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Abstract

Parabolic subalgebras of semi-simple Lie algebras decompgse-as @ n wherem is a Levi
factor andh the corresponding nilradical. By Richardson’s theorem [R.W. Richardson, Bull. London
Math. Soc. 6 (1974) 21-24], there exists an open orbit under the action of the adjoint Rjroup
the nilradical. The elements of this dense orbits are known as Richardson elements. In this paper we
describe a normal form for Richardson elements in the classical case. This generalizes a construction
for gl of Bristle et al. [Algebr. Represent. Theory 2 (1999) 295-312] to the other classical Lie al-
gebra and it extends the authors normal forms of Richardson elements for nice parabolic subalgebras
of simple Lie algebras to arbitrary parabolic subalgebras of the classical Lie algebras [K. Baur, Rep-
resent. Theory 9 (2005) 30-45]. As applications we obtain a description of the support of Richardson
elements and we recover the Bala—Carter label of the orbit of Richardson elements.
0 2005 Elsevier Inc. All rights reserved.

Introduction

The goal of this paper is to describe Richardson elements for parabolic subalgebras of
the classical Lie algebras.

Let p be a parabolic subalgebra of a semi-simple Lie algghvaerC andp =m & n
a Levi decomposition. By a fundamental theorem of Richardson [Ri] there always exist
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elementsr in the nilradicaln such thatp, x] = n. In other words, ifP is the adjoint
groups ofp, then the orbitP - x is dense im. It is usually called the Richardson orbit.
Richardson orbits have been studied for a long time and there are many open questions
related to this setting. Our goal is to give explicit representatives for Richardson elements.
In the case ofl,, there is a beautiful way to construct Richardson elements that has been
described by Bristle et al. in [BHRR]. Furthermore, Richardson elements with support in
the first graded pag; (where the grading is induced from the parabolic subalgebra) have
been given for all simple Lie algebras in [Ba].

However, these constructions do not work in general for classical Lie algebras. To fill
this gap, we have modified the existing approaches to obtain Richardson elements for
parabolic subalgebras of the classical Lie algebras. We do this using certain simple line
diagrams. They correspond to nilpotent matrices with at most one non-zero entry in each
row and in each column. We show that for most parabolic subalgebras, there exists a sim-
ple line diagram that defines a Richardson element. But there are cases where this is not
possible as we will see. We expect that the representatives we describe will give more in-
sight and hopefully answer some of the open questions. One of the interesting questions in
the theory of Richardson elements is the structure of the support of a Richardson element.
Recall that any parabolic subalgelpranduces &.-grading ofg,

g=Pa withp=CPai=ge (@gi)

ieZ i>0 i>0

wherego is a Levi factor anch := ,_,g; the corresponding nilradical. For details, we
refer to our joint work with Wallach [BW]. The support of a Richardson elemeént
Y« root of n ka X« are the roots of the nilradical with &, # 0 (whereX, spans the root
subspacg, ). The support supiX) of X lies in the subspagg & - - - & gy for somek > 1.
For the normal form of Richardson elements we can determine the mikgrsaich that
SUppEX) C g1 ® --- ® gy, We also recover the Bala—Carter label of the dense orbit of
Richardson elements, also called thpeof the orbit. The Bala—Carter label is used in the
classification of nilpotent orbits of simple Lie algebras, given in [BC]. For a description of
these labels see [CM, Chapter 8]. The type of any nilpotent orbit in a classical Lie algebra
has been described by Panyushev [Pa] in terms of the partitions of the orbit.

Before we describe our results and explain the structure of this article, we need to fix
some notation. If is a parabolic subalgebra of a semi-simple Lie alggbsee can assume
thatp contains a fixed Borel subalgebra. In this case we sayptiastandard. Ifin is a
Levi factor ofp we say thain is standard if it contains a fixed Cartan subalgdpthat is
contained in the fixed Borel subalgebra.

From now on we will assume thatis a classical Lie algebra, unless stated otherwise.
As usual, the Cartan subalgebra consists of the diagonal matrices and the fixed Borel sub-
algebra is the set of upper triangular matrices. Then a standard Levi factor has the shape
of a sequence of square matrices (blocks) on the diagonal and zeroes outside. In the case
of s02,, we have to be careful: we will only consider parabolic subalgebras veheaad
a,—1 are both roots of the Levi factor or both roots of the nilradicadpry a root of the
Levi factor andwx,, a root of the nilradical. In other words the cagea root of the Levi
factor andw,,_1 a root of the nilradical will be identified with this last case since the two
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parabolic subalgebras are isomorphic. So our stanglardn are uniquely defined by the
sequence :=d = (dy, ..., d,) of the sizes of these blocks (and by specifying the type of
the Lie algebra).

We start by defining line diagrams for dimension vectors in Section 1. It will turn out
that each horizontal line diagram corresponds uniquely to an element of the nilradical of the
parabolic subalgebra ef,, of the given dimension vector. In Section 2 we gather the neces-
sary properties of Richardson elements. In Section 3 we show that horizontal line diagrams
in fact correspond to Richardson elements of the given parabolic subalgebra. The construc-
tion of such diagrams fagl,, appears first in [BHRR]. We have already mentioned that for
the other classical Lie algebras, the horizontal line diagrams do not give Richardson ele-
ments. In general, the matrix obtained is not an element of the Lie algebra in question. Thus
we will introduce generalized line diagrams in Section 4 to obtain Richardson elements for
parabolic subalgebras of the symplectic and orthogonal Lie algebras. As a by-product we
obtain the partition of a Richardson element for the so-called simple parabolic subalge-
bras. The last section discusses the cases where line diagrams do not produce Richardson
elements. For these we will allow “branched” diagrams. In Appendix A we add examples
illustrating branched diagrams.

1. Linediagrams

Letd = (d1, ..., d,) be adimension vector, i.e. a sequence of positive integers. Arrange
r columns ofd; dots, top-adjusted. Af{lled) line diagramfor d, denoted byL(d), is a
collection of lines joining vertices of different columns such that each vertex is connected
to at most one vertex of a column left of it and to at most one vertex of a column right of it
and such that it cannot be extended by any line.

We say that itis afflled) horizontal line diagranif all edges are horizontal lines. Such a
diagram will be denoted bx;, (d). We will always assume that the line diagrams are filled
and omit the term ‘filled." Line diagrams are not unique. However, for each dimension
vector there is a unique horizontal line diagram.

Example 1. As an example, consider the dimension vec¢®rl, 2, 3) and three line dia-
grams for it, the last one horizontal:

T e e

2. Richardson elements

In this section we describe a method to check whether a given nilpotent element of the
nilradical of a classical Lie algebra is a Richardson element. The first statement is given
in [BW]. Since we will use this result constantly, we repeat its proof.
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Theorem 2.1. Let p C g be a parabolic subalgebra of a semi-simple Lie algebrdet
p =m @ n wherem is a Levi factor andch the corresponding nilradical. Thene n is a
Richardson element farif and only ifdimg* = dimm.

Proof. Denote the nilradical of the opposite parabolicibgthe opposite parabolic is de-
fined as the parabolic subalgebra whose intersection wishequal tom). If x € n then
ad(x)g = ad(x)n + ad(x)p. Now adx)p C nand dimadx)n < dimn. Thus

dimadx)g < 2dimn.
This implies forx € n that dimm < dimg* and equality implies that dim &d)p = dimn.
Thus equality implies that is a Richardson element.

For the other direction, let be a Richardson element fprWe show that the map &d)
is injective onn: Let y € n with ad(x)y =0. Then

0= B(adx)y, p) = B(y,adx)p) = B(y, n).
In particular,y = 0. So adx) is injective onn, giving dimadx)n = dimn. Thus

n n

—— —
dimad(x)p +dimad(x)n = 2dimn = dimadx)g = dimg — dimg*.
So dimg* + dimn =dimg — dimn = dimp =dimm 4 dimn, i.e. dimm =dimg*. O

Corollary 2.2. Letp = m @ n be a parabolic subalgebra of a semi-simple Lie algebra. Let
X e n be a Richardson element. Theimg* < dimg! for anyY e n.

Theorem 2.1 gives us a tool to decide whether an element of the nilradical of a parabolic
subalgebra is a Richardson element. Namely, we have to calculate its centralizer. Central-
izers of nilpotent elements of the classical Lie algebras can be computed using their Jordan
canonical form. This well-known result is due to Kraft and Procesi, cf. [KP].

Theorem 2.3. Let (n1, ..., n,) be the partition of the Jordan canonical form of a nilpotent

matrix x in the Lie algebrag, let (m1, ..., my) be the dual partition. Then the dimension
of the centralizer ok in g is

Zmlz if g=gl,,
i

2
mi L
Xi: 5 +2|{z|n,odd}

y Ifgzﬁpzn,

, ifg=sopn.

ml2 1 .
2127—§|{l|n, Odd}
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So it remains to determine the Jordan canonical form of a given nilpotent elemiént
is given by the dimensions of the kernels of the mafps; > 1:

Lemma 2.4. Let x be a nilpotent: x n matrix with x"~1£0andx™ =0, seth; ==
dimkerx/ (j =1,...,m). Define

2b1 — by, j=1
aj:=12bj—bj 1—bj11, j=2,....m—1,
by — bm—1, j=m

Then the Jordan canonical form efhasa blocks of size fors =1, ..., m.

Corollary 2.5. With the notation of Lemma.4 above, the Jordan canonical form ofis
given by the partition

(1a1’ 2a2’ e, (m— ]_)am—l’ mam).

3. The special linear Liealgebra

We now describe how to obtain a Richardson element from a (horizontal) line diagram.
Recall that a standard parabolic subalgebra,ofs uniquely described by the sequence of
lengths of the blocks im (the standard Levi factor). Let= (dy, ..., d,) be the dimension
vector of these block lengths.

We form the horizontal line diagrarh, (d) and label its vertices column wise by the
numbers 12, ..., n, starting with column 1, labeling top-down. This labeled diagram de-
fines a nilpotent element as the sum of all elementary matfigesuch that there is a line
fromi to j, wherei < j:

X(d)=X(Ly@) = Z Ejj.

i—j

Example2. Letp C slg be given by the dimension vect@, 1, 2, 3). We label its horizon-
tal line diagram,

1—4—5—7
2 6—8
3——9,

and obtainX (d) = E1 4+ E45+ Es 7+ E2 6+ Eg g+ E3 9, an element of the nilradical

of p. Using Lemma 2.4 and Corollary 2.5 one checks that the dimension of the centralizer
of X (d) is equal to the dimension of the Levi factor. Th¥$d) is a Richardson element

for p (by Theorem 2.3).
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By construction, the matriX (d) is nilpotent for any dimension vectdr Itis in fact an
element of the nilradicat of the parabolic subalgebga= p(d): If d = (n), this is obvi-
ous, the constructed nilpotent element is the zero matrix3f(d, d2) then the nonzero
coefficients of the matrix ok (d) are in the rows L..,d1 and columnsiy + 1,...,do.
In other words, they lie in théy x d2-block in the upper right corner. The standard Levi
factor consists of the block# x d1, d2 x d» on the diagonal. In particula¥ (d1, d2) is
a matrix that lies above the Levi factor. This generalizes to dimension vectors with more
entries. So we get part (1) of the following lemma. For part (2) we introduce a new notion.

Definition 1. If there exists a sequence bftonnected lines in a line diagraiid) that is

not contained in a longer sequence we say thaf) has ak-chainor achain of lengthk.

A subchain of lengttk (or k-subchain) is a sequence bfconnected lines irL(d) that
maybe contained in a longer chain. A chain of length 0 is a single vertex that is not con-
nected to any other vertex.

Lemma 3.1. (1) The elemenk (d) is an element of the nilradical @f(d).
(2) For k > 1, the rank ofX (d)* is equal to the number atsubchains of lines ifi.j, (d).

Proof of (2). Itis clear that the rank oK = X (d) is the number of lines in the diagram:

to constructX, we sum over all lines of the diagram. Since these lines are disjoint (each
vertexi is joint to at most one neighbgt with i < j) the rows and columns oX are
linearly independent. Therefore the rank¥fs equal to the number of verticésuch that
there is a line from to some;j with i < ;.

For anyk > 0, the matrixX* consists of linearly independent rows and columns. It
is clear that an entryij) of X - X is non-zero if and only if there is a line—k—j in
Li(d): X - X =Y 4 EixY_,_; Eij where Ey Ejj = 8, E;j. Similarly, the rank ofx*¥ is
the number of verticessuch that there exist verticgs < j» < --- < j; and lines—j1—

-+ +—j joining them, i.e. the number @fsubchain. O

It turns out thatX (d) is a Richardson element fptd), as we will show below. This fact
follows also from the description of Briistle et al. in [BHRR]ffiltered modules without
self-extension of the Auslander—Reiten quiver of type(the number- is the number of
blocks in the standard Levi factor of the parabolic subalgebra).

Theorem 3.2. The mapping! — X (d) associates to each dimension vector withl; = n
a Richardson element for the corresponding parabolic subalggbta (d) of sl,,.

We give here an elementary proof of Theorem 3.2 above. We will use the ideas of this
proof to deal with the other classical groups (where we will have to use line diagrams that
are not horizontal in general). The main idea is to use the dimension of the centralizer of a
Richardson element and the partition of the Jordan canonical form of a nilpotent element.

Proof. Letd be the dimension vector corresponding to the parabolic subalgebigad).
Let X = X(d) be the nilpotent element associated to it (through the horizontal line di-
agram). By Theorem 2.1 we have to calculate the dimension of the centraliz€r of
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and of the Levi factom of p. By Theorem 2.3, dig¥ is equal tozimi2 — 1 where
(m1, ..., my) is the dual partition to the partition of. The parts of the dual partition
are the entried; of the dimension vector as is shown in Lemma 3.3 below. In particular,
dimi=Y,d? - 1=dimgX. O

The following result shows how to obtain the partition and the dual partition of the
Jordan canonical form of the nilpotent element associated to the dimensionaector

Lemma 3.3. Letd be the dimension vector fprc sl,,, X = X (d) the associated nilpotent
element ofl,. Order the entriegls, .. ., d, of the dimension vector in decreasing order as
D1, Dy, ..., D, (i.e. such thatD; > D;,1 for all i). Then the Jordan canonical form &f

is

lDl_DZ’ ZDz—Da’ = 1)Dr—l_Dr , 7Dr

and the dual partition is
Drs Dr—ls e Dl

In other words, the dual partition faX (d) is given by the entries of the dimension
vector. Furthermore, for everychain inLj (d) (i.e. for every sequences of length > 0,
that is not contained in a longer sequence) the partition has anieptty

Proof. Letd = (ds, ..., d,) be the dimension vector gfand Dy, ..., D, its permutation
in decreasing ordei); > D, 1. To determine the Jordan canonical formdt X (d) we
have to compute the rank of the powefs, s > 1, cf. Lemma 2.4.

Since the nilpotent matriX is given by the horizontal line diagraity, (d), the rank of
X* is easy to compute: by Lemma 3.1(2), the rankéfis the number of-subchains. In
particular, rkX =n — D1 and rkX?2 =n — D1 — Do, tkX® =n — D1 — D> — D3, etc. This
gives

b :=dimkerX* =Dy +.---+ D, fors=1,...,r

And so, by Lemma 2.4, we obtain = Dy — D2, ap = D2 — D3, ...,a, = D, proving
the first statement. The statement about the dual partition (i.e. the partition given by the
lengths of the columns of the partition) follows then immediately

4. Richardson elementsfor the other classical Lie algebras

In this section we will introduce generalized line diagrams to deal with the symplec-
tic and orthogonal Lie algebras. Having introduced them, we show that they correspond
to Richardson elements for the parabolic subalgebra in question. Then we discuss some
properties and describe the dual of the partition of a nilpotent element given by such a
generalized line diagram. Furthermore, we describe the support of the constku@ed
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and relate it to the Bala—Carter label of tGeorbit throughX (d) whereG is the adjoint
group ofg.

To define the orthogonal Lie algebras, we use the skew diagonal nigtith ones
on the skew diagonal and zeroes else. The symplectic Lie algghyaare defined using
[j" Jo] (For details we refer the reader to [GW].) &g, consists of the: x n-matrices

that are skew-symmetric around the skew-diagonalsapgis the set of 2 x 2n-matrices

of the form
A B
Cc A*

where A* is the negative of the skew transposeAfThus in the case of the symplectic
and orthogonal Lie algebras, the block sizes of the standard Levi factor form a palindromic
seguence.

If there is an even number of blocks in the Levi factor, the dimension vector is of
the form (d1,...,d,,d,,...,d1). We will refer to this situation as type (a). If there
is an odd number of blocks in the Levi factor, type (b), the dimension vector is
(d1,...,dr,drs1,dy, ..., d1).

By the (skew) symmetry around the skew diagonal, the entries below the skew diagonal
of the matricesX (d) are determined by the entries above the skew diagonal. In terms of
line diagrams: Fosp,, andsoy there is a lingN — j + 1)—(N — i + 1) whenever there
is a linei—;. We will call the line(N — j + 1)—(N —i 4+ 1) thecounterpartof i—; and
will sometimes denote counterparts by dotted lines. In particular, it suffices to describe the
lines attached to the left to vertices of the firstolumns for both types (a) and (b).

The (skew)-symmetry will give constraints on the diagram—there will also appear neg-
ative entries. For the moment, let us assume i@ is a diagram defining an element
of the nilradical of the parabolic subalgebra in question. Then part (2) of Lemma 3.1 still
holds.

Lemma4.1. If X(d) is defined byL.(d) then the rank of the maf (d)¥ is the number of
k-subchains of lines in the diagram.

This uses the same argument as Lemma 3.1 since by construcii@nonly has lin-
early independent rows and columns and the produah? only has nonzero entries;;
if X(d) has an entry;; and an entn ;; for somej.

The following remark allows us to simplify the shapes of the diagrams we are con-
sidering. Ifd = (d1, ...,d;) is anr-tuple inN", ando € S, (where S, is the permu-
tation group onr letters) we definel, as (d,1,ds2,...,dy,). By abuse of notation,
ford = (d1,...,dy,d,,...,d1) in N¥ we writed, = (dy1,...,dor,dor,...,dy1) and
for d = (d1,...,dy,dy41,dy,...,d1) in N2+l we defined, to be the 2 + 1-tuple
(ds1,---,dor,drs1,doy, . ..,ds1). It Will be clear from the context which tuple we are
referring to.

Remark 4.2. Ford = (dy, . .., d,) the diagramd.,,(d) andL, (d, ) have the same chains of
lines for anyo € S,. In other words: for any > 1, the number of chains of lines of length
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k in Lj(d) is the same as the number of lines of lengtm L;(d,). As an illustration,
consider the permutation 12436 (3, 1, 2, 3):

*—o—0—0 *—eo—0—0
*———0—0 *—eo—0
r——0 *—e

Similarly, for f = (f1, ..., fr, fr.--., f1), respectively forg = (g1, ..., &r» &r+1, &r» - - - »

g1), if L(f) andL(g) are line diagrams fosp,, or soy then for anyo € S,, the diagrams
L(f,), respectivelyL(g,), are also diagrams for the corresponding Lie algebras and have
the same exactly the same chaind .&g), respectively a€.(g).

We have an immediate consequence of Remark 4.2 and Lemma 4.1:

Corollary 4.3. Letd = (d4, ...,d;,d;, ..., d1)ord =(ds,...,dr,dr+1,d,, ...,d1) bethe
dimension vector of a parabolic subalgebra of a symplectic or orthogonal Lie algebra and
X (d) be given by the appropriate line diagram. In calculating the ranke#)* we can
assume that; <--- <d,.

We will make frequent use of this property. Now we will finally be able to construct
diagrams for the other classical cases. We have already mentioned that the horizontal line
diagrams do not produce Richardson elements. One reason is that the counterpart of a line
i—j is not always horizontal. The other reason is that we have to introduce negative signs
for the symplectic and orthogonal cases when we associate a nilpotent matrix to a diagram:
If g =spy,, in the definition ofX (d) we subtractE;; whenever there is a line—; with
n <i< j.If g=soy we subtractE;; whenever there is a line—j withi + j > N.

Example 3. Let (1, 2, 2, 1) be the dimension vector of a parabolic subalgebragf Then
the following three line diagrams determine elements of the nilradigal of

1—2—4 6 1—2 4 6 1—2—5-6

X

3.5 35 3—4

The last diagram is just a reordering of the second. The nilpotent elemeris aré1o +
Eoq+ E35— Esg, respectivelyX, = E12 + Ez5 + E34 — Ese. By calculating the Jordan
canonical forms for these elements one checks that only the nilpotent eléfpeata
Richardson element.

This example and the discussion above illustrate that for the symplectic and orthogonal
Lie algebras, we will use:

(i) non-horizontal lines,
(i) labeling top—bottom and bottom—top,
(iii) negative signs, too.
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Definition 2. Let p be the standard parabolic subalgebra of a symplectic or orthogonal Lie
algebrag. We say thap is simpleif p C g is of one of the following forms:

(1) A parabolic subalgebra afy,, with an even number of blocks in the standard Levi
factor.

(2) A parabolic subalgebra @by, with an even number of blocks in the standard Levi
factor such that odd block lengths appear exactly twice.

(3) A parabolic subalgebra ah,, with an odd number of blocks in the Levi factor and
such that each odd that is smaller thad, .1 appears exactly twice.

(4) A parabolic subalgebra @by with an odd number of blocks in the Levi factor such
that either alld; are odd or there is an indéx< r such that all/; with i < k are even,
d; odd for j > k and the ever; are smaller thad.,1, ..., d,. Furthermore, the even
block lengths that are larger thadp, 1 appear only once amond, . . ., di.

Definition 3 (Type(a)). Letp be a simple parabolic subalgebrasp$, orsoz,, given by the
dimension vectot! = (d1, ...,dy,d,, ...,d1). Then we define théne diagram Leyer(d)
associated t@/ (andg) as follows:

(1) Draw 2u vertices in 2 columns of lengthdy, ..., top-adjusted. Label the first
columns with the numbers, 1., n, top—bottom. Label the secondcolumns with
the numbera + 1, ..., 2n, bottom—top.

(2) Join the first columns with horizontal lines as fef,,. Draw the counterparts of these
lines in the second columns.

(3) (i) If g=sp,,, add the linek—(2n — k +1).

(ii) If g=s02,, 0ne adds the line@/ — 1)—(2n — 2/ + 1) and their counterpartg2-
(2n—21+2)if nis even. Ifn is odd, the lines 2—(2n — 2I) and their counterparts
2 +1)—@2n -2 +1).

Definition 4 (Type(b)). Letp be a simple parabolic subalgebrasg$,, or of soy, given by
the dimension vectad = (ds, ..., d,,dr11,dy, ...,d1). Then we define théne diagram
Logd(d) associated tal (andg) as follows:

(1) Draw 2- + 1 columns of lengthiy, ..., top-adjusted. Label them with the numbers
1, ... inincreasing order, top—bottom in each column.

(2) (i) Forspy,: If min;{d;} > 2, draw a horizontal of lines in the first row and all their
counterparts, forming a sequence joining the lowest vertices of each column. Re-
peat this procedure as long as the columns of the remaining vertices are all at least
of length two.

(ii) Forsoy:If d1isodd, go to step (3)(ii). I is even, do as in (2)(i), drawing lines in
the first row and their counterparts joining the lowest vertices. Repeat until either
the first of the remaining columns has odd length or there are no vertices left to be
joined. Continue as in (3)(ii).
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(3) (i) Forsp,,: For the remaining vertices: draw horizontal lines following the top-most
remaining vertices and simultaneously their counterparts (the lowest remaining
vertices).

(ii) Forsoy: All columns have odd length. Connect the central entries of each column.
The remaining column lengths are all even; they are joined as in (2)(ii).

Theorem 4.4. Letd be the dimension vector for a simple parabolic subalgebrapgf or
son. Then the associated diagrabave{(d), respectivelyloqq(d), determines a Richardson
element fop(d) by setting

X(d)= Y Ej— Y Ej for spo,,
i—j,i<n i—j, i>n

X)) = Z Eij— Z E,‘j fOI’SON,
i—j, i+j<N i—j, i+j>N

where the sums are over all lines in the diagram.

We first include some immediate consequences of this result. After that we add an ob-
servation about the (dual of the) partition corresponding td) and then we are ready to
prove Theorem 4.4.

Theorem 4.4 enables us to determine the minisiich that the Richardson element
X (d) lies inthe graded partg @ - - - @ gx. To do so we introduce(d) as the maximal num-
ber of entriest;, .. ., d; s of d that are surrounded by larger entriés1 andd; ;1. More
precisely, ifd = (d1, ...,d,d,,...,d1)ord =(d1, ...,d;,dr11, ..., d1) is the dimension
vector, we rewrited as a vector with increasing indice@;y ..., ¢, ¢r41, Cr42, + -, C24)4
respectively(cs ..., ¢y, ¢r41, Cr42, - . -, c2r+1), and define

s(d):=14+maxthere are i1, ...,cjqilcj >cjy <cjpiprforall 1< <i}.
l

Corollary 4.5. Letp(d) be a simple parabolic subalgebra of the orthogonal or symplectic
Lie algebras. Then the eleme#t(d) belongs tog; @ - -- & gsw). The same holds for
parabolic subalgebras aofl,,.

This follows from the fact that;; with i from columnk of the line diagram ang
from columnk + s is an entry of the graded pagt. If, e.9., we haver1 > ¢; < ¢,y for
j=2,...,s thenthereis aline joining columns one ang 1. SO0X (d) has an entry irg;.

Corollary 4.6. For sl,,, s(d) is equal to one if and only if the dimension vector satisfies
d1<---<dr=--->d forsomel <r<r.

This well-known result has been observed by Lynch [Ly], Elashvili and Kac [EK],
Goodwin and Réhrle [GR], and in our joint work with Wallach [BW].

The next lemma shows how to obtain the dual of the partitioX @f) if X (d) is given
by the appropriate line diagram fat
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Lemma 4.7. If p(d) is a simple parabolic subalgebra of a symplectic or orthogonal Lie

algebra letX = X (d) be given by the appropriate line diagrabyer(d) or Logg(d). The
dual of the partition ofX has the form as follows

Dual of the partition ofx g Type ofp
(I) dl5dla "‘adryd}" 5pZn (a)
spp, (D)

(i) ,+1U(Ud,,d> (Ud,-—l,d,-+1>
di¢D, dieD,
(iit) ( U d,-,d,-)u( U d,-—l,di+1> s02, (@

d;even d;odd

(i) r+1u( U d,,d) (U d,-—l,d,»+1> 02041 (D)

d;i¢ D¢ d;eDe

(V) ,+1u( U d,,d) (U d,-—l,di+1> s03, (D)
d; ¢ D° d;eDe

whereD,, .= {d; odd| d; < d,+1}, D° :={d; odd| d; > d,+1} and D¢ := {d; even| d; >
dy+1} are subsets ofdy, ..., d,}.

In particular, if D,, D¢ or D° are empty, the partition in the corresponding c&skg,
(iv) or (v) has the same parts as the dimension vector. The same is tr(i)fpif there
are no oddd; .

The proof consists mainly in counting lines and (sub)chains of lines of the correspond-
ing diagrams. Therefore we postpone it and include it in Appendix A. We are now ready
to prove Theorem 4.4 with the use of Theorem 2.3 and of Lemma 4.7.

Proof of Theorem 4.4. We consider the cage= sp,,. For the parabolic subalgebras of

an orthogonal Lie algebra, the claim follows using the same methods. The idea is to use the
dimension of the centralizer of (d) and compare it to the dimension of the Levi factor.

To calculate the dimension of the centralizer, we use the formulae of Theorem 2.3, i.e. we
use the dual of the partition of = X (d) as described in Lemma 4.7 and the number of
odd parts in the partition of .

e spy,, type (a): By Lemma 4.7 the dual partition of the nilpotent elemént X (d)
has as parts the entries®fSince they all appear in pairs, the partition of the orbit has no
odd entries. So by the formula of Theorem 2.3 we obtaingdine (242 + - - + 242),
the same as the dimension of the Levi factor. In particltais a Richardson element for
the parabolic subalgebpdd) of sp,,.

e 5Py, type (b): As in Lemma 4.7 leD, C {d1, ..., d,} be the possibly empty set of
the oddd; that are smaller thad, ;1. Then the dual partition has the parts

{di,di|i<r, di ¢ Do} Uldr1} Uldiy1,di—1|d;i € Dy}
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Thed; that are not inD, come in pairs and do not contribute to odd parts in the partition of
X = X(d). In particular, the number of odd parts only depend#,on and on the entries

of D,. We write the elements ab, in decreasing order a#, ..., d; (Wheres = |D,]).

By assumption (the parabolic subalgebra is simple) these odd entries are all different,
do > - > d,. Then the number of odd parts of the partitiontofs the same as the number
of odd parts of the dual of the partition

P: drdi+1,d1—1,....dy+1,d, —1.

This hasd, 11 — (d1 + 1) ones,(d1 + 1) — (d1 — 1) twos, (d1 — 1) — (d2 + 1) threes, and
so on. So the number of odd parts in the duaPas

[drs1— @1+ D]+ [ —D — (24 D]+ +[d—1—-D - d+ D] +d,— 1
Idr+1—2S.

Thus the dimension of the centralizer Xfis

1
5[( > 2d,-2> +dl+ ( 3 @i - P+ i + 1>2) +dpp1— 2s}
dieD,

i<r+1
di ¢Do

d, 1 .
=Zd,-2—l—( +12+ >=d|mm. O

i<r
4.1. Bala—Carter labels for Richardson orbits

The support of the nilpotent element of a simple line diagram is by construction a simple
system of root. Namely, for any, the corresponding (d) has at most one non-zero ele-
ment in each row and each column. One can check that none of the corresponding positive
roots subtract from each other.

In other words, the support su@p) forms a simple system of roots.

Remark 4.8. The converse statement is not true. There are Richardson elements whose
support form a simple system of roots but where there is no simple line diagram defining
a Richardson element. A family of examples are the Borel subalgebras,pbr more
general, parabolic subalgebrassop, wherew, andw,_1 are both not roots of the Levi
factor

If X is a nilpotent element of we denote the&s-orbit throughX by Oy (whereG is
the adjoint group of).

Corollary 4.9. Letp(d) be a parabolic subalgebra af,,. DefineX (d) by the line diagram
Ly (d) or a simple parabolic subalgebra ¢b)-type forsp,,, soy Then the group spanned
by suppX (d) is equal to the Bala—Carter label of ti@&-orbit Ox 4.
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Proof. This follows from the characterization of the type (i.e. the Bala—Carter label) of
Oyx given by Panyushev in [Pa, Section 3].

For simplicity we assumé < --- < d,. Note that in any case, the partition ¥fd) is
given by the chains in the line diagram. The partitionXofd) has entryi + 1 for every
chain of length'.

If « given by E;; and g given by Ey; are roots of supj (d) then they add to a root
of sl,, if and only if there is a line connecting them. Thus in the case of the special linear
Lie algebra a chain of lengti+ 1 corresponds to a factor; An suppX (d). Similarly, for
sp,, andsoy, a chain of length + 1 together with its counterpart give a factoy. &inally,
the possibly remaining single chain of length-2 1 (passing through the central vertex of
columnr + 1) in the case ofoz,1 gives a factor B. Then the claim follows with [Pa]
where Panyushev describes the type of a nilpotent orbit in terms of its partition.

5. Branched diagrams

The diagrams we have introduced had at most one line to the left and at most one line
to the right of a vertex. We call such a diagramsimple line diagramin the case of simple
parabolic subalgebras, we can always choose a simple line diagram to define a Richardson
element. However, there are parabolic subalgebras where no simple diagram gives rise to
a Richardson elements. After giving an example we characterize the parabolic subalgebras
for which there exists a simple line diagram giving a Richardson element. Then we discuss
the case of the symplectic Lie algebras. We introduce a branched diagram and obtain a
Richardson elements for the parabolic subalgebra in question.

Example 4. (1) Consider the parabolic subalgebrase$, given by the dimension vector
(n, n) wheren is odd. The element = X (n, n) given by the diagramh.ever(n, n) has rank
n — 1 and so the kernel of the magf has dimension + 1 or 2 for k = 1, 2, respectively.
The partition ofX is then #,2"~1, its dual isn — 1,n + 1. The centralizer ofX has
dimension 22 + 1 — 1 and the Levi factor of this parabolic subalgebra has dimension
So X is a Richardson element.

(2) Letp C so4q be given by(d, d, d, d) whered is odd. Note that the skew-symmetry
of the orthogonal Lie algebra allows at mast- 1 lines between the two central columns.

e
-~ —e
*—O *—o

The line diagramLever(d,d,d,d) has 24 + d — 1 lines, 2d — 1) two-subchains and
d — 1 three-chains. Calculating the dimensions of the kernel of the Kfagwhere

X =X(d,d,d,d)) yields the partition 2,471, Its dual is(d — 1), (d + 1)2, hence the
centralizer ofX has dimension? + 2 while the Levi factor has dimensio2.

Theorem 5.1. Let g be a simple Lie algebra. The parabolic subalgebpasf g for which
there exists a simple line diagram that defines a Richardson elementfer
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The parabolic subalgebras sf, and the simple parabolic subalgebras of the symplectic
and orthogonal Lie algebras.

Proof. By Theorems 3.2 and 4.4 there is always a simple line diagram giving a Richardson
element in these cases. It remains to show that these are the only ones. By Corollary 4.3 we
can assume w.l.o.g. thdt < --- <d,. Then it turns out that if there is an even number of
blocks forsoy, orif d, < d,+1 for sp,, the problem is translated to the problem of finding

a Richardson element in the first graded parof g because of the following observation:
Sinced1 <---<dy=d, >--->di,ord1 <---<dr <dyy1>d, > --- > dj all lines

are connecting neighbored columns. But lines connecting neighbored columns correspond
to entriesk; ; of the first super diagonal of the parabolic subalgebra, i.e. to entrigg of
Then the claim follows from the classification of parabolic subalgebras with a Richardson
element ing; for type (a) ofsoy, and ifd, < d,+1 for type (b) parabolic subalgebras of the
symplectic Lie algebra. In both cases there exists a Richardson elemgnif iand only

if each odd block lengtl; only appears once amom, ..., d,, cf. [BW]. If there is no
Richardson element igy then in particular no simple line diagram can give a Richardson
element. It remains to deal with (b)-types fory and (b)-types fosp,, whered, 1 is not
maximal. Both are straightforward but rather lengthy calculation that we omit here.

By way of illustration we include examples of branched diagrams for non-simple par-
abolic subalgebras aofp,, and of soy in Appendix A. In general, it is not clear how
branched diagrams should be defined uniformly for the symplectic and orthogonal Lie
algebras. It is clear from the description of simple parabolic subalgebrasyathat this
case is more intricate. We assume that Richardson elements can be obtained by adding
lines to the corresponding simple line diagrams:

Conjecture 1. For the (b)-type ofsp,, the appropriate diagram defining a Richardson
element is obtained fromhygq(d) by adding a branching for every repetitiogh =d; .1 =
---=d;+s of odd entries smaller thas. ;1.

We conclude this section with a remark on the boud) introduced in Section 4. If
there is no simple line diagram defining a Richardson element, we can still définto
be the maximal number of a sequence of entrieg tifiat are surrounded by two larger
entries. But this will now only be a lower bound, the Richardson element defined by a
branched diagram does not necessarily lig1i - - - ® g5(4), Cf. Examples 5-7.

Appendix A

We discuss some examples of branched line diagramspjgrand forsoy to illustrate
Section 5. Recall that the parabolic subalgebras of type (b)gpfare simple if and only
if every oddd; < d,41 only appears once amond, ..., d,. In particular, the smallest
example ofsp,, where there is no simple line diagram existsice 3.
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Example 5. Let p be the parabolic subalgebragfy with dimension vectorl, 1,2, 1, 1).
Consider the diagrams

3
1—2—3 5—6 144{i,,576
- /

4 4

The diagram to the left is a line diagram as in Section 4. The corresponding nilpotent
element has a centralizer of dimension 7. However, the Levi factor is five-dimensional. In
the second diagram, there is one extra line, connecting the vertices 2 and 5. The defined
matrix X = E1o + E»3+ E»5 — E45 — Esg has a five-dimensional centralizer as needed.

Example 6. The following branched line diagram for the parabolic subalgebsagfwith
dimension vectord = (1,1, 1, 3,3,4, 3, 3,1, 1, 1) gives a Richardson element fpfd):

1—2—3 5—8= —— —-15—18 20—21—22

The Levi factor and the centralizer of the construcketlave dimension 31.

Example 7. For the orthogonal Lie algebras, the smallest example are givedi by
(1,1,2,2,1,1), i.e. (a)-type ofg =sog and byd = (2,2,1, 2,2) for an odd number of
blocks insog. The following branched diagrams give Richardson elements for the corre-
sponding parabolic subalgebras:

3 b 1—3< -~ 68
1=——27 X 78 5.
T4 577 2—4- - - =7—9

Proof of Lemma 4.7. We prove the statement for the symplectic Lie algebras. The corre-
sponding statements fesy are proven similarly.

(i) Type(a) of sp,,: Note that the bottom—top ordering of the second hall.gfer(d)
ensures that the counterpart of a lire j (for j < n) is again horizontal and that all lines
connecting any entry of column to an entry to its right are horizontal. Therefore the
line diagramLeven has the same shape as the horizontal line diagram definexd, fdn
particular, the orbit of the nilpotent element definedlye{d) has the same partition as
the one defined by.;, (d). Then the assertion follows with Lemma 3.3.

(ii) Type(b) of sp,,: The proof is done by induction on Letd = (d1, d2, d1) be the
dimension vector. 1¥/1 ¢ D, (i.e. d1 is not an odd entry smaller thafp) then the line
diagramLever(d1, d2, d1) has the same chains of lines as the horizontal diagrarmifpr
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For di € D, the diagramLeyer(d1, d2, d1) hasdi — 1 two-chains (chains of length two)
and 2 one-chains (i.e. lines). So the kernel of the mi&phas dimensionl,, di + d» +
1, 24y + do for k = 1, 2,3, giving the partition 42=41—1 22 341-1 and the dual of it is
do,d1+1,dy — 1, as claimed.

Letnowd = (dy, ...,d;,dyy1,dy, ..., d1) withdy <--- <d,y1. Ford' = do, ..., d,,
dry1,dr, ..., d2)1is OK. Letd; be even. Ifdy = d,1 then the diagrani.ogq(d) is the same
asL;(d), the claim follows immediately. Ifl; < d, 11, the diagramLqq(d) is obtained
from Loga(d’) by extendingd; (2r — 2)-chains to 2-chains. The kernels of the magf
satisfy dimketX* = dimkerY* for k <2r — 1, dimkerX? = 2n — dy = dimkerY? +d,
and dimkeX? 1 = 2n = dimkery?*1 4 2d; whereY € sp,, 5, is defined by the line
diagramLever(d’). If the partition of Y is 171,202 .. (2r — 1)?2-1 then the partition of
Xis

11, @ —2)P22 (2r — Db (200, (2r + D

Thus the dual of this partition is the dual of the partitior¥afogether with the parig, d1.
If d1 is even anddy > d,1, the diagramLogq(d) is obtained fromLegqg(d’) by ex-
tendingd, +1 (2r — 2)-chains to 2-chains and by extendingy — d,+1 (2r — 3)-chains to
(2r — 1)-chains. Here we get dimkai = dimkerY* for k < 2r — 2, dimkerx? 1 =
dimkery? -1+ d; —d, 1, dimkerX? = 2n — dr + 1 =dimkerY? + 2d; — d,,1 and
dimkerx2+1 = 2, = dimkery2+1 4+ 24;. So the partition of¢ can be calculated to be

1171’ o (2r = 3)b2r—3’ 2r — 2)b2r—2_d1+dr+l’ 2r — l)bZr—l_dr+l’ (zr)dl—dr+l’ 2r + l)dr+l

with by._1 = d,11. Again, the dual of the partition o is obtained from the dual of the
partition of Y by addingds, d;.

Let d; be odd andi; > d,,1. In particular, there are no odf] that are smaller than
dy+1. The shape of qqq(d) is the same as the diagram fgp, (i.e. they have the same
chain lengths). So the dual of the partition is just the dimension vector and we are done. If
d1 < dry1, the diagramLegq(d) is obtained fromLqgq(d’) by extendingds — 1 (2r — 2)-
chains to 2-chains and by extending tw@r — 2)-chains to(2r — 1)-chains. The calcu-
lations of the dimensions of the kernels f6r(compared to those fdr) give as partition
of X:

191, (2r = 2)bz2, (2r — Dbz hm (2002 (2r + 1)L
Hence the dual of the partition df is obtained from the dual of the partition &f by
adjoiningdy1 +1,d1 —1. O
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