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Abstract

Parabolic subalgebras of semi-simple Lie algebras decompose asp = m ⊕ n wherem is a Levi
factor andn the corresponding nilradical. By Richardson’s theorem [R.W. Richardson, Bull. Lo
Math. Soc. 6 (1974) 21–24], there exists an open orbit under the action of the adjoint groupP on
the nilradical. The elements of this dense orbits are known as Richardson elements. In this p
describe a normal form for Richardson elements in the classical case. This generalizes a cons
for glN of Brüstle et al. [Algebr. Represent. Theory 2 (1999) 295–312] to the other classical L
gebra and it extends the authors normal forms of Richardson elements for nice parabolic suba
of simple Lie algebras to arbitrary parabolic subalgebras of the classical Lie algebras [K. Bau
resent. Theory 9 (2005) 30–45]. As applications we obtain a description of the support of Rich
elements and we recover the Bala–Carter label of the orbit of Richardson elements.
 2005 Elsevier Inc. All rights reserved.

Introduction

The goal of this paper is to describe Richardson elements for parabolic subalge
the classical Lie algebras.

Let p be a parabolic subalgebra of a semi-simple Lie algebrag overC andp = m ⊕ n

a Levi decomposition. By a fundamental theorem of Richardson [Ri] there always
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elementsx in the nilradicaln such that[p, x] = n. In other words, ifP is the adjoint
groups ofp, then the orbitP · x is dense inn. It is usually called the Richardson orb
Richardson orbits have been studied for a long time and there are many open qu
related to this setting. Our goal is to give explicit representatives for Richardson elem
In the case ofgln there is a beautiful way to construct Richardson elements that has
described by Brüstle et al. in [BHRR]. Furthermore, Richardson elements with supp
the first graded partg1 (where the grading is induced from the parabolic subalgebra)
been given for all simple Lie algebras in [Ba].

However, these constructions do not work in general for classical Lie algebras.
this gap, we have modified the existing approaches to obtain Richardson eleme
parabolic subalgebras of the classical Lie algebras. We do this using certain simp
diagrams. They correspond to nilpotent matrices with at most one non-zero entry i
row and in each column. We show that for most parabolic subalgebras, there exists
ple line diagram that defines a Richardson element. But there are cases where thi
possible as we will see. We expect that the representatives we describe will give m
sight and hopefully answer some of the open questions. One of the interesting ques
the theory of Richardson elements is the structure of the support of a Richardson el
Recall that any parabolic subalgebrap induces aZ-grading ofg,

g =
⊕
i∈Z

gi with p =
⊕
i�0

gi = g0 ⊕
(⊕

i>0

gi

)

whereg0 is a Levi factor andn := ⊕
i>0 gi the corresponding nilradical. For details, w

refer to our joint work with Wallach [BW]. The support of a Richardson elementX =∑
α root of n kαXα are the roots of the nilradicaln with kα �= 0 (whereXα spans the roo

subspacegα). The support supp(X) of X lies in the subspaceg1 ⊕· · ·⊕ gk for somek � 1.
For the normal form of Richardson elements we can determine the minimalk0 such that
supp(X) ⊂ g1 ⊕ · · · ⊕ gk0. We also recover the Bala–Carter label of the dense orb
Richardson elements, also called thetypeof the orbit. The Bala–Carter label is used in t
classification of nilpotent orbits of simple Lie algebras, given in [BC]. For a descriptio
these labels see [CM, Chapter 8]. The type of any nilpotent orbit in a classical Lie a
has been described by Panyushev [Pa] in terms of the partitions of the orbit.

Before we describe our results and explain the structure of this article, we need
some notation. Ifp is a parabolic subalgebra of a semi-simple Lie algebrag we can assum
that p contains a fixed Borel subalgebra. In this case we say thatp is standard. Ifm is a
Levi factor ofp we say thatm is standard if it contains a fixed Cartan subalgebrah that is
contained in the fixed Borel subalgebra.

From now on we will assume thatg is a classical Lie algebra, unless stated otherw
As usual, the Cartan subalgebra consists of the diagonal matrices and the fixed Bo
algebra is the set of upper triangular matrices. Then a standard Levi factor has the
of a sequence of square matrices (blocks) on the diagonal and zeroes outside. In t
of so2n, we have to be careful: we will only consider parabolic subalgebras whereαn and
αn−1 are both roots of the Levi factor or both roots of the nilradical orαn−1 a root of the
Levi factor andαn a root of the nilradical. In other words the caseαn a root of the Levi

factor andαn−1 a root of the nilradical will be identified with this last case since the two
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parabolic subalgebras are isomorphic. So our standardp or m are uniquely defined by th
sequenced := d = (d1, . . . , dr ) of the sizes of these blocks (and by specifying the typ
the Lie algebra).

We start by defining line diagrams for dimension vectors in Section 1. It will turn
that each horizontal line diagram corresponds uniquely to an element of the nilradica
parabolic subalgebra ofsln of the given dimension vector. In Section 2 we gather the ne
sary properties of Richardson elements. In Section 3 we show that horizontal line dia
in fact correspond to Richardson elements of the given parabolic subalgebra. The co
tion of such diagrams forgln appears first in [BHRR]. We have already mentioned that
the other classical Lie algebras, the horizontal line diagrams do not give Richardso
ments. In general, the matrix obtained is not an element of the Lie algebra in question
we will introduce generalized line diagrams in Section 4 to obtain Richardson elemen
parabolic subalgebras of the symplectic and orthogonal Lie algebras. As a by-prod
obtain the partition of a Richardson element for the so-called simple parabolic su
bras. The last section discusses the cases where line diagrams do not produce Ric
elements. For these we will allow “branched” diagrams. In Appendix A we add exam
illustrating branched diagrams.

1. Line diagrams

Let d = (d1, . . . , dr ) be a dimension vector, i.e. a sequence of positive integers. Arr
r columns ofdi dots, top-adjusted. A (filled) line diagramfor d , denoted byL(d), is a
collection of lines joining vertices of different columns such that each vertex is conn
to at most one vertex of a column left of it and to at most one vertex of a column righ
and such that it cannot be extended by any line.

We say that it is a (filled) horizontal line diagramif all edges are horizontal lines. Such
diagram will be denoted byLh(d). We will always assume that the line diagrams are fi
and omit the term ‘filled.’ Line diagrams are not unique. However, for each dimen
vector there is a unique horizontal line diagram.

Example 1. As an example, consider the dimension vector(3,1,2,3) and three line dia
grams for it, the last one horizontal:

• • • •
• • •
• •

• • • •
• • •
• •

• • • •
• • •
• •

2. Richardson elements

In this section we describe a method to check whether a given nilpotent element
nilradical of a classical Lie algebra is a Richardson element. The first statement is

in [BW]. Since we will use this result constantly, we repeat its proof.
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Theorem 2.1. Let p ⊂ g be a parabolic subalgebra of a semi-simple Lie algebrag, let
p = m ⊕ n wherem is a Levi factor andn the corresponding nilradical. Thenx ∈ n is a
Richardson element forp if and only ifdimgx = dimm.

Proof. Denote the nilradical of the opposite parabolic byn (the opposite parabolic is de
fined as the parabolic subalgebra whose intersection withp is equal tom). If x ∈ n then
ad(x)g = ad(x)n + ad(x)p. Now ad(x)p ⊂ n and dimad(x)n � dimn. Thus

dimad(x)g � 2 dimn.

This implies forx ∈ n that dimm � dimgx and equality implies that dimad(x)p = dimn.
Thus equality implies thatx is a Richardson element.

For the other direction, letx be a Richardson element forp. We show that the map ad(x)

is injective onn: Let y ∈ n with ad(x)y = 0. Then

0= B
(
ad(x)y,p

) = B
(
y,ad(x)p

) = B(y,n).

In particular,y = 0. So ad(x) is injective onn, giving dimad(x)n = dimn. Thus

dim

n︷ ︸︸ ︷
ad(x)p+dim

n︷ ︸︸ ︷
ad(x)n = 2 dimn = dimad(x)g = dimg − dimgx.

So dimgx + dimn = dimg − dimn = dimp = dimm + dimn, i.e. dimm = dimgx . �
Corollary 2.2. Letp = m ⊕ n be a parabolic subalgebra of a semi-simple Lie algebra.
X ∈ n be a Richardson element. ThendimgX � dimgY for anyY ∈ n.

Theorem 2.1 gives us a tool to decide whether an element of the nilradical of a par
subalgebra is a Richardson element. Namely, we have to calculate its centralizer. C
izers of nilpotent elements of the classical Lie algebras can be computed using their
canonical form. This well-known result is due to Kraft and Procesi, cf. [KP].

Theorem 2.3. Let (n1, . . . , nr ) be the partition of the Jordan canonical form of a nilpote
matrix x in the Lie algebrag, let (m1, . . . ,ms) be the dual partition. Then the dimensi
of the centralizer ofx in g is

∑
i

m2
i , if g = gln,

∑
i

m2
i

2
+ 1

2

∣∣{i | ni odd}∣∣, if g = sp2n,

∑ m2
i

2
− 1

2

∣∣{i | ni odd}∣∣, if g = soN .

i
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So it remains to determine the Jordan canonical form of a given nilpotent elemenx. It
is given by the dimensions of the kernels of the mapsxj , j � 1:

Lemma 2.4. Let x be a nilpotentn × n matrix with xm−1 �= 0 and xm = 0, setbj :=
dimkerxj (j = 1, . . . ,m). Define

aj :=


2b1 − b2, j = 1,

2bj − bj−1 − bj+1, j = 2, . . . ,m − 1,

bm − bm−1, j = m.

Then the Jordan canonical form ofx hasas blocks of sizes for s = 1, . . . ,m.

Corollary 2.5. With the notation of Lemma2.4 above, the Jordan canonical form ofx is
given by the partition (

1a1,2a2, . . . , (m − 1)am−1,mam
)
.

3. The special linear Lie algebra

We now describe how to obtain a Richardson element from a (horizontal) line dia
Recall that a standard parabolic subalgebra ofsln is uniquely described by the sequence
lengths of the blocks inm (the standard Levi factor). Letd = (d1, . . . , dr ) be the dimension
vector of these block lengths.

We form the horizontal line diagramLh(d) and label its vertices column wise by th
numbers 1,2, . . . , n, starting with column 1, labeling top-down. This labeled diagram
fines a nilpotent element as the sum of all elementary matricesEij such that there is a lin
from i to j , wherei < j :

X(d) = X
(
Lh(d)

) =
∑
i—j

Eij .

Example 2. Let p ⊂ sl9 be given by the dimension vector(3,1,2,3). We label its horizon-
tal line diagram,

1 4 5 7

2 6 8

3 9 ,

and obtainX(d) = E1,4 +E4,5 +E5,7 +E2,6 +E6,8 +E3,9, an element of the nilradicaln
of p. Using Lemma 2.4 and Corollary 2.5 one checks that the dimension of the cent
of X(d) is equal to the dimension of the Levi factor. ThusX(d) is a Richardson elemen

for p (by Theorem 2.3).
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By construction, the matrixX(d) is nilpotent for any dimension vectord . It is in fact an
element of the nilradicaln of the parabolic subalgebrap = p(d): If d = (n), this is obvi-
ous, the constructed nilpotent element is the zero matrix. Ifd = (d1, d2) then the nonzero
coefficients of the matrix ofX(d) are in the rows 1, . . . , d1 and columnsd1 + 1, . . . , d2.
In other words, they lie in thed1 × d2-block in the upper right corner. The standard L
factor consists of the blocksd1 × d1, d2 × d2 on the diagonal. In particular,X(d1, d2) is
a matrix that lies above the Levi factor. This generalizes to dimension vectors with
entries. So we get part (1) of the following lemma. For part (2) we introduce a new n

Definition 1. If there exists a sequence ofk connected lines in a line diagramL(d) that is
not contained in a longer sequence we say thatL(d) has ak-chainor achain of lengthk.
A subchain of lengthk (or k-subchain) is a sequence ofk connected lines inL(d) that
maybe contained in a longer chain. A chain of length 0 is a single vertex that is no
nected to any other vertex.

Lemma 3.1. (1) The elementX(d) is an element of the nilradical ofp(d).
(2) For k � 1, the rank ofX(d)k is equal to the number ofk-subchains of lines inLh(d).

Proof of (2). It is clear that the rank ofX = X(d) is the number of lines in the diagram
to constructX, we sum over all lines of the diagram. Since these lines are disjoint (
vertex i is joint to at most one neighborj with i < j ) the rows and columns ofX are
linearly independent. Therefore the rank ofX is equal to the number of verticesi such that
there is a line fromi to somej with i < j .

For anyk > 0, the matrixXk consists of linearly independent rows and columns
is clear that an entry(ij) of X · X is non-zero if and only if there is a linei—k—j in
Lh(d): X · X = ∑

i−k Eik

∑
l−j Elj whereEikElj = δklEij . Similarly, the rank ofXk is

the number of verticesi such that there exist verticesj1 < j2 < · · · < jk and linesi—j1—
· · ·—jk joining them, i.e. the number ofk-subchain. �

It turns out thatX(d) is a Richardson element forp(d), as we will show below. This fac
follows also from the description of Brüstle et al. in [BHRR] of∆-filtered modules withou
self-extension of the Auslander–Reiten quiver of type Ar (the numberr is the number of
blocks in the standard Levi factor of the parabolic subalgebra).

Theorem 3.2. The mappingd �→ X(d) associates to each dimension vector with
∑

di = n

a Richardson element for the corresponding parabolic subalgebrap = p(d) of sln.

We give here an elementary proof of Theorem 3.2 above. We will use the ideas
proof to deal with the other classical groups (where we will have to use line diagram
are not horizontal in general). The main idea is to use the dimension of the centraliz
Richardson element and the partition of the Jordan canonical form of a nilpotent ele

Proof. Let d be the dimension vector corresponding to the parabolic subalgebrap = p(d).
Let X = X(d) be the nilpotent element associated to it (through the horizontal lin

agram). By Theorem 2.1 we have to calculate the dimension of the centralizer ofX
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and of the Levi factorm of p. By Theorem 2.3, dimgX is equal to
∑

i m
2
i − 1 where

(m1, . . . ,ms) is the dual partition to the partition ofX. The parts of the dual partitio
are the entriesdi of the dimension vector as is shown in Lemma 3.3 below. In partic
diml = ∑

i d
2
i − 1= dimgX. �

The following result shows how to obtain the partition and the dual partition o
Jordan canonical form of the nilpotent element associated to the dimension vectord .

Lemma 3.3. Letd be the dimension vector forp ⊂ sln, X = X(d) the associated nilpoten
element ofsln. Order the entriesd1, . . . , dr of the dimension vector in decreasing order
D1,D2, . . . ,Dr (i.e. such thatDi � Di+1 for all i). Then the Jordan canonical form ofX

is

1D1−D2,2D2−D3, . . . , (r − 1)Dr−1−Dr , rDr

and the dual partition is

Dr,Dr−1, . . . ,D1.

In other words, the dual partition forX(d) is given by the entries of the dimensio
vector. Furthermore, for everyi-chain inLh(d) (i.e. for every sequences of lengthi, i � 0,
that is not contained in a longer sequence) the partition has an entryi + 1.

Proof. Let d = (d1, . . . , dr ) be the dimension vector ofp andD1, . . . ,Dr its permutation
in decreasing order,Di � Di+1. To determine the Jordan canonical form ofX = X(d) we
have to compute the rank of the powersXs , s � 1, cf. Lemma 2.4.

Since the nilpotent matrixX is given by the horizontal line diagramLh(d), the rank of
Xs is easy to compute: by Lemma 3.1(2), the rank ofXs is the number ofs-subchains. In
particular, rkX = n−D1 and rkX2 = n−D1 −D2, rkX3 = n−D1 −D2 −D3, etc. This
gives

bs := dimkerXs = D1 + · · · + Ds for s = 1, . . . , r.

And so, by Lemma 2.4, we obtaina1 = D1 − D2, a2 = D2 − D3, . . . , ar = Dr proving
the first statement. The statement about the dual partition (i.e. the partition given
lengths of the columns of the partition) follows then immediately.�

4. Richardson elements for the other classical Lie algebras

In this section we will introduce generalized line diagrams to deal with the sym
tic and orthogonal Lie algebras. Having introduced them, we show that they corre
to Richardson elements for the parabolic subalgebra in question. Then we discus
properties and describe the dual of the partition of a nilpotent element given by s

generalized line diagram. Furthermore, we describe the support of the constructedX(d)
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and relate it to the Bala–Carter label of theG-orbit throughX(d) whereG is the adjoint
group ofg.

To define the orthogonal Lie algebras, we use the skew diagonal matrixJn with ones
on the skew diagonal and zeroes else. The symplectic Lie algebrassp2n are defined using[ 0 Jn−Jn 0

]
. (For details we refer the reader to [GW].) Soson consists of then × n-matrices

that are skew-symmetric around the skew-diagonal andsp2n is the set of 2n × 2n-matrices
of the form [

A B

C A∗
]

whereA∗ is the negative of the skew transpose ofA. Thus in the case of the symplec
and orthogonal Lie algebras, the block sizes of the standard Levi factor form a palind
sequence.

If there is an even number of blocks in the Levi factor, the dimension vector
the form (d1, . . . , dr , dr , . . . , d1). We will refer to this situation as type (a). If the
is an odd number of blocks in the Levi factor, type (b), the dimension vecto
(d1, . . . , dr , dr+1, dr , . . . , d1).

By the (skew) symmetry around the skew diagonal, the entries below the skew dia
of the matricesX(d) are determined by the entries above the skew diagonal. In term
line diagrams: ForspN andsoN there is a line(N − j + 1)—(N − i + 1) whenever there
is a linei—j . We will call the line(N − j + 1)—(N − i + 1) thecounterpartof i—j and
will sometimes denote counterparts by dotted lines. In particular, it suffices to descri
lines attached to the left to vertices of the firstr columns for both types (a) and (b).

The (skew)-symmetry will give constraints on the diagram—there will also appear
ative entries. For the moment, let us assume thatL(d) is a diagram defining an eleme
of the nilradical of the parabolic subalgebra in question. Then part (2) of Lemma 3.
holds.

Lemma 4.1. If X(d) is defined byL(d) then the rank of the mapX(d)k is the number o
k-subchains of lines in the diagram.

This uses the same argument as Lemma 3.1 since by construction,X(d) only has lin-
early independent rows and columns and the productX(d)2 only has nonzero entriesEil

if X(d) has an entryEij and an entryEjl for somej .
The following remark allows us to simplify the shapes of the diagrams we are

sidering. If d = (d1, . . . , dr ) is an r-tuple in N
r , and σ ∈ Sr (whereSr is the permu-

tation group onr letters) we definedσ as (dσ1, dσ2, . . . , dσr ). By abuse of notation
for d = (d1, . . . , dr , dr , . . . , d1) in N

2r , we write dσ = (dσ1, . . . , dσr , dσr , . . . , dσ1) and
for d = (d1, . . . , dr , dr+1, dr , . . . , d1) in N

2r+1, we definedσ to be the 2r + 1-tuple
(dσ1, . . . , dσr , dr+1, dσr , . . . , dσ1). It will be clear from the context which tuple we a
referring to.

Remark 4.2. Ford = (d1, . . . , dr ) the diagramsLh(d) andLh(dσ ) have the same chains

lines for anyσ ∈ Sr . In other words: for anyk � 1, the number of chains of lines of length
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k in Lh(d) is the same as the number of lines of lengthk in Lh(dσ ). As an illustration,
consider the permutation 1243 ofd = (3,1,2,3):

• • • •
• • •
• •

• • • •
• • •

• •
Similarly, for f = (f1, . . . , fr , fr , . . . , f1), respectively forg = (g1, . . . , gr , gr+1, gr , . . . ,

g1), if L(f ) andL(g) are line diagrams forsp2n or soN then for anyσ ∈ Sr , the diagrams
L(fσ ), respectivelyL(gσ ), are also diagrams for the corresponding Lie algebras and
the same exactly the same chains asL(f ), respectively asL(g).

We have an immediate consequence of Remark 4.2 and Lemma 4.1:

Corollary 4.3. Letd = (d1, . . . , dr , dr , . . . , d1) or d = (d1, . . . , dr , dr+1, dr , . . . , d1) be the
dimension vector of a parabolic subalgebra of a symplectic or orthogonal Lie algebra
X(d) be given by the appropriate line diagram. In calculating the rank ofX(d)k we can
assume thatd1 � · · · � dr .

We will make frequent use of this property. Now we will finally be able to const
diagrams for the other classical cases. We have already mentioned that the horizon
diagrams do not produce Richardson elements. One reason is that the counterpart
i—j is not always horizontal. The other reason is that we have to introduce negative
for the symplectic and orthogonal cases when we associate a nilpotent matrix to a di
If g = sp2n, in the definition ofX(d) we subtractEij whenever there is a linei—j with
n < i < j . If g = soN we subtractEij whenever there is a linei—j with i + j > N .

Example 3. Let (1,2,2,1) be the dimension vector of a parabolic subalgebra ofsp6. Then
the following three line diagrams determine elements of the nilradical ofp:

1 2 4 6

3 5

1 2 4 6

3 5

1 2 5 6

3 4

The last diagram is just a reordering of the second. The nilpotent elements areX1 = E12+
E24 + E35 − E56, respectivelyX2 = E12 + E25 + E34 − E56. By calculating the Jorda
canonical forms for these elements one checks that only the nilpotent elementX2 is a
Richardson element.

This example and the discussion above illustrate that for the symplectic and ortho
Lie algebras, we will use:

(i) non-horizontal lines,
(ii) labeling top–bottom and bottom–top,
(iii) negative signs, too.
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Before we start defining these line diagrams we introduce a new notion.

Definition 2. Let p be the standard parabolic subalgebra of a symplectic or orthogon
algebrag. We say thatp is simpleif p ⊂ g is of one of the following forms:

(1) A parabolic subalgebra ofsp2n with an even number of blocks in the standard L
factor.

(2) A parabolic subalgebra ofso2n with an even number of blocks in the standard L
factor such that odd block lengths appear exactly twice.

(3) A parabolic subalgebra ofsp2n with an odd number of blocks in the Levi factor a
such that each odddi that is smaller thandr+1 appears exactly twice.

(4) A parabolic subalgebra ofsoN with an odd number of blocks in the Levi factor su
that either alldi are odd or there is an indexk � r such that alldi with i � k are even,
dj odd forj > k and the evendi are smaller thandk+1, . . . , dr . Furthermore, the eve
block lengths that are larger thandr+1 appear only once amongd1, . . . , dk .

Definition 3 (Type(a)). Letp be a simple parabolic subalgebra ofsp2n or so2n, given by the
dimension vectord = (d1, . . . , dr , dr , . . . , d1). Then we define theline diagramLeven(d)

associated tod (andg) as follows:

(1) Draw 2n vertices in 2r columns of lengthd1, . . . , top-adjusted. Label the firstr
columns with the numbers 1, . . . , n, top–bottom. Label the secondr columns with
the numbersn + 1, . . . ,2n, bottom–top.

(2) Join the firstr columns with horizontal lines as forsln. Draw the counterparts of thes
lines in the secondr columns.

(3) (i) If g = sp2n, add the linesk—(2n − k + 1).
(ii) If g = so2n, one adds the lines(2l −1)—(2n−2l +1) and their counterparts 2l—

(2n−2l +2) if n is even. Ifn is odd, the lines 2l—(2n−2l) and their counterpart
(2l + 1)—(2n − 2l + 1).

Definition 4 (Type(b)). Letp be a simple parabolic subalgebra ofsp2n or of soN , given by
the dimension vectord = (d1, . . . , dr , dr+1, dr , . . . , d1). Then we define theline diagram
Lodd(d) associated tod (andg) as follows:

(1) Draw 2r + 1 columns of lengthd1, . . . , top-adjusted. Label them with the numbe
1, . . . in increasing order, top–bottom in each column.

(2) (i) For sp2n: If mini{di} � 2, draw a horizontal of lines in the first row and all th
counterparts, forming a sequence joining the lowest vertices of each colum
peat this procedure as long as the columns of the remaining vertices are all a
of length two.

(ii) For soN : If d1 is odd, go to step (3)(ii). Ifd1 is even, do as in (2)(i), drawing lines
the first row and their counterparts joining the lowest vertices. Repeat until e
the first of the remaining columns has odd length or there are no vertices left

joined. Continue as in (3)(ii).
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(3) (i) Forsp2n: For the remaining vertices: draw horizontal lines following the top-m
remaining vertices and simultaneously their counterparts (the lowest rema
vertices).

(ii) For soN : All columns have odd length. Connect the central entries of each col
The remaining column lengths are all even; they are joined as in (2)(ii).

Theorem 4.4. Let d be the dimension vector for a simple parabolic subalgebra ofsp2n or
soN . Then the associated diagramLeven(d), respectivelyLodd(d), determines a Richardso
element forp(d) by setting

X(d) =
∑

i—j, i�n

Eij −
∑

i—j, i>n

Eij for sp2n,

X(d) =
∑

i—j, i+j<N

Eij −
∑

i—j, i+j>N

Eij for soN,

where the sums are over all lines in the diagram.

We first include some immediate consequences of this result. After that we add
servation about the (dual of the) partition corresponding toX(d) and then we are ready t
prove Theorem 4.4.

Theorem 4.4 enables us to determine the minimalk such that the Richardson eleme
X(d) lies in the graded partsg1⊕· · ·⊕gk . To do so we introduces(d) as the maximal num
ber of entriesdi, . . . , di+s of d that are surrounded by larger entriesdi−1 anddi+s+1. More
precisely, ifd = (d1, . . . , dr , dr , . . . , d1) or d = (d1, . . . , dr , dr+1, . . . , d1) is the dimension
vector, we rewrited as a vector with increasing indices,(c1 . . . , cr , cr+1, cr+2, . . . , c2r ),
respectively(c1 . . . , cr , cr+1, cr+2, . . . , c2r+1), and define

s(d) := 1+ max
i

{there arecj+1, . . . , cj+i | cj > cj+l < cj+i+1 for all 1� l � i}.

Corollary 4.5. Let p(d) be a simple parabolic subalgebra of the orthogonal or symple
Lie algebras. Then the elementX(d) belongs tog1 ⊕ · · · ⊕ gs(d). The same holds fo
parabolic subalgebras ofsln.

This follows from the fact thatEij with i from columnk of the line diagram andj
from columnk + s is an entry of the graded partgs . If, e.g., we havec1 > cj < cs+1 for
j = 2, . . . , s then there is a line joining columns one ands + 1. SoX(d) has an entry ings .

Corollary 4.6. For sln, s(d) is equal to one if and only if the dimension vector satis
d1 � · · · � dt � · · · � dr for some1� t � r .

This well-known result has been observed by Lynch [Ly], Elashvili and Kac [E
Goodwin and Röhrle [GR], and in our joint work with Wallach [BW].

The next lemma shows how to obtain the dual of the partition ofX(d) if X(d) is given

by the appropriate line diagram ford .
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Lemma 4.7. If p(d) is a simple parabolic subalgebra of a symplectic or orthogonal
algebra letX = X(d) be given by the appropriate line diagramLeven(d) or Lodd(d). The
dual of the partition ofX has the form as follows:

Dual of the partition ofX g Type ofp

(i) d1, d1, . . . , dr , dr sp2n (a)

(ii ) dr+1 ∪
( ⋃

di /∈Do

di, di

)
∪

( ⋃
di∈Do

di − 1, di + 1

)
sp2n (b)

(iii )

( ⋃
dieven

di, di

)
∪

( ⋃
diodd

di − 1, di + 1

)
so2n (a)

(iv) dr+1 ∪
( ⋃

di /∈De

di, di

)
∪

( ⋃
di∈De

di − 1, di + 1

)
so2n+1 (b)

(v) dr+1 ∪
( ⋃

di /∈Do

di, di

)
∪

( ⋃
di∈Do

di − 1, di + 1

)
so2n (b)

whereDo := {di odd| di < dr+1}, Do := {di odd| di > dr+1} andDe := {di even| di >

dr+1} are subsets of{d1, . . . , dr}.
In particular, if Do, De or Do are empty, the partition in the corresponding case(ii) ,

(iv) or (v) has the same parts as the dimension vector. The same is true for(iii) , if there
are no odddi .

The proof consists mainly in counting lines and (sub)chains of lines of the corres
ing diagrams. Therefore we postpone it and include it in Appendix A. We are now
to prove Theorem 4.4 with the use of Theorem 2.3 and of Lemma 4.7.

Proof of Theorem 4.4. We consider the caseg = sp2n. For the parabolic subalgebras
an orthogonal Lie algebra, the claim follows using the same methods. The idea is to
dimension of the centralizer ofX(d) and compare it to the dimension of the Levi fact
To calculate the dimension of the centralizer, we use the formulae of Theorem 2.3,
use the dual of the partition ofX = X(d) as described in Lemma 4.7 and the numbe
odd parts in the partition ofX.

• sp2n, type (a): By Lemma 4.7 the dual partition of the nilpotent elementX = X(d)

has as parts the entries ofd . Since they all appear in pairs, the partition of the orbit has
odd entries. So by the formula of Theorem 2.3 we obtain dimgX = 1

2(2d2
1 + · · · + 2d2

r ),
the same as the dimension of the Levi factor. In particular,X is a Richardson element fo
the parabolic subalgebrap(d) of sp2n.

• sp2n, type (b): As in Lemma 4.7 letDo ⊂ {d1, . . . , dr} be the possibly empty set o
the odddi that are smaller thandr+1. Then the dual partition has the parts
{di, di | i < r, di /∈ Do} ∪ {dr+1} ∪ {di+1, di−1 | di ∈ Do}.
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Thedi that are not inDo come in pairs and do not contribute to odd parts in the partitio
X = X(d). In particular, the number of odd parts only depends ondr+1 and on the entrie
of Do. We write the elements ofDo in decreasing order as̃d1, . . . , d̃s (wheres = |Do|).
By assumption (the parabolic subalgebra is simple) these odd entries are all differend̃1 >

d̃2 > · · · > d̃s . Then the number of odd parts of the partition ofX is the same as the numb
of odd parts of the dual of the partition

P̃ : dr+1, d̃1 + 1, d̃1 − 1, . . . , d̃s + 1, d̃s − 1.

This hasdr+1 − (d̃1 + 1) ones,(d̃1 + 1) − (d̃1 − 1) twos,(d̃1 − 1) − (d̃2 + 1) threes, and
so on. So the number of odd parts in the dual ofP̃ is[

dr+1 − (d̃1 + 1)
] + [

(d̃1 − 1) − (d̃2 + 1)
] + · · · + [

(d̃s−1 − 1) − (d̃s + 1)
] + d̃s − 1

= dr+1 − 2s.

Thus the dimension of the centralizer ofX is

1

2

[( ∑
i<r+1
di /∈Do

2d2
i

)
+ d2

r+1 +
( ∑

di∈Do

(di − 1)2 + (di + 1)2
)

+ dr+1 − 2s

]

=
∑
i�r

d2
i +

(
dr+1 + 1

2

)
= dimm. �

4.1. Bala–Carter labels for Richardson orbits

The support of the nilpotent element of a simple line diagram is by construction a s
system of root. Namely, for anyd , the correspondingX(d) has at most one non-zero el
ment in each row and each column. One can check that none of the corresponding p
roots subtract from each other.

In other words, the support supp(X) forms a simple system of roots.

Remark 4.8. The converse statement is not true. There are Richardson elements
support form a simple system of roots but where there is no simple line diagram de
a Richardson element. A family of examples are the Borel subalgebras ofso2n or more
general, parabolic subalgebras ofso2n whereαn andαn−1 are both not roots of the Lev
factor

If X is a nilpotent element ofg we denote theG-orbit throughX by OX (whereG is
the adjoint group ofg).

Corollary 4.9. Letp(d) be a parabolic subalgebra ofsln. DefineX(d) by the line diagram
Lh(d) or a simple parabolic subalgebra of(b)-type forsp2n, soN Then the group spanne

by suppX(d) is equal to the Bala–Carter label of theG-orbit OX(d).
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Proof. This follows from the characterization of the type (i.e. the Bala–Carter labe
OX given by Panyushev in [Pa, Section 3].

For simplicity we assumed1 � · · · � dr . Note that in any case, the partition ofX(d) is
given by the chains in the line diagram. The partition ofX(d) has entryi + 1 for every
chain of lengthi.

If α given byEij andβ given byEkl are roots of suppX(d) then they add to a roo
of sln if and only if there is a line connecting them. Thus in the case of the special l
Lie algebra a chain of lengthi + 1 corresponds to a factor Ai in suppX(d). Similarly, for
sp2n andsoN , a chain of lengthi +1 together with its counterpart give a factor Ai . Finally,
the possibly remaining single chain of length 2j + 1 (passing through the central vertex
columnr + 1) in the case ofso2n+1 gives a factor Bj . Then the claim follows with [Pa
where Panyushev describes the type of a nilpotent orbit in terms of its partition.�

5. Branched diagrams

The diagrams we have introduced had at most one line to the left and at most o
to the right of a vertex. We call such a diagram asimple line diagram. In the case of simple
parabolic subalgebras, we can always choose a simple line diagram to define a Rich
element. However, there are parabolic subalgebras where no simple diagram gives
a Richardson elements. After giving an example we characterize the parabolic suba
for which there exists a simple line diagram giving a Richardson element. Then we d
the case of the symplectic Lie algebras. We introduce a branched diagram and o
Richardson elements for the parabolic subalgebra in question.

Example 4. (1) Consider the parabolic subalgebra ofso2n given by the dimension vecto
(n,n) wheren is odd. The elementX = X(n,n) given by the diagramLeven(n,n) has rank
n− 1 and so the kernel of the mapXk has dimensionn+ 1 or 2n for k = 1,2, respectively.
The partition ofX is then 12,2n−1, its dual isn − 1, n + 1. The centralizer ofX has
dimension 2n2 + 1− 1 and the Levi factor of this parabolic subalgebra has dimensionn2.
SoX is a Richardson element.

(2) Let p ⊂ so4d be given by(d, d, d, d) whered is odd. Note that the skew-symmet
of the orthogonal Lie algebra allows at mostd − 1 lines between the two central column

• • • •
• • • •
• • • •

The line diagramLeven(d, d, d, d) has 2d + d − 1 lines, 2(d − 1) two-subchains and
d − 1 three-chains. Calculating the dimensions of the kernel of the mapXk (where
X = X(d,d, d, d)) yields the partition 22,4d−1. Its dual is(d − 1)2, (d + 1)2, hence the
centralizer ofX has dimension 2d2 + 2 while the Levi factor has dimension 2d2.

Theorem 5.1. Let g be a simple Lie algebra. The parabolic subalgebrasp of g for which

there exists a simple line diagram that defines a Richardson element forp are:
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The parabolic subalgebras ofsln and the simple parabolic subalgebras of the symple
and orthogonal Lie algebras.

Proof. By Theorems 3.2 and 4.4 there is always a simple line diagram giving a Richa
element in these cases. It remains to show that these are the only ones. By Corollary
can assume w.l.o.g. thatd1 � · · · � dr . Then it turns out that if there is an even number
blocks forso2n or if dr � dr+1 for sp2n the problem is translated to the problem of findi
a Richardson element in the first graded partg1 of g because of the following observatio
Sinced1 � · · · � dr = dr � · · · � d1, or d1 � · · · � dr � dr+1 � dr � · · · � d1 all lines
are connecting neighbored columns. But lines connecting neighbored columns corr
to entriesEi,j of the first super diagonal of the parabolic subalgebra, i.e. to entries og1.
Then the claim follows from the classification of parabolic subalgebras with a Richa
element ing1 for type (a) ofso2n and ifdr � dr+1 for type (b) parabolic subalgebras of t
symplectic Lie algebra. In both cases there exists a Richardson element ing1 if and only
if each odd block lengthdi only appears once amongd1, . . . , dr , cf. [BW]. If there is no
Richardson element ing1 then in particular no simple line diagram can give a Richard
element. It remains to deal with (b)-types forsoN and (b)-types forsp2n wheredr+1 is not
maximal. Both are straightforward but rather lengthy calculation that we omit here.�

By way of illustration we include examples of branched diagrams for non-simple
abolic subalgebras ofsp2n and of soN in Appendix A. In general, it is not clear ho
branched diagrams should be defined uniformly for the symplectic and orthogon
algebras. It is clear from the description of simple parabolic subalgebras ofsoN that this
case is more intricate. We assume that Richardson elements can be obtained by
lines to the corresponding simple line diagrams:

Conjecture 1. For the (b)-type ofsp2n the appropriate diagram defining a Richards
element is obtained fromLodd(d) by adding a branching for every repetitiondi = di+1 =
· · · = di+s of odd entries smaller thandr+1.

We conclude this section with a remark on the bounds(d) introduced in Section 4. I
there is no simple line diagram defining a Richardson element, we can still defines(d) to
be the maximal number of a sequence of entries ofd that are surrounded by two larg
entries. But this will now only be a lower bound, the Richardson element defined
branched diagram does not necessarily lie ing1 ⊕ · · · ⊕ gs(d), cf. Examples 5–7.

Appendix A

We discuss some examples of branched line diagrams forsp2n and forsoN to illustrate
Section 5. Recall that the parabolic subalgebras of type (b) ofsp2n are simple if and only
if every odddi < dr+1 only appears once amongd1, . . . , dr . In particular, the smalles

example ofsp2n where there is no simple line diagram exists forn = 3.
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Example 5. Let p be the parabolic subalgebra ofsp6 with dimension vector(1,1,2,1,1).
Consider the diagrams

1 2 3 5 6

4

3

1 2 5 6

4

The diagram to the left is a line diagram as in Section 4. The corresponding nilp
element has a centralizer of dimension 7. However, the Levi factor is five-dimension
the second diagram, there is one extra line, connecting the vertices 2 and 5. The
matrixX = E12 + E23 + E25 − E45 − E56 has a five-dimensional centralizer as neede

Example 6. The following branched line diagram for the parabolic subalgebra ofsp22 with
dimension vectord = (1,1,1,3,3,4,3,3,1,1,1) gives a Richardson element forp(d):

10

4 7 11 14 17

1 2 3 5 8 15 18 20 21 22

6 9 12 16 19

13

The Levi factor and the centralizer of the constructedX have dimension 31.

Example 7. For the orthogonal Lie algebras, the smallest example are given byd =
(1,1,2,2,1,1), i.e. (a)-type ofg = so8 and byd = (2,2,1,2,2) for an odd number o
blocks inso9. The following branched diagrams give Richardson elements for the c
sponding parabolic subalgebras:

3 6
1 2 7 8

4 5

1 3 6 8
5

2 4 7 9

Proof of Lemma 4.7. We prove the statement for the symplectic Lie algebras. The c
sponding statements forsoN are proven similarly.

(i) Type(a) of sp2n: Note that the bottom–top ordering of the second half ofLeven(d)

ensures that the counterpart of a linei—j (for j � n) is again horizontal and that all line
connecting any entry of columnr to an entry to its right are horizontal. Therefore t
line diagramLeven has the same shape as the horizontal line diagram defined forsln. In
particular, the orbit of the nilpotent element defined byLeven(d) has the same partition a
the one defined byLh(d). Then the assertion follows with Lemma 3.3.

(ii) Type(b) of sp2n: The proof is done by induction onr . Let d = (d1, d2, d1) be the
dimension vector. Ifd1 /∈ Do (i.e. d1 is not an odd entry smaller thand2) then the line

diagramLeven(d1, d2, d1) has the same chains of lines as the horizontal diagram forsl2n.
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For d1 ∈ Do the diagramLeven(d1, d2, d1) hasd1 − 1 two-chains (chains of length two
and 2 one-chains (i.e. lines). So the kernel of the mapXk has dimensiond2, d1 + d2 +
1, 2d1 + d2 for k = 1,2,3, giving the partition 1d2−d1−1,22,3d1−1 and the dual of it is
d2, d1 + 1, d1 − 1, as claimed.

Let nowd = (d1, . . . , dr , dr+1, dr , . . . , d1) with d1 � · · · � dr+1. For d ′ = (d2, . . . , dr ,

dr+1, dr , . . . , d2) is OK. Letd1 be even. Ifd1 = dr+1 then the diagramLodd(d) is the same
asLh(d), the claim follows immediately. Ifd1 < dr+1, the diagramLodd(d) is obtained
from Lodd(d

′) by extendingd1 (2r − 2)-chains to 2r-chains. The kernels of the mapXk

satisfy dimkerXk = dimkerY k for k � 2r − 1, dim kerX2r = 2n − d1 = dimkerY 2r + d1
and dimkerX2r+1 = 2n = dimkerY 2r+1 + 2d1 whereY ∈ sp2n−2d1

is defined by the line
diagramLeven(d

′). If the partition ofY is 1b1,2b2, . . . , (2r − 1)b2r−1 then the partition of
X is

1b1, . . . , (2r − 2)b2r−2, (2r − 1)b2r−1−d1, (2r)0, (2r + 1)d1.

Thus the dual of this partition is the dual of the partition ofY together with the partsd1, d1.
If d1 is even andd1 > dr+1, the diagramLodd(d) is obtained fromLodd(d

′) by ex-
tendingdr+1 (2r − 2)-chains to 2r-chains and by extendingd1 − dr+1 (2r − 3)-chains to
(2r − 1)-chains. Here we get dimkerXk = dimkerY k for k � 2r − 2, dimkerX2r−1 =
dimkerY 2r−1 + d1 − dr+1, dimkerX2r = 2n − dr + 1 = dimkerY 2r + 2d1 − dr+1 and
dimkerX2r+1 = 2n = dimkerY 2r+1 + 2d1. So the partition ofX can be calculated to be

1b1, . . . , (2r − 3)b2r−3, (2r − 2)b2r−2−d1+dr+1, (2r − 1)b2r−1−dr+1, (2r)d1−dr+1, (2r + 1)dr+1

with b2r−1 = dr+1. Again, the dual of the partition ofX is obtained from the dual of th
partition ofY by addingd1, d1.

Let d1 be odd andd1 > dr+1. In particular, there are no odddi that are smaller tha
dr+1. The shape ofLodd(d) is the same as the diagram forsl2n (i.e. they have the sam
chain lengths). So the dual of the partition is just the dimension vector and we are d
d1 < dr+1, the diagramLodd(d) is obtained fromLodd(d

′) by extendingd1 − 1 (2r − 2)-
chains to 2r-chains and by extending two(2r − 2)-chains to(2r − 1)-chains. The calcu
lations of the dimensions of the kernels forX (compared to those forY ) give as partition
of X:

1b1, . . . , (2r − 2)b2r−2, (2r − 1)b2r−1−d1−1, (2r)2, (2r + 1)d1−1.

Hence the dual of the partition ofX is obtained from the dual of the partition ofY by
adjoiningd1 + 1, d1 − 1. �

References

[BC] P. Bala, R.W. Carter, Classes of unipotent elements in simple algebraic groups. II, Math. Proc. Cam
Philos. Soc. 80 (1) (1976) 1–17.
[Ba] K. Baur, A normal form for admissible characters in the sense of Lynch, Represent. Theory 9 (2005) 30–45.



ARTICLE IN PRESS
S0021-8693(05)00240-1/FLA AID:10569 Vol.•••(•••) [DTD5] P.18 (1-18)
YJABR:m1 v 1.39 Prn:24/05/2005; 12:08 yjabr10569 by:JOL p. 18

18 K. Baur / Journal of Algebra••• (••••) •••–•••

(2005)

he

Hall,

J. Alge-

e Univ.

. 57 (4)

) 1453–

London
[BW] K. Baur, N. Wallach, Nice parabolic subalgebras of reductive Lie algebras, Represent. Theory 9
1–29.

[BHRR] T. Brüstle, L. Hille, C.M. Ringel, G. Röhrle, The�-filtered modules without self-extensions for t
Auslander algebra ofk[T ]/〈T n〉, Algebr. Represent. Theory 2 (3) (1999) 295–312.

[CM] D.H. Collingwood, W.M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Chapman and
London, 1993.

[EK] A.G. Elashvili, V.G. Kac, Classification of good gradings of simple Lie algebras, math-ph/0312030.
[GR] S. Goodwin, G. Röhrle, Prehomogeneous spaces for parabolic group actions in classical groups,

bra 276 (2004) 383–398.
[GW] R. Goodman, N.R. Wallach, Representations and Invariants of the Classical Groups, Cambridg

Press, Cambridge, 1998.
[KP] H. Kraft, C. Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv

(1982) 539–602.
[Ly] T.E. Lynch, Generalized Whittaker vectors and representation theory, Thesis, MIT, 1979.
[Pa] D.I. Panyushev, On spherical nilpotent orbits and beyond, Ann. Inst. Fourier (Grenoble) 49 (5) (1999

1476.
[Ri] R.W. Richardson, Conjugacy classes in parabolic subgroups of semisimple algebraic groups, Bull.
Math. Soc. 6 (1974) 21–24.




