominant
diagonal if and only if there exists a bounded vector y . 0 such that
~I 2 A!y . . 0.

Evidently a matrix M is dominant diagonal if each row sum of M is
positive. Although this condition is sufficient, it is not necessary. For
example, consider the two-by-two matrix

M 5 S 1 2 2
32

2 3
12 1 D.

Although the row sums of M are not all positive, there exists a diagonal
matrix D such that the row sums of MD are positive. For example, let
D11 5 1 and D22 5 102. Then

MD 5 S 1 2 2
32

2 3
12 1 DS1 0

0 2
12D5S 1 2 4

32

2 3
12 2

12 D
has positive row sums and therefore M must be a dominant diagonal
matrix.

4For a good exposition of this theory, see Kemeny, Snell, and Knapp ~1966!.
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Although a denumerable dominant diagonal matrix in general has
more than one inverse, it has only one bounded inverse matrix. Though it
is possible to define utility functions of the form U 5 Bu where B is
unbounded, the preference relations they induce are peculiar. The issues
surrounding unbounded utility representations are treated by Koopmans
~1972!. Indeed, if B is unbounded, the use of a model with infinite hori-
zons as as an approximation to a finite horizon model becomes untena-
ble.

Our principal mathematical result concerning dominant diagonal matri-
ces is the following lemma, which is proved in the Appendix.5

LEMMA 1: Let I 2 A be a finite or denumerable matrix such that A ≥ 0. Then
I 2 A has a unique bounded inverse matrix B ≥ 0 if and only if I 2 A is dominant
diagonal. This inverse matrix is B 5 (t50

` At .

3.3 Regular, Normally Benevolent Preferences

Let us define preferences over allocations to be regular if they can be
represented by a utility function that takes a finite value for every constant
allocation ~ . . . , c, c , . . . !. Clearly, preferences that can be represented by a
utility function of the form U 5 Bu are regular if and only if B is bounded.
As a consequence of Lemma 1 we have the following result.

PROPOSITION 1: If A ≥ 0 and if I 2 A is dominant diagonal, then exactly one
set of regular preferences over allocations is induced by the interdependent utility
system U 5 F ~u ~c!,U ! 5 u ~c! 1 AU.

The following proposition, which follows directly from Lemma 1, is an
answer to our earlier Questions 1 and 2 when utility functions are addi-
tively separable.

PROPOSITION 2: A finite or denumerably infinite system of interrelated utility
functions of the form Ui 5 ui ~ci ! 1 (jÞi aij Uj with aij ≥ 0 for all i and j is
normally benevolent if I 2 A is a dominant diagonal matrix where A is the matrix
whose ijth entry is aij .

3.4 Nonadditive Interdependent Utilities

The results of Proposition 2 extend to weakly separable utility functions
that are continuously differentiable but not necessarily additively separable.

PROPOSITION 3: Consider a system of interdependent utility functions described
by the equations Ui 5 Fi ~ui ,U;i ! for all individuals i. Let A~u1~c1!, . . . ,un~cn!! be
the matrix of partial derivatives whose ijth element is the derivative of Fi with
respect to Uj . If I 2 A~u1~c1!, . . . ,ui ~ci !, . . . ! is dominant diagonal, then the system

5The proof is a straightforward extension of a standard proof of this proposition for finite
matrices.
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of utility functions is normally benevolent in an open neighborhood of ~c1, . . . , ci , . . . !.
Moreover, if I 2 A~u1~c1!, . . . ,ui ~ci !, . . . ! is dominant diagonal at all allocations,
then preferences are normally benevolent everywhere.

The first assertion of Proposition 3 is immediate from the implicit
function theorem. The second assertion follows from the Gale–Nikaido
theorem on the existence of global inverses for nonlinear functions on
convex sets ~Nikaido 1968!. The conditions we impose on the linear func-
tion imply that the Jacobian of the vector-valued function U 2 F ~u,U !,
treated as a function of the vector of utilities U, will be a P-matrix and
hence the Gale–Nikaido theorem can be applied.

4. Equivalent Systems of Utility Functions

Consider two regular, normally benevolent systems of interdependent util-
ity functions where the first system is described by private subutility func-
tions ui ~ci ! for each i and by interdependent utility functions for each i of
the form

Fi ~ui ,U;i ! 5 ui ~ci ! 1 (
jÞi

aij Uj , ~19!

and where the second system is described by private subutility functions
Iui ~ci ! for each i and by interdependent utility functions of the form

EFi ~ Iui ,U;i ! 5 Iui ~ci ! 1 (
jÞi
Iaij Uj . ~20!

Let us define functions u ~{! and Iu ~{! so that u ~c! and Iu ~c! are, respec-
tively, the vectors whose ith components are ui ~ci ! and Iui ~ci !, and let us
also define the vector-valued functions F ~{,{! and EF ~{,{! so that the ith
component of F ~u,U ! is Fi ~ui ,U ! and the ith component of EF ~ Iu,U ! is
EFi ~ Iui ,U !. Then we can express the systems of equations ~19! and ~20!,

respectively, by the matrix expressions

F ~u ~c!,U ! 5 u ~c! 1 AU ~21!

and

EF ~ Iu ~c!,U ! 5 Iu ~c! 1 DAU, ~22!

where the ijth entries of the matrices A and DA are, respectively, aij and Iaij .
The following proposition establishes conditions under which two

systems of interdependent utilities represent the same preferences over
allocations.

PROPOSITION 4: Consider two systems of regular, normally benevolent inter-
dependent utilities which are described by private subutility functions ui ~ci ! and
Iui ~ci !, respectively, for each i and by interdependent utility functions F ~u ~c!,U ! 5
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u ~c! 1 AU and EF ~ Iu ~c!,U ! 5 Iu ~c! 1 DAU. These systems are equivalent if and only
if there is a diagonal matrix D with strictly positive diagonals such that DA 5
DAD21 and Iu 5 Du 1 Db for some vector of constants Db.

Proof: The systems of interdependent utility functions given by ~21! and
~22! are equivalent if and only if they induce the same system of
independent preferences over allocations. The independent utility
functions over allocations induced by these two systems are given,
respectively, by the matrix equations

G ~c! 5 ~I 2 A!21u ~c! ~23!

and

EG ~c! 5 ~I 2 DA!21u ~c! ~24!

A standard result of consumer theory ~see, e.g., Debreu 1960! is
that if two different additively separable functions represent the same
preferences, they must be affine transformations of each other. There-
fore the two systems are equivalent if and only if for each i there are
constants di . 0 and bi such that EGi ~ci ! 5 di Gi ~ci ! 1 bi . These condi-
tions can be expressed simultaneously for all i in terms of matrices as
EG ~c! 5 DG ~c! 1 b, or equivalently as

G ~c! 5 D21 EG ~c! 2 D21b, ~25!

where D is the diagonal matrix for which Dii 5 di and where b is the
vector whose ith entry is bi . From equation ~23! it follows that

G ~c! 5 u ~c! 1 AG ~c!. ~26!

If we substitute the expression in equation ~25! for G ~c! on both sides
of equation ~26! and then premultiply both sides of the resulting
equation by D and rearrange terms, we find that

EG ~c! 5 Du ~c! 1 ~I 2 DAD21 !b 1 DAD21 EG ~c!. ~27!

But we also know, as a consequence of equation ~24!, that

EG ~c! 5 Iu ~c! 1 DA EG ~c!. ~28!

From equations ~27! and ~28! we must conclude that Iu ~c! 5 Du ~c! 1
~I 2 DAD21 !b and that DA 5 DAD21. n

As a consequence of Proposition 4, standard results from linear alge-
bra can establish several properties that must be shared by the matrices A
and DA 5 DAD21 if the two systems of interdependent utility functions
described by equations ~21! and ~22! are equivalent.

COROLLARY 1: Consider two systems of regular, normally benevolent interdepen-
dent utilities which are described by private subutility functions ui ~ci ! and Iui ~ci !,
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respectively, for each i and by interdependent utility functions F ~u ~c!,U ! 5 u ~c! 1
AU and EF ~ Iu ~c!,U ! 5 Iu ~c! 1 DAU. If these systems are equivalent, then

• For all i and j, the sign of the ijth entry of DA is the same as the sign of the
ijth entry of A.

• The determinant of DA is the same as the determinant of A.

• The eigenvalues of DA are the same as the eigenvalues of A.

• The matrix I 2 DA is dominant diagonal if and only if the matrix I 2 A is
dominant diagonal.

5. Two-Sided Intergenerational Altruism

An overlapping generations model in which each generation cares about
its own consumption and about the utility of the next generation is a
simple example of a system of interrelated utility functions. In this model,
preferences are assumed to be stationary across generations and the utility
function of the tth generation is assumed to be

Ut 5 u ~ct ! 1 bUt11, ~29!

where 0 , b , 1 ~see, for example, Barro 1974!. It is well known that this
system of interdependent utility functions induces independent utility
functions for generation t which take the form

Gt ~c! 5 u ~ct ! 1 (
s51

`

bsu ~ct1s!. ~30!

A more complicated and interesting structure arises if each genera-
tion cares not only about its own consumption and the utility of its suc-
cessor, but each generation also cares about the utility of its parent
generation. Kimball ~1987! gave this preference structure the name “two-
sided altruism.” This problem, which perplexed early researchers, has a
beautiful solution, which was discovered independently by Kimball and by
Hori and Kanaya ~1989!. Kimball and Hori and Kanaya exploited the
special structure of the two-sided altruism problem by posing the map-
ping from interdependent utility functions to independent utilities over
allocations as a solution to a system of stationary difference equations.

This paper offers an alternative method of solving the problem of
two-sided altruism, using the theory of dominant diagonal matrices. An
advantage of the matrix approach is that the qualitative results extend
directly to nonstationary cases and to utility interdependence among arbi-
trary sets of consumers.6 Additionally, this presentation attempts to clarify

6Hori ~1992! studied the case of stationary intergenerational utility interdependence that
extends for an arbitrary number of generations in either direction. For this general case, he
was not able to find the utility functions over allocations in explicit form, but he displays a
system of simultaneous equations that must be satisfied by the parameters of these utilities.
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the exposition and comment on some puzzling issues raised by the earlier
authors.

Suppose that preferences are additively separable and stationary over
time. The utility function of generation t is assumed to take the form

Ut 5 u ~ct ! 1 aUt21 1 bUt11. ~31!

The system of interrelated utilities represented in equation ~31! invites
alternative interpretations that may be at least as interesting as the inter-
generational model. For example, this model would apply directly to a
population of individuals living along a road, each of whom is concerned
about his own consumption and that of his immediate neighbors on
either side. Perhaps even more intriguing is to think of the two-sided
altruism as a simple model of memory and anticipation for a single per-
son. Thus equation ~31! could determine the time path of happiness for
an individual whose happiness at time t depends on what she consumes at
time t, on her remembered happiness from the previous period, and on
her anticipated happiness in the next period.7

Kimball ~1987! suggests a nice metaphor for the backward and for-
ward reflections of utility in the case of two-sided altruism, which he calls
a “Hall of Mirrors effect.” In the intergenerational interpretation, part of
a child’s happiness comes from observation of her parent’s happiness.
The parent’s happiness is in turn influenced both by the happiness of the
child and by the happiness of the grandparent, and so on, reflecting
across the generations. This metaphor is even more striking if we think
about the interpretation of two-sided altruism as a dynamic model of
individual happiness, incorporating memory and anticipation. A person’s
current sense of well-being is formed by reflections through corridors of
remembered pleasures and pains and of contemplated future delights and
torments. For the two-sided altruism model, where a 1 b , 1, although
current events bear intimations of the remote past and distant future,
these influences turn out to be damped and the dynamic path of utility is
well defined and stable.

Equation ~31! can be expressed as a matrix equation U 5 u 1 AU, or
equivalently by U 5 ~I 2 A!u, where U and u are vectors whose tth
components are Ut and ut ~ct !, respectively, and where A is a matrix with
values a everywhere on the first subdiagonal, b everywhere on the first
superdiagonal, and zeros everywhere else. The matrix I 2 A is dominant
diagonal if and only if a 1 b , 1 and, hence, according to Proposition 2
the system of interdependent utilities is normally benevolent if a 1 b ,
1. Since I 2 A is dominant diagonal, it has a unique bounded inverse
and we can therefore find the induced system of independent utility func-

7For a more satisfactory two-sided altruism model of memory and anticipation, it would be
useful to explicitly incorporate nonstationarity over time and to recognize the finiteness of
individual life. In addition to other differences, young people are different from old people
because they have a shorter past and a longer future.
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tions over allocations as U 5 ~I 2A!21u, where ~I 2A!21 is the unique bounded
inverse of the matrix I 2 A. Where Btj is the entry in the tth row and jth col-
umn of I 2 A, the preferences of individual t over allocations can then be
represented by the utility function Gt ~c! 5 (j52`

` Btj u ~cj !. In the Appendix,
we solve for the matrix B 5 ~I 2 A!21 and thus find an explicit expression
for the independent utility function Gt ~c!.

PROPOSITION 5: Let there be a denumerable infinity of consumers with inter-
dependent utility functions of the form

Ut 5 u ~ct ! 1 aUt21 1 bUt11 ~32!

for every generation t, with a ≥ 0 and b ≥ 0. This system is normally benevolent if
and only if a 1 b , 1. If a 1 b , 1, then the preferences of the tth generation over
allocations can be represented by a utility function of the form

Gt ~c! 5 (
j51

`

a ju ~ct2j ! 1 u ~ct ! 1 (
j51

`

b ju ~ct1j !, ~33!

where 0 , a , 1, 0 , b , 1, and where

a 5
1 2 #1 2 4ab

2b
and b 5

1 2 #1 2 4ab

2a
. ~34!

The preferences represented by these utility functions are the only regular preferences
over allocations that are consistent with the original system of interrelated utility
functions.

According to Proposition 5, in the case of two-sided altruism with
a 1 b , 1, each individual’s utility function over allocations is a weighted
sum of the private subutilities ui ~ci !, where an individual gives descen-
dants and ancestors weights that decrease exponentially as the relation
becomes more distant. These discount rates a and b are jointly deter-
mined by the parameters a and b of the interdependent utilities in expres-
sion ~32!. Lemma 2 shows that the mapping from the parameters a and b
to the discount rates a and b is one-to-one. Lemma 3 gives us useful
information about the way that the weights a and b in the interdependent
utilities determine the rates a and b at which the past and future are
discounted in the independent utility functions.

LEMMA 2: Consider the mapping F with domain X 5 $~a, b!6a ≥ 0, b ≥ 0,
a 1 b , 1%, and range Y 5 $~a, b!60 ≤ a , 1, 0 ≤ b , 1% such that

F ~a, b! 5 ~a~a, b!, b~a, b!!,

and where if a . 0 and b . 0,

a~a, b! 5
1 2 #1 2 4ab

2b
and b~a, b! 5

1 2 #1 2 4ab

2a
,

and where a~a,0! 5 a and b~0, b! 5 b.
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• The mapping F is a continuous bijection (one-to-one and onto) from the set
X onto the set Y.

• The inverse mapping is defined by F21~a, b! 5 ~a0~1 1 ab!,~b0~1 1
ab!!.

LEMMA 3: The mapping F ~a, b! 5 ~a~a, b!, b~a, b!! defined in Lemma 2 has
the following properties for all ~a, b! [ X.

•
a~a, b!

b~a, b!
5

a

b

• The partial derivatives of a~a, b! and b~a, b! with respect to a and b are
positive for all positive a and b such that a 1 b , 1.

From Lemma 3, we see that the ratio of discount rates assigned to
consumption of past generations and future generations in the indepen-
dent utility functions is the same as the ratio of the weights a and b.
Perhaps more surprisingly, we also see that the rate at which the current
generation values the consumption of future generations is an increasing
function not only of the weight b that individuals attach to the utility of
their children, but also of the weight a that individuals attach to the utility
of their parents.

The next lemma shows that the matrix I 2 A in the two-sided altruism
model can be decomposed into the product of a matrix with zeroes every-
where above the diagonal times another matrix with zeroes everywhere
below the diagonal. This fact makes it easy to determine the inverse ~I 2
A!21 and also enables us to decompose the forward-looking and backward-
looking sides of two-sided altruism in an informative way.

LEMMA 4: Let I 2 A 5 ~I 2 aJ 21 2 bJ !, where J 21 is the matrix with 1’s on
the first subdiagonal and 0’s everywhere else, and where J is the matrix with 1’s on
its first superdiagonal and 0’s everywhere else, and where a . 0, b . 0, and
a 1 b , 1. Let a 5 a~a, b! and b 5 b~a, b! as defined by equations (34). Then

I 2 A 5 S 1

1 1 ab
D~I 2 aJ 21 !~I 2 bJ !. ~35!

6. Agreement and Conflict between Generations

In this section, we address two questions that arise in interpreting the
two-sided altruism model and related models of altruism across generations.

QUESTION 4: In models of benevolent interaction between generations (or between
present and future selves) what will different generations (or different selves) agree
about and what will they disagree about?

If we interpret the two-sided altruism model as a spatial model of
interaction between neighbors located on a line, there is no special reason
to distinguish between persons located to one’s left and persons located to
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one’s right. But if we interpret two-sided altruism as a model of inter-
action between neighbors in time rather than in space, there may be
important reasons to treat the past differently from the future. This leads
to our next question.

QUESTION 5: If we believe that time is irreversible, that consumption in the past
cannot be altered by current decisions, and that one’s dead ancestors are not
conscious of our current actions, how should we build these views into our modeling
of interdependent utilities across generations?

6.1 Forward and Backward Consistency

Strotz ~1955! posed the question of intertemporal consistency of choice as
follows.

An individual is imagined to choose a plan of consumption for a future
period of time so as to maximize the utility of the plan as evaluated at
the present moment. . . . If he is free to reconsider his plan at later
dates, will he abide by it or disobey it—even though his original expecta-
tions of future desires and means of consumption are verified?

This question applies with equal force to intertemporal planning for
an individual and to intergenerational allocation for a benevolently linked
family. This problem is well understood for the case of one-sided altruism,
where individuals care about the utility of their children, but not about
their parents. The one-sided altruism model also applies to individuals
whose current happiness depends on their current consumption and antici-
pated future happiness, but not on their recollected happiness.8 Koop-
mans ~1960! demonstrates that if preferences over allocations of consumption
across time ~or across generations! are continuous, additively separable
across time periods, and stationary over time, then they will induce time-
consistent choices in the sense proposed by Strotz if and only if they can
be represented by utility functions that take the form found in equation
~30! where consumption in future periods is discounted at a constant
per-period rate.

The older literature on time-consistency dealt only with “forward-
looking” consistency in models of one-sided altruism. When there is two-
sided altruism between generations, it becomes important to consider
questions related to “backward-looking” consistency between generations
as well. These issues were raised in an interesting debate between Buiter
and Carmichael ~1984! and Burbidge ~1983, 1984!, which was motivated
by the study of social security systems, the support for the elderly by their

8Several authors have followed Strotz in proposing and studying interesting models of
intertemporal decision making in the absence of consistent preferences. A good discussion
of this issue can be found in Blackorby et al. ~1973!.
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children, and the impact of national debt. Buiter and Carmichael pro-
posed a utility function for consumption across generations of the form

Ut 5 au ~ct21! 1 u ~ct ! 1 (
s51

`

b su ~cs!. ~36!

Burbidge ~1983! pointed out that with the Buiter-Carmichael utility
function, in order for each generation to agree with its parent generation
about allocations of resources that differ only with respect to consumption
of the parent’s generation and later generations, then it must be that a 5
10b. As Burbidge points out, this utility function has the odd characteris-
tic that individuals “reverse-discount” their parent’s consumption, giving
it more weight than they give to their own.

In contrast to Burbidge’s result, the two-sided altruism model induces
a utility function in which each generation’s utility function gives a lower
weight to its parent’s consumption than it does to its own, and also dis-
counts consumption of all preceding generations, using weights that decrease
exponentially with distance in time. The reason for this difference is that
the two-sided altruism model demands less agreement between parent
and child than Burbidge proposes. In both models, a parent and child
must agree about allocations that differ only in the consumption of the
child and her descendants. However, the two-sided altruism model, unlike
the Burbidge-Buiter-Carmichael model, allows the possibility that parent
and child may have conflicting views about how to divide consumption
between themselves.9

Let us define there to be forward-looking consistency of preferences between
adjacent generations if every generation t agrees with its successor in its
preference ranking of alternative consumption bundles that differ only in
the allocation of consumption among individuals belonging to generation
t 1 1 or later and backward-looking consistency of preferences between adjacent
generations if every generation t agrees with its predecessor in its prefer-
ence ranking of alternative consumption bundles that differ only in the
allocation of consumption among individuals belonging to generation t 2
1 or earlier. The next result, which is proved in the Appendix, is a simple
consequence of the form of the utility functions over allocations reported
in Proposition 5. This provides us with a partial answer to Question 4.

PROPOSITION 6: In the model of two-sided altruism where a 1 b , 1, there is
forward-looking and also backward-looking consistency of preferences between adja-
cent generations.10

9The question of which of the two models is closer to reality is an empirical one, though I
suspect that the evidence favors the view that children weight their parents’ consumption
less rather than more than their own.
10Although it is not possible, given current technology, to go back and rearrange the past,
it might interest historians to notice that with two-sided altruism of this type, all generations
agree with their predecessors about what they would have liked their history to have been. If
this were the case, there would be little work for historical revisionists.
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6.2 The Will of Dead Ancestors

Within the framework of the two-sided altruism model, Hori and Kanaya
~1989! propose two alternative ways of treating the interests of individuals
who are no longer alive.

One natural way would be to regard past generations’ utility levels as
givens. If the framework is that of non-overlapping generations where
each generation lives only one period, then Ut21 is given when the tth
generation makes the choice. ~p. 245!

Hori and Kanaya propose that if this is the viewpoint taken, then for the
two-sided altruism model specified by equation ~31!, the induced utility
function of interest takes the following form:11

Ut 5 H ~Ut21,t u ~c!!, ~37!

where t u ~c! denotes the vector of private subutilities ~ut ~ct !,ut11~ct11!, . . . !
for consumers of generation t or later. Hori and Kanaya find the unique
function of this form that is consistent with equation ~31! and they call
this function a mortality solution.

Hori and Kanaya ~1989! also consider an alternative view, which they
justify in the following way.

But this is not the only way to treat past generations. Each individual
might possibly be so obedient that he may care how his parents would
respond to his and his descendants’ future consumption plans if they
were alive. In this case, parents bodies die but their souls live eternally
and it is no longer possible to regard past generations’ utilities as
givens. ~p. 245!

Hori and Kanaya propose that the independent utility function G ~c!
specified in Proposition 5 is the appropriate utility function if this is the
way people regard the will of their dead ancestors. Hori and Kanaya call
this function an eternity solution.

We show in the Appendix that Hori and Kanaya’s mortality solution
can be found in a straightforward way using matrix methods and the
product decomposition found in Lemma 4. There are at least two notable
features of the mortality solution. First, we see that the domain of values
of parameters a and b for which there is a bounded mortality solution is
larger than that for which there are bounded utility functions defined
over the infinite past as well as the infinite future. This happens because
in order for the mortality solution to be bounded, we do not need
a~a, b! , 1, but only 0 ≤ b , 1. Second, we see that when a 1 b , 1, for
all s . 0, the weight b s that generation t puts on the subutility function
for generation t 1 s is the same as that which appears in the independent

11I have slightly changed the notation from that used by Hori and Kanaya to be consistent
with that used in the rest of this paper.
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utility function Gt in equation ~33! ~which Hori and Kanaya call the eter-
nity solution!. It may seem surprising that even holding the utility of the
preceding generation constant, the discount rate b~a, b! that generation t
uses to weigh the subutilities of one successor relative to another incor-
porates the full effect of the weight a that each generation attaches to the
utility of its predecessor. Stated in our notation, Hori and Kanaya’s mor-
tality solution is as follows.

PROPOSITION 7: In the two-sided altruism model, if a 1 b , 1 or if a 1 b .
1 and b . 102 then equation (31) describes the preferences of each generation t if
and only if preferences of each individual t can also be represented by the bounded
utility function

Ut 5 H ~Ut21,t c! 5 aUt21 1 u ~ct ! 1 (
s51

`

b su ~ct1s!, ~38!

where

a 5
1 2 #1 2 4ab

2b
and b 5

1 2 #1 2 4ab

2a
~39!

if a 1 b , 1 and where

a 5
1 1 #1 2 4ab

2b
and b 5

1 1 #1 2 4ab

2a
~40!

if a 1 b . 1 and b , 102.

Although Hori and Kanaya’s mortality solution is an interesting object
of study, their application of this notion is misleading. I have no quarrel
with their argument that if individuals take pleasure in doing the things
they believe their dead ancestors would want them to do, then the eternity
solution is appropriate even though the generations may not overlap. My
disagreement is with their interpretation of the mortality solution. If I
correctly interpret the passages quoted from Hori and Kanaya, they sug-
gest that the mortality solution would be the appropriate utility function
for individuals if generations did not overlap and if individuals believed
that things that happen in the future can have no influence on the
well-being of dead ancestors. In this case, I think that the two-sided altru-
ism model is simply the wrong specification of interdependent utility. I
suspect that the usual motivation for the two-sided altruism model is that
the lives of parents and their children overlap and each generation takes
pleasure in the other’s happiness. If, as Hori and Kanaya suggest, gener-
ation t 2 1 is already dead when generation t makes its choices and if the
younger generation believes that the dead will never know the difference
about what happens after they die, then it appears that the appropriate
model of intergenerational benevolence is Barro’s one-sided altruism model.
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Although I don’t believe that the Hori and Kanaya’s mortality solution
helps to answer the question: “How would the current generation evaluate
allocations between itself and future generations if generations don’t inter-
lap and the dead are not conscious?,” it does seem to me that this func-
tion helps to answer a different and quite interesting question. The mortality
solution, which, as Hori and Kanaya observe, “regard~s! past generations’
utility levels as givens,” is an analytical device that can be used analogously
to the way that demand theory uses “compensated demand curves.” The
mortality solution allows us to examine generation t’s preferences among
allocations that generation t 2 1 thinks are equally good. This can help us
to answer the question: “Given that each generation does care about the
well-being of its predecessor and of its successor as in the two-sided altru-
ism model, what things do they agree about and what do they disagree
about?” We see, for example, that consumption by generations earlier
than t does not enter the mortality function given by equation ~38! at all.
This does not mean that the happiness of generation t is unaffected by the
consumption of its predecessors, but rather that these effects are com-
pletely accounted for by the way in which they influence Ut21. There is no
disagreement between generations t and t 2 1 about which is the better of
two allocations of consumption among generation t 2 1 and its predeces-
sors so long as the two allocations being compared do not differ in their treatment
of generation t and its successors. This should be no surprise, given the the
result of Proposition 6 that in the two-sided altruism model there is
backward-looking consistency. On the other hand, we also see from equa-
tion ~38! that generation t is not not indifferent among all allocations that
generation t 2 1 regards as indifferent. In particular, we see from this
equation that if we define

Dt
1~c! 5 u ~ct ! 1 (

s51

`

b su ~ct1s!, ~41!

then among those allocations that generation t 2 1 views as indifferent,
generation t prefers those with higher values of Dt

1~c!. The fact that the
Dt

1~c! is a positively weighted sum of subutilities of generations born at
time t and later reflects the fact that generation t is more interested in the
future and less interested in the past than generation t 2 1.

Though Hori and Kanaya’s mortality solution expresses generation t’s
utility as a function of the utility of generation t 2 1 and of the consump-
tions of generation t and its successors, it is also possible to express the
utility of generation t as a function of the utility of generation t 2 1 and
of the consumptions of generation t 2 1 and its predecessors.12

In particular, we can show that if a 1 b , 1 then equation ~31!
describes the preferences of each generation t if and only if preferences of

12These results can be established with a proof that mirrors our proof of Proposition 7,
exchanging the roles played by the matrices, I 2 aJ 21 and I 2 bJ in the proof.
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each individual t can also be represented by the bounded utility function

Ut 5 bUt11 1 ut 1 (
s51

`

a su ~ct2s!, ~42!

where a 5 a~a, b! and b 5 b~a, b!. Taking a lagged version of equation ~42!
in which t is replaced by t 2 1 and rearranging terms, we find that

Ut 5
1

b
Ut21 2

1

b
Dt21

2 ~c!, ~43!

where we define

Dt21
2 ~c! 5 u ~ct21! 1 (

s51

`

a su ~ct212s!. ~44!

Since equation ~44! contains no terms involving the consumption of gen-
erations t and later, it must be that generations t and t 2 1 are in complete
agreement in their ranking of allocations that differ only in the consump-
tions of generation t and its successors. This is in accord with the result
that in the two-sided altruism model there is forward-looking consistency
of preferences between adjacent generations. We also see that for any two
allocations that generation t 2 1 thinks are equally good but that have
different values of Dt21

2 ~c!, generation t will prefer the one for which
Dt21

2 ~c! is smaller.
Thus, we have two formulations of utility, both holding constant the

utility of generation t 2 1, and one shows that generation t prefers higher
values of Dt

1 and the other shows that generation t prefers lower values of
Dt21

2 ~c!. To see the connection between these results, notice that equations
~33!, ~41!, and ~44! imply that

Ut21 5 Gt21~c! 5 Dt21
2 ~c! 1 bDt

1~c!. ~45!

From Equation ~45!, we see that one can hold the utility of generation
t 2 1 constant while increasing Dt

1~c! if and only if at the same time one
decreases Dt21

2 ~c!. Both equation ~38! and equation ~43! tell us that such a
change, while leaving generation t 2 1’s utility unaltered, will increase the
utility of generation t.

6.3 Impatient Philanthropists

There are many possible extensions of the model of two-sided altruism.
This is an example.

Suppose that each generation is concerned about the happiness of its
predecessors and of its successors but is more concerned about consump-
tion it can observe than about consumption it cannot observe. Although
each generation likes its parent generation and its successor generation to
be happy, it would prefer for them to obtain this happiness directly from
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their own consumption rather than indirectly from the happiness of more
distantly removed generations. If this is the case, generations t and t 1 1
will in general disagree about transfers of consumption from generation
t 1 1 to t 1 2, but will agree about changes in allocations that affect only
generations t 1 2 or later.

This story would be consistent with the following system of interdepen-
dent utility functions for each generation t:

Ut 5 k1 ut21~ct21! 1 ut ~ct ! 1 k2 ut11~ct11! 1 aUt21 1 bUt11. ~46!

Equivalently, we can describe this system by the matrix equation

U 5 k1 J 21u ~c! 1 u ~c! 1 k2 Ju ~c! 1 AU, ~47!

where J is the matrix with 1’s on the first superdiagonal and 0’s elsewhere
and J 21 is the matrix with 1’s on the first subdiagonal and 0’s elsewhere
and where A 5 aJ 21 1 bJ. Equation ~47! implies that the vector utility
function over allocations is given by the matrix equation

G ~c! 5 ~I 2 A!21~k1 J 21 1 I 1 k2 J !u ~c! ~48!

whenever ~I 2 A!21 exists. In Proposition 5 we found ~I 2 A!21 for the
case where a 1 b , 1. From this solution we find that generation t’s
independent utility function for allocations is given by

Gt ~c! 5 ~k1 a 1 1 1 k2 b!ut ~ct ! 1 (
j51

`

a j~k1 a21 1 1 1 k2 a!ut2j ~ct2j !

1 (
j51

`

b j~k1 b 1 1 1 k2 b21 !ut1j ~ct1j !, ~49!

where, as previously, a 5 a~a,b! and b 5 b~a, b!. One can divide this
expression through by the positive number k1a 1 1 1 k2 b to obtain an
equivalent and more neatly expressed representation of the same prefer-
ences. This is

Ut 5 k1
* (

j51

`

a ju ~ct2j ! 1 u ~ct ! 1 k2
* (

j51

`

b ju ~ct1j !, ~50!

where

k1
* 5

k1 b21 1 1 1 k2 b

k1 a 1 1 1 k2 b
and k2

*5
k1 a 1 1 1 k2 a21

k1 a 1 1 1 k2 b
. ~51!

Notice that with this system, the ratio of the weight that generation t
puts on the consumption utilities of generation t 1 1 and t 1 2 is

k2
*b

b2
5

k2
*

b
,
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while the weight that generation t 1 1 puts on its own consumption utility
relative to that of t 1 2 is 10b. Therefore, generation t will disagree with
generation t 1 1 about how to allocate consumption between t 1 1 and
later generations. On the other hand, it is readily seen that generations t
and t 1 1 will be in agreement about allocations that differ only in the
consumption bundles received by generations t 1 2 or later.

7. Uniform Good Will

Let us consider a group of n persons such that every individual cares
equally about the happiness of all other group members. The utility of
individual i is given by

Ui 5 Fi ~ui ~ci !,U;i ! 5 ui ~ci ! 1 a (
jÞi

Uj , ~52!

where a . 0. Where u ~c! is the column vector whose ith component is
ui ~c!, this system of interdependent utility functions can be expressed by
the matrix equation

MU 5 u ~c!, ~53!

where M is the n 3 n matrix with 1’s on the diagonal and 2a in every
off-diagonal entry. If M21 exists, then the vector of independent utility
functions over allocations is given by the matrix equation

G ~c! 5 M21u ~c!. ~54!

It is easy to check that the matrix M is dominant diagonal if and only if 0 ≤
~n 2 1! a , 1, in which case M21 is a positive multiple of a matrix with 1’s
on the diagonal and with each off-diagonal entry equal to a0~1 2 ~n 2 2!a!.
Then preferences of each individual i can be represented by the following
independent utility function over allocations:

Gi ~c! 5 ui ~ci ! 1 a~a, n! (
jÞi

uj ~cj !, ~55!

where

a 5 a~a, n! 5
a

1 2 ~n 2 2!a
. ~56!

Since a~a, n! is an increasing function of n, we see that if the size of the
group is increased and the coefficient a remains constant, then each
individual would place a larger utility weight a on the private subutility of
each other person relative to his own consumption.

An alternative hypothesis is that as group size increases, an individu-
al’s concern for the happiness of each member of the group is diluted.
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For example, suppose that a 5 k0~n 2 1! for some constant k , 1. Then
the system of interdependent utilities can be written as

Ui 5 Fi ~ui ~ci !,U;i ! 5 ui ~ci ! 1 k PU;i , ~57!

where PU;i is the mean of Uj over all j Þ i. In this case,

aS k

n 2 1
, nD 5 S 1

n 2 1
D1

k

1 2 kSn 2 2

n 2 1
D 2 . ~58!

Where n is large, the expression in equation ~58! is approximately

S 1

n 2 1
DS k

1 2 k
D.

Therefore, for large n the induced utility over allocations found in equa-
tion ~55! is approximately

Gi ~c! 5 ui ~ci ! 1
k

1 2 k
2 Su;i ~c!, ~59!

where Su;i ~c! is the mean of uj~cj ! over all j Þ i.

8. Conclusion

This paper examines systems of utility functions in which the utility func-
tions of two or more people simultaneously depend on each others’ util-
ities. In the cases studied, interdependent utility systems induce preferences
of each individual over allocations of goods among the interrelated popu-
lation. For the purposes of demand theory, it is the latter preferences that
are of the greatest interest because it is simpler to study how one buys
commodities for others than to study how one buys utility for others. On
the other hand, introspection and casual observation often seem to offer
stronger and more interesting hypotheses about the nature of interdepen-
dent utilities than they do about preferences over allocations. Hypotheses
about the nature of utility interdependence imply special structure for the
preference over allocations. The purpose of this paper has been to explain
the way in which this happens.

Appendix

Proof of Lemma 1: Let A be a nonnegative denumerable matrix and let
~I 2 A!D have positive row sums for some bounded diagonal matrix D.
This proof follows the proof for the finite-dimensional case, which
was presented by Gale ~1960!. The only extra ingredient needed here
that is not required for the finite-dimensional case is the bounded-
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ness of the matrix D. This is needed in order to show that limnr`~I 1
A 1 A2 1 . . . 1 An ! exists.

If I 2 A is dominant diagonal, then for some diagonal matrix D,
and some m . 0, ~I 2 A!D . mI. Let x * be the vector whose ith
component is the element Dii of D. Then it must be that Ax * ,, lx *

where l 5 1 2 m. By induction it follows that Anx * ,, lnx * .
For any integer n, define the matrix B~n! 5 ~I 1 A 1 A2 1 . . . 1

An !. Since the matrix A is nonnegative it must be that for all i and j,
Bij~n 1 1! ≥ Bij~n!. Furthermore, because Ax * ,, lx * , it follows that for
all n,

B~n!x * ≤ ~1 1 l 1 l2 1 . . . 1 ln !x * ,
1

1 2 l
x *.

But because x * .. 0 is a bounded vector and because B~n! ≥ 0 for all
n, it follows that the sequence Bij~n! is bounded. Since a bounded
monotonic sequence must converge to a limit, it follows than
limnr`Bij~n! 5 Bij exists and hence the matrix B 5 limnr`B~n! is
well defined. It is straightforward to verify that B ≥ 0 and B~I 2 A! 5
~I 2 A!B 5 I.

We also need to show that B is the only bounded inverse for ~I 2
A!. If B and B ' are both bounded inverses, then B~I 2 A! 5 B '~I 2
A! 5 ~I 2 A!B 5 ~I 2 A!B ' 5 I. Then ~I 2 A!~B 2 B ' ! 5 0. Since B and
B ' are, by assumption, bounded matrices, the matrix B 2 B ' also is
bounded. Therefore every column of B 2 B ' is a bounded vector.
Suppose that ~I 2 A!x 5 0 for a bounded vector, x. Where B~n! 5 ~I 1
A 1 A2 1 . . . 1 An !, 0 5 B~n!~I 2 A!x 5 ~I 2 An !x. From our argument
of the previous paragraph it follows that limnr`An 5 0. Therefore, if
x is a bounded vector it must be that x 5 0. From this it follows that
every column of B 2 B ' is a zero vector and hence that B 5 B ' .

The converse result that if ~I 2 A! has a nonnegative bounded
inverse, B, then I 2 A must be dominant diagonal can be shown as
follows. Let e be the column vector with 1’s in every element. Then let
y 5 Be be a bounded vector. Since all entries of B are nonnegative, it
must be that y ≥ 0. Since B is an inverse of I 2 A, it must be that ~I 2
A!y 5 e .. 0. From Remark 1 it follows that I 2 A is dominant
diagonal.13 n

Proof of Lemma 2: We first show that F maps X into Y. Since a 1 b , 1 for
~a, b! [ X, it must be that ab , a~1 2 a! and, hence, that

0 ≤ ~1 2 2a!2 5 1 2 4a~1 2 a! , 1 2 4ab.

13I am grateful to H. Hori for pointing out an error in my original proof of this result.
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Therefore it must be that 1 2 2a , #1 2 4ab and, hence, that

0 ≤ b~a, b! 5
1 2 #1 2 4ab

2a
, 1.

A symmetric argument shows that for ~a, b! [ X it must also be that
0 ≤ a~a, b! , 1. Thus F ~a, b! [ Y for all ~a, b! [ X.

Next we show that for any ~a, b! [ Y, there is one and only one
~a, b! in X such that ~a, b! 5 F ~a, b!. Calculation shows that if a 5
a~a, b! and b 5 b~a, b!, then

1 1 a b 5
1 2 #1 2 4ab

2ab
,

and furthermore that a 5 a0~1 1 ab! and b 5 b0~1 1 ab!.
Therefore the function F has a well-defined inverse and

F21~a, b! 5 S a

1 1 ab
,

b

1 1 ab
D. ~60!

Finally, we show that for for all ~a, b! in Y, F21~a, b! is in the set X.
From equation 60 we see that where ~a, b! 5 F21~a, b!, it must be that
a ≥ 0, b ≥ 0, and

a 1 b 5
a 1 b

1 1 ab
. ~61!

Subtracting the numerator from the denominator of the right-hand
side of equation 61, we find that 1 1 ab 2 ~a 1 b! 5 ~1 2 a!~1 2 b! ≥
0. Therefore it must be that a 1 b ≤ 1 and, hence, that ~a, b! [ X.

It remains to be shown that F is continuous. Obviously F is con-
tinuous at ~a, b! where a . 0 and b . 0. All that we need to show is
that for if 0 ≤ b , 1, limbr0 a~a, b! r a, and limar0 b~a, b! r b. This
follows from direct application of L’Hospital’s rule. n

Proof of Lemma 3: The first assertion is immediate from the definitions.
The second assertion can be proved by direct computation. For a . 0,
b . 0, and a 1 b , 1, it must be that 0 , a~a, b! , 1 and 0 , b~a, b! ,
1. Calculating the partial derivatives of a~a, b! with respect to its first
and second arguments and rearranging terms, we find that

a1~a, b! 5
1

%1 2 a~a, b!b~a, b!
. 0 ~62!

and

a2~a, b! 5
b~a, b!2

%1 2 a~a, b!b~a, b!
. 0. ~63!
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A symmetric argument shows that the partial derivatives b1~a, b! and
b2~a, b! are also positive. n

Proof of Lemma 4: Multiplying the terms on the right-hand side of equa-
tion ~35!, we have

I 1
a

1 1 ab
J 21 1

b

1 1 ab
J 5 I 1 aJ 21 1 bJ. ~64!

n

Proof of Proposition 5: From Lemma 2 it follows that b , 1 and a , 1 and
hence ~I 2 bJ ! and ~I 2 aJ 21 ! are dominant diagonal matrices.

The inverses of these matrices are seen to be

~I 2 aJ !21 5 I 1 (
t51

`

a t~ J 21 ! t and ~I 2 bJ !21 5 I 1 (
t51

`

b tJ t.

~65!

From equations ~35! and ~65!, it follows that

~I 2 A!21 5 ~1 1 ab!~I 2 bJ !21~I 2 aJ 21 !21 ~66!

5 ~1 1 ab!~I 1 (
t51

`

b t~ J 21 ! t !~I 1 (
t51

`

b tJ t !.

~67!

Multiplying the matrices that appear on the right-hand side of equa-
tion ~67!, we find that

~I 2 A!21 5
1 1 ab

1 2 ab
B, ~68!

where B is the matrix such that Bij 5 b j2i for j ≥ i and Bij 5 ai2j for
i ≥ j.14 Thus the independent utility functions induced by two-sided
altruism are represented by the vector equation

U 5
1 1 ab

1 2 ab
Bu. ~69!

14There are also some unbounded matrices B such that U 5 Bu is a solution to ~I 2 A!U 5
u. To see where these come from, recall that when we parameterized the system with a 5
a0~1 1 ab! and b 5 b0~1 1 ab!, we found that there was exactly one solution for ~a, b! such
that 0 ≤ a , 1 and 0 ≤ b , 1. But there is also a solution, ~a ', b ' ! where 0 ≤ a ' , 1 and 0 ≤
b ' , 1. The matrix ~I 2 aJ 21 2 bJ ! can also be factored into the expression ~I 2 a 'J 21 !~I 2
b 'J !. But when the inverse of this matrix is computed, it turns out to be unbounded.
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Therefore, preferences of any each individual t can be represented by
the utility function

Ut 5 S 1 1 ab

1 2 ab
DS(

j51

`

a jut2j ~ct2j ! 1 ut ~ct ! 1 (
j51

`

b jut1j ~ct1j !D. ~70!

Since 0 , a , 1 and 0 , b , 1, it must be that @~1 1 ab!0~1 2 ab!# .
0. Therefore the utility function in equation ~33! of Proposition 5 is a
monotonic transformation of that in equation ~70! and hence repre-
sents the same preferences. n

Proof of Proposition 6: If we fix consumption of each each generation i ≤
t at Sci and consider allocations that differ only in cs for s . t, we see
from Proposition 5 that preferences of generation t can be repre-
sented by a utility function of the form

EUt ~ct11, . . . , ct1s , . . . ! 5 C 1 (
s51

`

b su ~ct1s!, ~71!

where C 5 u ~ct ! 1 (s51
` a2su ~ct2s! and preferences of generation t 1 1

among such bundles can be represented by a utility function of the
form

EUt11~ct11, . . . , ct1s , . . . ! 5 C ' 1 (
s51

`

b s21u ~ct1s!, ~72!

where C '5 au ~ct ! 1 (s52
` a2su ~ct2s!. From their definitions, we see that

EUt11~ct11, . . . , ct1s , . . . ! 5 C ' 2 bC 1 b EUt ~ct11, . . . , ct1s . . . !. ~73!

Therefore the utility function ~72! is an increasing ~affine! transfor-
mation of the utility function ~71! and hence the two utility functions
must represent the same preferences. This establishes forward-looking
consistency between adjacent generations.

A symmetric argument proves backward-looking consistency between
adjacent generations. n

Proof of Proposition 7: From Lemma 4 it is immediate that ~I 2 A!U 5 u
if and only if

~I 2 aJ 21 !U 5 ~1 1 ab!~I 2 bJ !21u. ~74!

If 0 ≤ b , 1, then it is easily seen that ~I 2 bJ !21 exists and is
equal to the matrix I 1 (s51

` b sJ s which has 0’s below the diagonal, 1’s
on the diagonal, and entries b s on the sth superdiagonal. Therefore it
must be that

U 5 aJ 21 1 ~1 1 ab!SI 1 (
s51

`

b sJ sDu. ~75!
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Calculating the tth row from equation ~75!, we find that

Ut 5 aUt21 1 ut 1 (
s51

`

b sut1s . ~76!

It remains to be demonstrated that 0 ≤ b , 1 if and only if either
a 1 b , 1 or if a 1 b . 1 and b , 102. For the independent utility
functions found in equation ~5! to be bounded, it was necessary both
that a~a, b! , 1 and that b~a, b! , 1. Lemma 2 shows that 0 ≤ a~a, b! ,
1 and 0 ≤ b~a, b! , 1 if and only if a 1 b , 1. The current theorem
requires only that 0 ≤ b~a, b! , 1 and this admits some additional
solutions. In particular, the equation

I 2 aJ 21 2 bJ 5 ~1 1 ab!~I 2 aJ 21 !~I 2 bJ ! ~77!

has two solutions:

a 5
1 2 #1 2 4ab

2b
and b 5

1 2 #1 2 4ab

2b
~78!

or

a 5
1 1 #1 2 4ab

2b
and b 5

1 1 #1 2 4ab

2b
~79!

Calculation shows that where a and b solve equations ~40!, it must be
that ab . 1, which implies that either 0 ≤ a . 1 and 0 ≤ b . 1. There
are, however, some values of a and b for which a . 1 and 0 ≤ b , 1.
In particular, 0 ≤ b , 1 if and only if a 1 b . 1 and b , 102. n
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