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Abstract

Recent advances in causal inference have given rise to a general and easy-to-use
estimator for assessing the extent to which the effect of one variable on another is me-
diated by a third. This estimator, called Mediation Formula, is applicable to nonlinear
models with both discrete and continuous variables, and permits the evaluation of
path-specific effects with minimal assumptions regarding the data-generating process.
We demonstrate the use of the Mediation Formula in simple examples and illustrate
why parametric methods of analysis yield distorted results, even when parameters are
known precisely. We stress the importance of distinguishing between the necessary
and sufficient interpretations of “mediated-effect” and show how to estimate the two
components in nonlinear systems with continuous and categorical variables.

Keywords: Effect decomposition, direct and indirect effects, structural equation models,
percentage explained

1 Introduction

Consider a randomized clinical trial in which an intervention X shows a significant effect on
an outcome Y. A question that invariably comes to investigators’ mind is: How and why
does the intervention produce the change, or, more specifically, can the effect of X on Y
be attributed to a change in some intermediate variable Z standing between the two? The
reasons we are concerned with such questions are both scientific and practical. Scientifically,
mediation tells us “how nature work” and, practically, it enables us to predict behavior
under a rich variety of conditions and interventions. For example, an investigator interested
in preventing Y may wish to assess the extent to which Y could be prevented by changing
an intermediate variable, Z, standing between X and Y (MacKinnon, 2008, Ch. 2).

For the past few decades the analysis of mediation has been dominated by linear regression
paradigms, most notably the one advanced by Baron and Kenny (1986), which can be stated
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as follows: To test the contribution of a given mediator Z to the effect of X on Y, first
regress Y on X to get the total effect, and, then, assess the reduction in this effect when we
adjust for (or “condition on” or “control for”) Z.

The appeal of this scheme is demonstrated in Fig. 1(a) which shows a linear structural

X o Y
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Figure 1: (a) A single mediator Z contributing § x 7 to the overall effect. (b) Multiple
mediators, each contributing 3; x ;.

equation model governing the causal relationships between X, Y, and Z. If the total effect of
X on Y through both pathways is 7 = a + 37, by adjusting for Z, we sever the Z-mediated
path and the effect will be reduced to a. The difference between the two regression slopes
gives

S 1)

which is what we expect the z-mediated effect to be.

Alternatively, one can venture to estimate § and v independently of 7. This is done by
first estimating the regression slope of Z on X to get 3, then estimating the regression slope
of Y on Z controlling for X, which gives us v; multiplying the two slopes together gives us
the mediated effect 3. The scheme generalizes naturally to multi-path models, as shown
in Fig. 1(b) which would represent an opportunity to intervene on four mediating variables,
or any subset thereof. The difference between total effect 7 and the effect measured after
adjusting for mediator Z; gives the extent to which the indirect path through Z; contributes
to the overall effect, 7. Again, this can be estimated either by the difference-in-coefficients
or product-of-coefficients method.

The validity of these two methods depends of course on the assumption that the error
terms, €1, €2, and €3, are uncorrelated for, otherwise, some of the structural parameters «, 8
and v would not be estimable by regression methods. In randomized trials, where €; can be
identified with the randomization device, we are assured that ¢; is uncorrelated with e; and
€3 and, so, the regressional estimates of a and ( will be unbiased. However, randomization
does not remove correlations between €5 and €3 and, if such exist, adjusting for Z will create
spurious correlation between X and Y which will be added to 7 and would prevent the



proper estimate of . This follows from the fact that “controlling” or “adjusting” for Z in
the analysis (by including Z in the regression equation) does not physically disable the paths
going through 7, it merely matches samples with equal Z values, and thus induces spurious
correlations among other factors in the analysis. Still, regardless of whether the error terms
are independent, the difference-in-coefficients and product-of-coefficients methods always
yield the same result.?

This approach to mediation (often associated with Baron and Kenny) has two major
drawbacks. One (mentioned above) is its reliance on the untested assumption of uncorrelated
errors, and the second is its reliance on linearity and, in particular, on a property of linear
systems called “effect constancy” (or “no interaction”): The effect of one variable on another
is independent on the level at which we hold a third. This property does not extend to
nonlinear systems; the level at which we control Z would in general modify the effect of X
on Y. For example, if the output Y requires both X and Z to be present, then holding Z at
zero would disable the effect of X on Y, while holding Z at a high value would enable the
latter.

As a consequence, additions and multiplications are not self-evident in nonlinear systems.
It would not be appropriate, for example, to estimate the indirect effect by subtracting the
direct effect from the total — the relation between the three need not be additive. Nor will it
be appropriate to multiply the effect of X on Z by that of Z on Y (keeping X at some level)
— multiplicative compositions demand their justifications. Indeed, all attempts to define
mediation by generalizing the difference and product strategies to nonlinear system have
resulted in distorted and irreconcilable results (MacKinnon et al., 2007a,b; Pearl, 2010b).

This paper removes these nonlinear barriers and avails mediation analysis to a large
space of new applications, especially those involving categorical data and highly nonlinear
processes. The first limitation, the requirement of error independence (or “no unmeasured
confounders,” as it is often called) will remain intact, and should be kept in mind throughout
our discussion.? Our focus in the sequel will be on crossing the linear-to-nonlinear barrier,
using the same causal assumptions that support the standard linear analysis of Baron and
Kenny (1986).

2 Total, direct and indirect effects

Consider the nonlinear version of the mediation model, as depicted in Fig. 2. In the most

Tt is important to note that the equality 7 — o = (v expressed in (1) is a universal identity among
regressional coefficients of any three variables, and has nothing to do with causation or mediation. It
will continue to hold regardless of whether confounders are present, whether the structural parameters are
identifiable, whether the underlying model is linear or nonlinear and regardless of whether the arrows in the
model of Fig. 1(a) point in the right direction. Moreover, the equality will hold among the OLS estimates
of these parameters, regardless of sample size. Therefore, the failure of certain parameters in nonlinear
regression to obey similar equalities should not be construed as an indication of faulty standardization, as
suspected by MacKinnon et al. (2007a,b).

2We should mention here that the management of confounding has gone through a major development in
the past decade, in both linear and nonparametric models, and a complete set of techniques is now available
for neutralizing error correlations, whenever possible, both by covariate adjustment and through the use of
instrumental variables (Pearl, 2009). These techniques are applicable to the analysis of mediation.



Figure 2: A generic model depicting mediation through Z with no confounders.

general case, the corresponding structural equations would have the form:

xr = F1(€1)
2z = Fy(z, €) (2)
y = F3(x, z,€3)

where X, Y, Z are discrete or continuous random variables, I}, F», and F3 are arbitrary func-
tions, and €y, €9, €3 represent omitted factors which are assumed to be mutually independent
yet arbitrarily distributed. Since the functions Fi, F5, and F3 are unknown to investigators,
mediation analysis commences by first defining total, direct and indirect effects in terms of
those functions and, then, expressing them in terms of the available data, which we assume
is given in the form of random samples (x,y, z) drawn from the joint distribution P(z,y, z).

2.1 Total Effect

Among the three types of effects consider here, the easiest to define and estimate is the total
effect, which measures the change in Y produced by a unit change in X, say from X =0 to
X = 1. The status of Z need not be specified in this definition, since Z is allowed to track
the changes in X and, so, we have for the total effect:

Y(X = 1) — Y(X = 0) = Fg[l,Fg(l,Eg),Eg] — Fg[O,FQ(O,Eg),Eg]

At the population level, we will define the total effect T'E to be the expectation of the
difference above taken over €5 and €3, which (assuming independent errors) gives:

TE=E(Y|X=1)—EY|X =0). (3)

This difference is none other but the regression slope of Y on X, commonly estimated
by OLS. More generally, however, if we are interested in the total effect of a transition from
X =z to X =/, where z and 2’ are any two levels of X (say two dosage levels of a drug),
we write:

TE,w = E(Y|X =2/) — E(Y|X = 2). (4)

Clearly, in nonlinear systems, both the baseline X = x and the endpoint X = 2’ may play
a role in affecting the change of Y.



2.2 Direct Effects

The idea of estimating the direct effect of X on Y by controlling for Z is applicable to
nonlinear models as well since, assuming e, and €3 are independent, conditioning on Z
simulates the physical action of “fixing” or “setting” Z at a constant value, z, thus preventing
X from transmitting its change along the mediating path X — Z — Y. The resulting
estimator is called the “controlled direct effect” (Robins and Greenland, 1992; Pearl, 2001):

CDE=EY|X=1,2Z=2)—-EY|X=0,7=2) (5)

which is the regression slope of Y on X keeping Z constant at z.

However, the question arises: at what value should we set Z7 As remarked earlier,
different settings of Z would yield different results. For example, assume that X stands of
a drug taken to cure a disease Y. As a side effect, X also stimulates the secretion of an
enzyme Z that hastens the process through which the drug acts on the disease. If we fix
Z at a high level, the drug will appear highly efficacious, while if we fix Z at a low level,
the drug will have only a meager effect. The question remains therefore, at what value of
Z should we conduct our analysis if we wish to evaluate the direct effect of the drug on the
disease, unmediated by Z7

Moreover, by conditioning on (X = 1,7 = 0) and (X = 0,Z = 0) respectively, as in-
structed by Eq. (5), we are comparing different types of subjects. The former represents
subjects who end up with low Z despite taking the drug, while the latter represents subjects
who have low Z before taking the drug. Taking the difference in E(Y) in these two subpop-
ulations does not capture the idea of measuring the direct effect of X on Y while holding Z
constant for every individual.

For this reason, it is more meaningful to define

a notion of direct effect that does not require setting Z uniformly over the population,
but let it vary from individual to individual. This notion, denoted DE, ,/(Y') is defined as
the expected change in Y induced by changing X from z to 2’ while keeping all mediating
factors constant at whatever value they obtained before the transition from z to 2’ (Robins
and Greenland, 1992; Pearl, 2001).3 This definition of direct-effect invokes the phrase: “at
whatever value they obtained” which is counterfactual; there is no way to rerun history and
measure subjects response under conditions they have not actually experienced. Pearl (2001)
showed however that, for the confounding-free model of Fig. 2, the natural direct effect can
be estimated from population data and is given by:

DE,.(Y) =) [E(Y|2',2) — E(Y|z,2)|P(z]x). (6)
The intuition is simple, the natural direct effect is the weighted average of the controlled
direct effect, using the pre-intervention distribution P(z|z) as a weighing function. Equation
(6) can easily be estimated by a two-step regression, as will be shown in the sequel.

3Robins and Greenland (1992) called this notion of direct effect “Pure” while Pearl called it “Natural,”
denoted NDE, to be distinguished from the “controlled direct effect” (Eq. 5) which is specific to one level
of the mediator Z. We will delete the letter “N” from the acronyms of both the direct and indirect effect,
and use DE and I'F, respectively.



2.3 Indirect Effects

Remarkably, the counterfactual definition of the direct effect can be turned around and
provide an operational definition for the indirect effect—a concept shrouded in mystery and
controversy, because it is impossible, by controlling any of the variables in the model, to
selectively disable the direct link from X to Y so as to let X influence Y solely via indirect
paths.

The indirect effect, I E, of the transition from x to 2’ is defined as the expected change in Y’
affected by holding X constant, at X = x, and changing Z (for each individual) to whatever
value it would have attained had X been set to X = 2. Going through the counterfactual
algebra of this nested expression, Pearl (2001) showed that, for the confounding-free model
of Fig. 2, the indirect effect can also be reduced to an estimable expression, given by:

[E,(Y) =Y E(Y|z,2)[P(z]a) = P(z|z)]. (7)

The intuition here is quite different and unveils a nonlinear version of the product-of-
coefficients strategy. The term F(Y|z,z) plays the role of v in Fig. 1(a), for it captures
the effect of Z on Y for fixed z, and the difference P(z|z") — P(z|x) plays the role of /3, for it
captures the impact of the transition from x to 2’ on the probability of Z. We see that what
was a simple product operation in linear systems is here replaced by a composition operator
that involves summation over all values of Z.

Equation (7) provides a general formula for mediation effects; applicable to any nonlin-
ear system, any distribution, and any type of variables. Moreover, the formula is readily
estimable by regression. Owing to its generality and ubiquity, I have referred to this expres-
sion as the “Mediation Formula” (Pearl, 2009, 2010b).

Not surprising, owed to the nonlinear nature of the model, the relationship between the
total, direct and indirect effects is non-additive. Indeed, the total effect T E of a transition
has been shown to be the difference (not the sum) between the direct effect and the indirect
effect of the reverse transition. Formally,

TE:E,m’(Y) = DEm,m’(Y) - IE:E’,m(Y) (8)

In linear systems, where reversal of transitions amounts to negating the signs of their effects,
we have the standard additive formula

Since each term above is based on an independent operational definition, this equality con-
stitutes a formal justification for the additive formula used routinely in linear systems.

3 The Mediation Formula: A Simple Solution to a
Thorny Problem

This subsection demonstrates how the Mediation Formula of Eq. (7) can be applied in as-
sessing mediation effects in nonlinear models. We will use the standard mediation model of
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Fig. 2, where all error terms are assumed to be mutually independent, with the understand-
ing that adjustment for appropriate sets of covariates W may be necessary to achieve this
independence, that Z may represent a vector of variables, and that integrals should replace
summations when dealing with continuous variables (Imai et al., 2010).

The Mediation Formula represents the average increase in the outcome Y that the tran-
sition from X = x to X = 2’ is expected to produce absent any direct effect of X on Y.
Though based on solid causal principles, it embodies no causal assumption other than the
generic mediation structure of Fig. 2. When the outcome Y is binary (e.g., recovery, or
hiring) the ratio (1 — IE/TFE) represents the fraction of responding individuals who owe
their response to direct paths, while (1 — DE/TE) represents the fraction who owe their
response to Z-mediated paths.

3.1 Estimating mediation effects:

The Mediation Formula tells us that I E depends only on the conditional expectation of Y,
not on its distribution. It calls therefore for a two-step regression which, in principle, can
be performed nonparametrically. In the first step we regress Y on X and Z, and obtain the
estimate

9(x,z) = E(Y|z, 2) (10)

for every (z, z) cell. In the second step we fix x and regard g(z, z) as a function g,(z) of Z.
We now estimate the conditional expectation of g,(z), conditional on X = z’ and X = =,
respectively, and take the difference

1B, oY) = Ezix[g.(2)|2') — Ezpx[ga(2)]a]. (11)

Nonparametric estimation is not always practical. When Z consists of a vector of several
mediators, the dimensionality of the problem might prohibit the estimation of E(Y|z,z)
for every (x,z) cell, and the need arises to use parametric approximation. We can then
choose any convenient parametric form for E(Y|z,z) (e.g., linear, logit, probit), estimate
the parameters separately (e.g., by regression or maximum likelihood methods), insert the
parametric approximation into (7) and estimate its two conditional expectations (over z) to
get the mediated effect (VanderWeele, 2009).

3.2 The linear case

Let us examine what the Mediation Formula yields when applied to the linear version of our
model, shown in Fig. 1(a):

T = a9+ €1
z=by+ Bz + e (12)
Y =Co+ar+yz+ €3

with €1, €2, and €3 uncorrelated, zero-mean error terms and ag, by, ¢o the corresponding re-
gression intercepts. Computing the conditional expectation in (7) gives

E(Yl|z,z) =co+ax + vz



and yields

IE,»(Y) = (co+ ax+72)[P(z|2') — P(z|z)]

z
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where 7 is the slope of the total effect;
7= (E(Y[2) - E(Y]2))/(2' — 2) = a + B.

We thus obtained the standard expressions for indirect effects in linear systems, which can
be estimated either as a difference 7 — a of two regression coefficients (equation 15) or as a
product 3 of two regression coefficients (equation 14) (see MacKinnon et al., 2007b). These
two strategies do not generalize to nonlinear systems (Pearl, 2010a) as will be shown next.

3.3 Linear models with interaction

To understand the difficulty, assume that the correct model behind the data contains a
product term zz in the equation for y:

y=co+axr+yz+0rz+ €,

a nonlinear model explored by many researchers (Jo, 2008; Kraemer et al., 2008; MacKinnon,
2008). Further assume that we correctly account for this added term and, through elaborate
regression analysis, we obtain accurate estimates of all parameters in this model. It is still
not clear what combinations of parameters measure the direct and indirect effects of X on
Y, or, more specifically, how to assess the fraction of the total effect that is explained by
mediation and the fraction that is owed to mediation. In linear analysis, the former fraction
is captured by the product 8v/7 (Eq. 14), the latter by the difference (7 — ) /7 (Eq. 15) and
the two quantities coincide. In the presence of interaction, however, each fraction demands
a separate analysis, as dictated by the Mediation Formula.

To witness, substituting the nonlinear equation in (4), (6) and (7) and assuming x = 0
and 2’ = 1, yields the following decomposition:

DE = o+ byd

ITE = By

TE = a+ byd + (v +6)
=DE+IE+ 3§

We therefore conclude that the portion of output change for which mediation would be
sufficient is
I1E =)
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while the portion for which mediation would be necessary is
TE — DE = v+ 36

We note that, due to interaction, a direct effect can be sustained even when the parameter
« vanishes and, moreover, a total effect can be sustained even when both the direct and
indirect effects vanish. This illustrates that estimating parameters in isolation tells us little
about the effect of mediation and, more generally, mediation and moderation are intertwined
and cannot be assessed separately.

If the policy evaluated aims to prevent the outcome Y by ways of weakening the mediating
pathways, the target of analysis should be the difference TE — DFE, which measures the
highest prevention potential of any such policy. If, on the other hand, the policy aims to
prevent the outcome by weakening the direct pathway, the target of analysis should shift to
IE, for TE — I E measures the highest preventive potential of this type of policy.

3.4 The binary case

The main power of the Mediation Formula shines in studies involving categorical variables,
especially when we have no parametric model of the data generating process. To illustrate,
consider the case where all variables are binary, still allowing for arbitrary interactions and
arbitrary distributions of all processes. The low dimensionality of the binary case permits
both a nonparametric solution and an explicit demonstration of how mediation can be esti-
mated directly from the data. Generalizations to multi-valued variables are straightforward.

Assume that the model of Fig. 2 is valid and that the observed data is given by Table 1.
The factors E(Y|z,2) = g, and E(Z|x) = h,, needed for (6), (7), and (10), can be readily

Number
of Samples X | Z |Y | E(Y|r,2) = g2z | E(Z]7) = ha

M 0 0 0 n2 _

2 0 0 1 mitn: J00 n3+ny =h
3 0 1 0 N4 - ni1+ns+nsz+ny — 0
N4 0 1 [ 1 [ nstns 901

ns 1 0 0 ne _

Ne 1 0 1 n5+ne = 910 N7 ns B h
"7 1 1 0 ng  __ ns+tng+tnr+ng 1
ng 1 1 1 nr+ng — gll

Table 1: Computing the Mediation Formula for the model in Fig. 2, with X|Y, Z binary.

estimated as shown in the two right-most columns of Table 1 and, when substituted in (6),
(9), (7), yield

DE = (g10 — g00)(1 — ho) + (911 — go1)ho (16)
IE = (hy — ho)(go1 — goo) (17)
TE = giihi + g10(1 — k1) — [go1ho + goo(1 — ho)] (18)



We see that logistic or probit regression is not necessary; simple arithmetic operations suffice
to provide a general solution for any conceivable data set, regardless of the data-generating
process.

3.5 Numerical example

To anchor these formulas in a concrete example, let us assume that X = 1 stands for a
drug treatment, Y = 1 for recovery, and Z = 1 for the presence of a certain enzyme in a
patient’s blood which appears to be stimulated by the treatment. Assume further that the
data described in Tables 2 and 3 was obtained in a randomized clinical trial and that our
research question is whether Z mediates the action of X on Y, or is merely a catalyst that
accelerates the action of X on Y.

Treatment | Enzyme present | Percentage cured
X Z 9z = E(Y|z, 2)
YES YES g11 = 80%
YES NO g10 = 40%
NO YES go1 = 30%
NO NO goo = 20%
Table 2:

Treatment | Percentage with

X Z present
NO ho = 40%
YES hi = 75%

Table 3:

Substituting this data into Eqgs. (16)—(18) yields:

DE = (0.40 — 0.20)(1 — 0.40) + (0.80 — 0.30)0.40 = 0.32

IE = (0.75 — 0.40)(0.30 — 0.20) = 0.035

TE = 0.80 x 0.75 + 0.40 x 0.25 — (0.30 x 0.40 + 0.20 x 0.10) = 0.46
IE/TE =007 DE/TE =069 1—DE/TE =0.304

We conclude that 30.4% of those recovered owe their recovery to the capacity of the treatment
to stimulate the secretion of the enzyme, while only 7% of recoveries would be sustained by
enzyme stimulation alone. The enzyme seems to act more as a catalyst for the healing
process of X than having a healing action of its own. The policy implication of such a study
would be that efforts to substitute the drug with an alternative stimulant of the enzyme
are not likely to be effective, the drug evidently has a beneficial effect on recovery that is
independent of, though enhanced by enzyme stimulation.
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4 Relations to Other Approaches

In comparing these results to those produced by conventional mediation analyses we should
note that conventional methods do not define direct and indirect effects in a setting where the
underlying process is unknown. MacKinnon (2008, Ch. 11), for example, analyzes categorical
data using logistic and probit regressions and constructs effect measures using products and
differences of the parameters in those regressional forms. This strategy is not compatible
with the causal interpretation of effect measures, even when the parameters are precisely
known; I F and DE may be extremely complicated functions of those regression coefficients
(Pearl, 2010b). Fortunately, those coefficients need not be estimated at all; effect measures
can be estimated directly from the data, circumventing the parametric analysis altogether,
as shown in Eq. (16)—(18).

Attempts to extend the difference and product heuristics to nonparametric analysis have
encountered ambiguities that conventional analysis fails to resolve.

The product-of-coefficients heuristic advises us to multiply the unit effect of X on 7

Cs=FEZIX=1)—FEZX=0)=h —ho
by the unit effect of Z on Y given X,
Co=EY|X=2,Z2=1)-EY|X=2,2=0)= g1 — g0

but does not specify on what value we should condition X. Equation (17) resolves this
ambiguity by determining that C., should be conditioned on X = 0; only then would. the
product C3C, yield the correct mediation measure, I E.

The difference-in-coefficients heuristics instructs us to estimate the direct effect coefficient

Co=EY|X=1,Z=2)—EY|X=0,Z=2)=g1. — go-

and subtract it from the total effect, but does not specify on what value we should condition
Z. Equation (16) determines that the correct way of estimating C, would be to condition
on both Z = 0 and Z = 1 and take their weighted average, with hg = P(Z = 1|X = 0)
serving as the weighting function.

To summarize, the Mediation Formula dictates that, in calculating I E, we should con-
dition on both Z =1 and Z = 0 and average while, in calculating DFE, we should condition
on only one value, X = 0, and no average need be taken.

The difference and product heuristics are both legitimate, with each seeking a different
effect measure. The difference-in-coefficients heuristics, leading to T"E — DFE, seeks to mea-
sure the percentage of units for which mediation was necessary. The product-of-coefficients
heuristics on the other hand, leading to IE, seeks to estimate the percentage of units for
which mediation was sufficient. The former informs policies aiming to modify the direct
pathway while the latter informs those aiming to modify mediating pathways.

In addition to providing causally sound estimates for mediation effects, the Mediation
Formula also enables researchers to evaluate analytically the effectiveness of various para-
metric specifications relative to any assumed model. This type of analytical “sensitivity
analysis” has been used extensively in statistics for parameter estimation but could not be
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applied to mediation analysis, owing to the absence of an objective target quantity that
captures the notion of indirect effect in both linear and nonlinear systems, free of parametric
assumptions. The Mediation Formula of Eq. (7) explicates this target quantity formally, and
casts it in terms of estimable quantities. It has been used by Imai et al. (2010) to examine
the robustness of empirical findings to the possible existence of unmeasured confounders.
The derivation of the Mediation Formula was facilitated by taking seriously the graphical-
counterfactual-structural symbiosis spawned by the structural interpretation of counterfac-
tuals (Pearl, 2009, Ch. 7). In contrast, when the mediation problem is approached from an
strict potential-outcome viewpoint, void of structural guidance, counterintuitive definitions
ensue, carrying the label “principal strata” (Rubin, 2004, 2005), which are at variance with
common understanding of direct and indirect effects (VanderWeele, 2008; Joffe et al., 2007).
For example, the direct effect is definable only in units absent of indirect effects. This means
that a grandfather would be deemed to have no direct effect on his grandson’s behavior
in families where he has had some effect on the father. This precludes from the analysis
all typical families, in which a father and a grandfather have simultaneous, complementary
influences on children’s upbringing. In linear systems, to take an even sharper example, the
direct effect would be undefined whenever indirect paths exist from the cause to its effect.
The emergence of such paradoxical conclusions underscores the wisdom, if not necessity of
a symbiotic analysis, in which counterfactuals are governed by their structural definition.*

Conclusions

Traditional methods of mediation analysis have been limited to linear models or semi-linear
regression models, and have produced distorted estimates of “mediation effects” when applied
to nonlinear models, or models with categorical variables. This paper offers a causally sound
alternative that ensures bias-free estimates while making no assumption on the distributional
form of the underlying process.

We distinguished between proportion of response cases for which mediation was neces-
sary and those for which mediation would have been sufficient. Both measures play a role
in mediation analysis, and are given here a formal representation through the Mediation
Formula. This formula is estimable by simple regression and provides an objective measure
of the extent to which an effect is mediated through a given mediating path, independent
of the method chosen for estimating that effect. While the validity of the formulas rests on
the same assumptions that are required for standard linear analysis, their general appeal to
nonlinear systems, continuous and categorical variables, and arbitrary complex interactions
render them a powerful tool for the assessment of causal pathways in many of the health
related sciences.

4Such symbiosis is now standard in epidemiology research (Robins, 2001; Petersen et al., 2006; Vander-
Weele and Robins, 2007; Hafeman and Schwartz, 2009; Joffe and Green, 2009; VanderWeele, 2009; Kaufman,
2010) and is making its way slowly toward the social and behavioral sciences (Morgan and Winship, 2007;
Imai et al., 2010).
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