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ABSTRACT

This research project addresses the Quantificatioo of the risks due to contaminant (solute)

concentrations in field-scale soils as contaminants migrate under various pollution loadings at the

soil surface (boundary conditions), starting with initial contaminant plumes existing within the

soil medium prior to the beginning of loadings (initial conditions). The field-scale soils are

considered heterogeneous with stationary fluctuations of soil hydraulic properties in the

horizontal direction but nonstationary fluctuations of these properties in the vertical direction due

to statistical heterogeneity of the soil profile. For the quantification of soil contamination risks,

first, almost exact ensemble probability distribution functions of solute travel time for stochastic

vertical convective solute transport within above-described heterogeneous field scale soils under

both deterministic and stochastic water application rates and unsteady-nonuniform moisture

flows were derived directly from the convective transport stochastic partial differential equation

(PDE) under general depth-varying initial and time-varying boundary conditions. Secondly,

almost exact ensemble pdfs of solute concentrations as function of time and soil depth for

stochastic vertical convective solute transport within above-described field-scale, heterogeneous

soils under both deterministic and stochastic water application rates were derived directly from

the convective transport stochastic PDE under various depth-varying initial and time-varying

boundary conditions. Field data from the water and solute transport experiments at V.C. Davis

field site showed that the approximation, used in the above ensem ble pdfs, is exact for the

particular field site. The derived ensemble pdfs for solute concentrations were verified by Monte

Carlo simulation solutions of the convective transport stochastic PDE. The derived ensemble

pdfs unify the Eulerian and Lagrangian components of transport in one single framework since

they contain explicitly the influence of both initial and boundary conditions. They also show that

the derived pdfs for both solute travel times and solute concentrations are non-Gaussian under

the influence of initial and boundary conditions.
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analyzed the evolution of the field scale breakthrough curve as function of depth in tenus of the

first two moments of solute travel time.

Although the above-mentioned studies have established the fundamental stochastic

convective nature of solute transport at field-scale soils, it was Russo (1991) who established the

essentially one-dimensional, vertical nature of this transport. and the importance of vertical soil

heterogeneity (this issue was also stressed in the experimental study of Butters and Jury, 1989)

and the importance of transient flow conditions on this transport. The two-dimensional

numerical simulation studies of water flow and solute transport on a heterogeneous vertical soil

plane (in x-z directions) by Russo (1991) showed no apparent horizontal solute spreading while

the location of the center of solute mass and the spread around the center of mass in the vertical

direction varied considerably in time, thereby, justifying the one-dimensional transport models of

the above-mentioned studies. Numerical experiment of Russo (1991) showed that the correlation

scale of solute concentrations in the horizontal direction is around 1 m., thereby, justifying the

independent columns hypothesis of Dagan and Bresler (1979). Russo (1991) also showed, by

means of spatial moment analysis, that the effective vertical solute velocity has a clear time

trend, thus pointing to the timewise nonstationary nature of solute transport. Stressing the

fundamentally transient nature of soil water flows, Russo stated that "under both natural and

irrigated agricultural conditions the water flow in the vadose zone is affected by time-dependent

processes which act on the soil surface". With respect to the effect of soil heterogeneity in the

vertical direction on solute transport, he stated "relatively small variations in the soil hydraulic

properties normal to the direction of flow can exert a significant influence on the spread of the

solute plume".

In the light of above-mentioned studies, this project addresses the problem on the

development of ensemble pdfs of stochastic time-depth nonstationary (but horizontally

stationary) field-scale, vertical convective solute transport. The development of the time-depth

evolutionary pdfs of solute concentrations and solute travel times are obtained directly from the

convective solute transport equation under general unsteady and nonuniform soil moisture flows
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and under time-varying solute concentration UBCs and depth-varying solute concentration Ies.

First, the pathwise deterministic analytical continuum solution of vertical convective solute

transport is obtained. In order to verify this solution, it is combined with a Green-Ampt

analytical solution of vertical soil moisture flows and tested against the numerical solution of

convective solute transport equation combined with the numerical solution of vertical Richard's

equation. Secondly, utilizing the analytical continuum solution of convective transport equation,

the general ensemble pdf of solute travel time is obtained. Then the time-depth dependent

ensemble pdf of solute concentration is developed under general initial and boundary conditions.

It is shown that this solution combines the popular Eulerian and Lagrangian approaches to solute

transport modeling under one framework. The theoretical solute concentration pdfs are then

verified by Monte Carlo solutions. The above developments consider the stochasticity in the

flow and solute concentration fields due mainly to field-scale soil heterogeneity. The water

application (recharge or input water flux) rates, although considered generally as time-varying in

the solutions, are taken as deterministic. In the final section of this project, the water application

rates are also randomized and the previous developments are generalized accordingly.

For the experimental part of this research, a field site on the UC Davis campus was

intensively instrumented for the determination of soil water flow hydraulic characteristics and of

solute transport characteristics for a conservative solute (potassium chloride) and a reactive

solute (atrazine). These experimental results are being utilized in the validation of theoretical

developments achieved by this project on field-scale solute transport.

1.2 Research Qbjectives

Within the framework of the above problem statement the pbjectives of this research project

may be stated as:

a) To derive the ensemble probability density functions (pdf) of solute concentrations

and solute travel times for stochastic time-depth nonstationary (but horizontally

stationary) field-scale. vertical convective solute transport directly from the transport

equation under general initial and boundary conditions;
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b) To validate the derived ensemble pdfs by Monte Carlo solutions of convective solute

transport;

c) To perform experiments at a DC Davis agricultural field for detennination of soil

water flow hydraulic characteristics and solute transport characteristics for a

conservative and a reactive solute at field scale; to utilize the experimental results for

validation of the theoretical results.

III. METHODOLOGY

The convective vertical transport equation for a conservative solute through a vertically

heterogeneous soil by unsteady-nonuniform soil moisture flow is expressed as (Simmons, 1982);

aqz,t) + q(z,t) aqz,t) _ 0
at e(z,t) az -. (1)

where C denotes time-depth dependent solute concentration, z is depth coordinate (positive

downwards), t is time, q is local Darcy flux in the vertical direction, and e is the local volumetric

moisture content. In (1) it is assumed that the solid phase is incompressible soil and liquid phase

is incompressible, constant density fluid. We are also assuming that the water table is

sufficiently deep so that it does not have significant influence on flow in the vadose lone,

thereby, leading to the assumption of a semi-infinite porous medium. The initial and boundary

conditions for soil moisture flows are,

IC: 9(z,O) = 9n(z) ,z > 0 (2a)

UBC: q(O,t)= qO(t) ,t > 0 (2b)

and the conditions for solute transport are,

IC: C(z,O) = Cn(z) ,z > 0 (2c)

UBC: C(O,t) = Co(t) ,t > 0 (2d)
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Using the theory of first-order partial differential equations (PDE) (Hildebrand, 1976) the

~eneral deterministic analytical continyum solution of the vertical convective solute transport

through a vadose zone is obtained as

('{z,t) =~Lze (~,t) d~ - it q (0, 't) d't] (3)

where g[ • ] is a function whose form is to be determined from Ies and UBCs. To achieve an

explicit analytical solution from (3) it is necessary to specialize the moisture flow IC SnCz) to any

explicit, invertible function of z, and to specialize the moisture flow UBC qoCt) to any explicit,

invertible function of t. Meanwhile, the solute transport Ie CnCz) and UBC Co(t) may be left in

their general form provided they are understood to be invertible functions. Consequently. we

take for moisture flows,

IC: SnCz)= So , a constant , z > 0 (3a)

VBC: qo(t) = qo • a constant , t> 0 (3b)

andfor solute transport, (2c) and (2d) as Ie and VBC. Then under (3a), (3b), (2c) and (2d) the

general analytical continuum solution of vertical convective solute transport specializes to the

explicit form

c(Z.I)= c, [~o{f 9 (~,t) dS - qot}] • U (f 9 (S.I) dS - qot)

+Co rJo { - f a (S.t) dS + qot}1· U ( - f 9 (S.I) dS + qot) • z 2: 0, t 2: 0 (4)

where the step function U (.) is defined by

U(a) = 1 if a>O

o if cs 0

If (3a) and (3b) were generalized to a depth-dependent IC,

K': 9nCz)= Sol , z > 0

(4a)

(3c)
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and time-dependent UBC,

,t> 0 (3d)

then under (2c), (2d), (3c) and (3d) the general deterministic continuum solution (3) takes the

special explicit form

c{z,t) = c, [

The explicit analytical continuum solution (4) for vertical convective solute transport under

(2c), (2d), (3a) and (3b) was combined with a Green-Ampt analytical solution of vertical soil

moisture flows and tested against the numerical solution of convective solute transport equation

combined with the numerical solution of vertical Richard's equation with very satisfactory

results.

The solute travel time cumulative probability distribution function (CDF) under the general

ICs and Bes (2a), (2b), (2c) and (2d) is obtained from (3) as

P(T(z) < t]:: P [i" e (l;,t) dS <L q (O,t) dt]. (6)

and defining <I>(z,t) by

<1>(z,t):: i" e (S,t) dS

P(T(z) < t] = P [<1>(z.t) < it q (O;t) dt]

(7)

(6a)

Therefore, in order to obtain an explicit expression for the probability distribution of travel times

directly from the convective transport equation (1) under (2a), (2b), (2c) and (2d) it is necessary

to derive the pdf of the cumulative water in the soil profile from surface to a depth z at time t.
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Using the phase space-cumulant expansion methodology as described in Kavvas and

Govindaraju (1991), the Fokker-Planck system for the pdf of <b(z,O, P(<l>,z.t) is obtained as

oP (<1>, z,t) _ (O( )) oP (<1>, z,t)
dz -- z.t d<P

i.. a2p (<t>z t)
+ 0 d~ COy [O(z,t); e(z~.t)]. a<p; ,

IC: P(<1>,0, t) = o+(<P)

(8a)

VBC: -(e(z.t))> P(<t>,z,t)+ i" d~ COY [o(z.t); e{z~,t)]. ap~~ z,t) =0

Compatibility: iM P( <P,z,t) d<P = 1 (8b)

for soil depths z> Zc and to order Zc Var[O(z,t)] where Zc is the correlation length of O(z,t). One
.-

can notice from (8a) that for the ensemble pdf of <!l(z,t) (and, thereby, of solute travel times) at

field-scale, the dispersion appears naturally in the Fokker-Planck equation for P(<I>.z,t) due to

field heterogeneity as manifested by the spatial covariance of the soil moisture content. The

Fokker-Planck system (Sa) and (8b) has no known explicit analytical solution. However, the

following approximate analytical solution was developed;

P(<t>,z,t)= J41t~(Z.t) exp {- i [<1>- H(z,t)]2/2B(z,t)} I z ~ 0; <b~ 0 (9a)

where B(z,t) = La du iM d~ COy [e{u.t); e(u - ~,t)] , (9b)

H(z,t) = i" < 0 (~,t) >d~ (9c)
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It may be noted from (9) that the pdf of <I>(z,t)varies with time t and depth z. It was also

possible to derive an explicit mathematical condition for the validity of the approximate

analytical solution (9). For

H(z,t) > [32B(z.t)]1f2 (lOa)

the approximate analytical solution (9) satisfies the Fokker-Planck system (8) with 99.9999%

precision while for

H(z.t) > 2.33 [2B(z,t)]1f2 (lOb)

the approximate solution (9) satisfies (8) with 99% precision. Therefore, for all practical

purposes once the soil moisture flow stochastic process satisfies the less stringent condition.

(lOb), the approximate solution (9) becomes an almost exact solution to the system (8) for the

pdf of <I>(z,t). It may be noted from (9) that the approximate solution (9) for the pdf of <P(z,t) is

. Gaussian with mean H(z,t) and variance B(z.t).

Combining (9) with (6) one obtains the almost exact CDP of solute travel times directly

from the vertical convective solute transport equation under the general moisture and

concentration initial and boundary conditions (2a), (2b), (2c) and (2d), as

(
ilq(O,t) dr - i' < e (~,t) > d~ 1

~T(z) <~ilq(O,'t)d't] = Pl1> (1' q(O,t) d't) = 5 ---;======== (11)
2i' du iMd~ Cov [e{u,t); e(u - ~,t)]

where F<r>denotes the CDP of <P(z,t) while 5(-) is the CDP of a Standard Gaussian (Normal)

random variable. Expression (11) shows clearly that solute travel time CDP depends upon the

input moisture flux (water application rate) q(O,'t) at soil surface and on the mean and covariance

behavior of the soil moisture content stochastic function at field scale. It may be pointed out that

in (11) q(O,'t) is deterministic. Its randomization shall be dealt with later. Although, the CDP of

solute travel time looks as if Gaussian, it actually i.umt. TIle pdf of solute travel time, fT(z)(t), is

obtained from (11) as
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fllz{t Iit q(O,'t)d't) = dF~Lq(o.'t}d't) / dt

=~fq(O,'t)d't,z.t) • q(O,t)

Hence. from (12) it follows that although the pdf P(<P,z,t) of <P(z,t) is almost Gaussian, as long as

(12)

the water application rate q(O,t) at soil surface varies with time r, the pdf of the solute trav~l

time will be non-Gaussian.

Next we obtain the time-depth dependent ensemble pdf of solute concentration under both

Ies and UBCs of vertical soil moisture flows and solute concentrations at field-scale, In this

derivation we initially consider the stochasticity only due to soil heterogeneity which is

considered nonstationary with respect to soil depth (vertical soil statistical heterogeneity) but

stationary in the horizontal plane. The solute concentration process will, however, be time-depth

nonstationary due to the time-depth varying solute concentration initial and boundary conditions

even if the soil moisture flows were taken steady and uniform. Hence, the vertical convective

solute transport equation (1) becomes a stochastic partial differential equation (SPDE) when it is

viewed as a model of vertical solute transport at field scale. The concentration pdf shall be

obtained directly from (1).

The analytical solution (4) to the vertical convective solute transport equation under the ICs

and UBCs (2c), (2d), (3a) and (3b) is a pathwise solution when the transport equation (1) is

considered as a SPDE under the stochasticity of soil moisture flows due to field-scale soil

heterogeneity. In general, the pdf of time-depth varying solute concentration, for given

deterministic water application rates q(O,t), follows from the general pathwise solution (3) to the

stochastic convective solute transport equation (1) as follows,

(13)

13



specializing the solution to the solute transport system (1), (2c), (Zd), (3a) and (3b), and utilizing

the pathwise solution (4) and the almost exact pdf (9) for cI>(z,t), we obtain the time-depth

evolutionary pdf of solute concentration Ctz.t), for given deterministic water application rates, as

fc [c.z.tIqo) = t J 1( exp {- 4Bt )} l- qo Q(c) + qot - H(z.t)f-e", 1 41tB z.t] z.t
.1 dcd(c) I_ s(qot - H(Z,t))
qo de J2B{z,t)

+ f J 1 exp {- 4B( )}. [00 c;j(c) + qot- H(z,t)]2-
f= 1 4rcB(z,t) z.t

-10 dC~i(c)I- [1 - s(qot - H(Z.t))]
o de J2B(z.t)

(14)

for the general case when the concentration IC function Cn(z) and VBC function Co(t) have

respectively finite m and J numbers of inverses, and for soil depths z> Zc (where Zc is the

correlation length of soil moisture content e(z,t). to order Zc Var[e(z,t)]. It is important to note

that the first summation on r-h-s of (14) is the Eulerian component of solute transport which is

dictated by the upper boundary conditions, while the second summation on r-h-s of (14) is the

Lagrangian component which is dictated by the initial conditions. Thus, (14). and for that matter

(13), provide solution frameworks to the time-depth probabilistic behavior of solute

concentration in field-scale soils where both the Eulerian and Lagrangian components are

incorporated. It is also important to note that in (14) both the initial and boundary conditions for

soil moisture flows and solute transport are incorporated to the ensemble pdf of solute

concentrations at field-scale.

We have then developed the pdfs of solute concentration under various special cases.

Special Case 1 corresponds to taking initial concentration Cn(z) = Cn• a constant. while

considering the VBC Co(t) as a step input load, Co(t) = CoU(t) where Co is constant, in addition

to (2a) and (2b) as general Ie and UBC for soil moisture flows. Under this case
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[ I
I ] (it q(o,1:)<11:- H(Z,t))

P C(z,t) ""Co f. q(o,1:)<1't = S .:...;0_. /r===;=~-
o V 2B(z,t)

[ I I I (ilq(o,1:)<1t - H(Z,t))
p qz,t) = en i q(O"jd' = 1- s 0 ,.f2B(z.t) (15)

for soil depths z > Zc and to order Zc Var[9(z,t)].

Special Case 2 corresponds to rc Cn(z) ""0 and pulse input lQad UBC Co(t) = m[U(t) - U(t-

to)], in addition to (2a) and (2b) as 2"eneral Ie and UBC fQr soil moisture flows. For this case, for

(r )I Jo q(o,'t)dt - H(z,t)
p[qz.t)=mli q(O"jd'll=s 0 'IzB(z.t)

(r )I Jo q(Q,1:)d1: - H(z,t)
p[qz.t)=oli q(O"jd'II=I-S 0 \hB(z.t) (16a)

and for t > to,

[ IiI ] (L
t

q{O,1:}dt-H{Z,t)) l (_L
I

-_'oq(-;==o,1:)d:::;==t-=H(::=--Z,t-_to))](16b)
p qz,t)=m q(o,1:}dt =S/ • I-S .I

o ¥ 2B(z,t) V 2B(z,t - to)

for soil depths z c- Zc and to order Zc Var [B(z,t)].

Special Case 3 corresponds to IC Cn(z) = 0 and impulse input load UBC Co(t) = mo+(t). in

addition to (2a) and (2b) as general Ie and VEC for soil moisture flows. FQr this case

(17)

for soil depths z > Zc and to order Zc Var[9(z,t)]. (17) leads to

(qz.t) = mP (il q(o,1:}d't,z,t)
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where in (17) and (17a) P (1' q(Ott)Clt,z,t)denotes pdf of <1> evaluated at ilq(o,'t)dt
while P (q:. ¢:. f q(o,'t)dt,z,t) denotes the probability of the event that <I> ¢:. (il

q(o.t)<it).

Finally, we consider the more general case when the water application rate qto.t) is also

taken as stochastic in addition to the stochasticity due to soil heterogeneity. Define Q(t) as

Q(t) = ilq(o,t)dt .' (18)

The solute travel time CDF under stochastic water application rates becomes

P [T(z) < t] = f F<I>(Q(t))e f(Q(t))dQ(t)

where F¢(Q(t» is defined in (11) and f(Q(t» is the pdf of Qu).

(19)

The pdf (13) for time-depth varying solute concentration generalizes to

r,(c,z,t) = 1M fc(cI<I>~ Q{t)) e F<t>(Q(t)) £(O(t)) dQ{~)

+ 1M fJcl<I»Q{t)).[I-F<t>(Q(t))]ef(Q(t))dQ(t) (20)

Also, (14) generalizes to

(21)

where fc(c,z,t I qo) is as defined in (14), and f(qo) is the pdf of random (constant in time) water

application rate qo. Expressions (15), (16) and (17) for various cases are also generalized

similarly by unconditioning the conditional probability distributions by the pdf of Q(t).

The theoretical work, described above for the pdf of cumulative water content <I>(z,t)and for

the pdf of solute concentration Ctz.t) at field scale was tested by Monte Carlo simulations. For

this purpose, the mean and covariance functions of the soil moisture content e(z,t) which appear

as the basic parameters in all probability distributions, were obtained from the field experiments,

performed at V.c. Davis field site during this project. Using these data it was possible to show

that for the drainage experiments, performed at U.C. Davis field site, the mathematical condition
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(lOa) for the complete validity of the approximate pdf (9) for <I>(z,t)always holds. Therefore, for

the drainage experiments held at U.C. Davis field site, (9) is an exact solution for the pdf of

<I>(z,t).Using the field experimental results for the mean and covariance functions of 9(z,t) and

for the initial and boundary conditions for moisture flows, the pdf (9) which was theoretically

derived from the stochastic vertical convective solute transport SPDE system (1), (2c), (2d), (3a)

and (3b) was compared against corresponding Monte Carlo simulations of the same pdf as

function of time and depth. The comparison results were very satisfactory. This comparison

verifies the validity of the theoretical solutions to the pdf of time-depth nonstationary vertical

convective solute transport in field soils.

III. PRINCIPAL FINDINGS, AND SIGNIFICANCE

In this project first the implicit deterministic continuum solution of the vertical

convective transport of a conservative solute in the vadose was obtained under both depth-

dependent initial and time-dependent solute concentration conditions and general soil moisture

initial and boundary conditions (equation (3». Then an explicit deterministic continuum solution

to this problem was obtained by keeping the solute concentration IC and UBC general but

specializing the soil moisture IC and UBC to constants. This solution was then verified by

numerical solutions of the same problem. If both the initial and boundary conditions for soil

moisture flows and solute transport were deterministic and the soil profile was perfectly

homogeneous at field scale, then the provided solution could be used to calculate the solute

concentrations as function of time and soil depth under various initial soil contamination

conditions, followed by various time-varying pollution loads on the soil surface.

However, at field-scale the soils are heterogeneous, thereby rendering the soil moisture

flows a stochastic process. Furthermore, the water application rates at soil surface are in general

uncertain, thus introducing a second source of stochasticity to soil moisture flows and solute

transport. In this project an almost exact ensemble probability distribution functiQn of solute

travel time for time-depth nonstationary stochastic vertical convective solute transport within
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heterogeneous field-scale soils which also have statistically heterogeneous vertical soil profiles,

unsteady, nonuniform moisture flows, and uncertain water application rates, was derived directly

from the convective transport stochastic PDE under general depth-varying initial and time-

varying boundary conditions (equations (19) and (11». Validity of the approximation was

verified by experimental results at U.C. Davis field site which showed that the approximate

solution is exact for this field site. For the agricultural industry. irrigation specialists, and

agencies (such as California WRCB) which are monitoring contaminant levels in field-scale

soils, this probability distribution quantifies the risks of contaminant migration as function of soil

depth and time, starting from an initial contaminant concentration profile in the soil and

proceeding with known contaminant loads in tjme from the soil surface. Another useful tool

which can also be utilized for such risk computations, is the ensemble pdf of solute concentration

as function of soil depth and time for stochastic vertical convective solute transport within

heterogeneous (stationary along the horizontal plane but non stationary with respect to depth due

to statistical heterogeneity of soil profile) field-scale soils under both deterministic (equation

(14» and uncertain (equation (21» water application rates that was derived directly from the

convective transport stochastic POE under depth-varying initial and time-varying boundary

concentration conditions. This derived pdf was verified by Monte Carlo simulation solutions of

the convective transport stochastic POE under parameters which were estimated from the

experimental data at U.C. Davis field site. Various versions of the ensemble pdf of solute

concentrations as function of time and depth for field-scale heterogeneous soils under various

practical solute load scenarios and general IC and UBC soil moisture flows were also derived.

Using these ensemble pdfs of solute concentrations as function of time and depth in field-scale

heterogeneous soils it will be possible for California agricultural industry and state agencies to

quantify the risks of contamination of the field·scale soils startin~ from an initial contaminant

concentration profile with respect to soil depth and proceedioe with known contaminant loads in

time from the soil surface under certain or uncertain water application rates.
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