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Abstract

Neural Probabilistic Learner and Sampler (NPLS) is an al-
gorithm that has simulated children’s non-symbolic probabil-
ity learning from visual stimuli such as collections of differ-
ent colors of marbles. Although NPLS closely simulates the
cognitive process of probability learning, the training of such
learning algorithms often uses binary encoding of inputs that
represent the perceived visual stimuli, avoiding simulation of
the visual perception of the stimuli. Here, the computer vi-
sion technique You Only Look Once (YOLO) (Jocher et al.,
2021; Redmon et al., 2016), is integrated into the workflow
of an NPLS simulation probability learning experiments with
children. YOLO is a convolutional neural network (CNN) de-
signed to detect objects. The model’s performance on marble
datasets is tested through an analysis of precision and recall.
Results indicate that the YOLO model, when trained suffi-
ciently, outputs predictions on marble image datasets with high
accuracy and precision. We also analyze YOLO’s suitability as
a biologically plausible model of visual processing, interfering
with YOLO’s training process by shortening the training time
to examine the effects of perceptual errors on simulated prob-
abilistic reasoning.
Keywords: Applied Machine Learning; Computer Vision;
Probabilistic Learning; Child Development; Cognitive Sci-
ence; Neural Network; Simulation;

Introduction
Probability learning is an integral aspect of life as humans
and animals rely on probabilistic estimations to make deci-
sions for survival and other needs. Recent work by Shultz and
Nobandegani (2022) on the Neural Probability Learner and
Sampler algorithm (NPLS) showed that probability learning
can occur even in infants without the explicit use of counting
and dividing. Shultz and Nobandegani’s (2022) simulations
replicated the empirical results of Denison and Xu’s (2014)
infant probability reasoning task. During the task, infants
were presented with two jars containing different proportions
of fake lollipops of two colors, one of which is preferred over
the other by the infants. The NPLS network learned the un-
derlying probability distributions by adjusting its connection
weights to reduce the sum of squared error (Shultz & Noban-
degani, 2022).

However, one of the limitations of the NPLS network is
the requirement of a coding scheme to represent the image
stimuli (Shultz & Nobandegani, 2022). This coding scheme
(Table 1) accurately extracts the probability distributions of
the favored objects shown to the infants. Thus, the NPLS net-
work simulates the cognitive aspect of probability learning,
but the perceptual component is still missing – specifically,

what drives the conversion of viewed images into these nu-
merically coded representations?

Table 1 depicts the coding scheme of a binary probability
distribution above, serving as the input for NPLS, represent-
ing two jars of lollipops where the “Input” value denotes jar
1 vs. jar 2, and the target outputs are arranged such that jar 1
contains a 3:1 ratio of preferred to unpreferred types, and jar
2 contains a 1:3 ratio of preferred to unpreferred types.

Table 1: The Coding Scheme of a Binary Probability Distri-
bution as Input for NPLS

3:1 1:3
Input Output Input Output
1 1 2 1
1 1 2 0
1 1 2 0
1 0 2 0

A computational model of visual processing may provide
a more comprehensive, biologically plausible simulation of
perception and cognition for probability reasoning. Further-
more, using a computational model to convert raw image
stimuli into learnable codes for NPLS would aid the sim-
ulation of a wide array of empirical experiments involving
probability reasoning, particularly those that use collections
of physical objects, such as marbles and dot patterns.

A convolutional neural network (CNN) could simulate the
perceptual process of converting pictures or objects into the
frequency ratios required by NPLS. Inspired by visual cortex
neurons such as simple and complex cells (Hubel & Wiesel,
1962), CNNs take advantage of the concept of receptive fields
(Hubel & Wiesel, 1962; Lindsay, 2021; Luo et al., 2016) and
feature-extraction using convolutional kernels (Bogdan et al.,
2019) to make inferences from visual stimuli. Among vari-
ous types of CNNs, the YOLO (You Only Look Once) model
is intuitively appealing compared to some of its competi-
tors, such as Regional CNN (R-CNN) or sliding window ap-
proaches (Felzenszwalb et al., 2009; Girshick, 2015), due to
YOLO’s ability to see the entire image at once without divid-
ing a single image into multiple sub-problems when detecting
objects (Redmon et al., 2016). Given the efficiency of human
vision and the limited amount of time for visual saccades dur-
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ing psychology experiments, we suspect the YOLO model’s
ability to parse through an entire scene may capture the visual
perception of subjects in psychological experiments. We here
determine whether YOLO could provide an accurate percep-
tual front end to the numerical inputs of NPLS.

O’Grady and Xu’s (2020) probabilistic reasoning experi-
ments involve children choosing from two collections of mar-
bles the one that contains a higher proportion of the tar-
get color. YOLO’s performance is evaluated in a machine-
learning context of recall and precision, to ensure its relia-
bility. Also, an interesting hypothesis about the concept of
perceptual error can be investigated: would errors made dur-
ing the perceptual process influence probabilistic reasoning?

Methods
We here determine whether YOLO could provide an accurate
perceptual front end to the numerical inputs of NPLS.

NPLS
An NPLS network does both learning and sampling. The
learning portion uses sibling-descent cascade-correlation
(SDCC), which has simulated many cognitive phenomena.
During the training process, the SDCC performs construc-
tive learning: starting as a two-layer network and gradually
recruiting new hidden units one at a time as needed to reduce
sum of squared error (SSE) (Baluja & Fahlman, 1994), com-
puted as

E = ∑
o

∑
p
(Aop −Top)

2 (1)

where Aop represents the prediction made by the SDCC net-
work for output o and pattern p, and Top represents the
ground-truth target for output o and pattern p.

As SDCC learns, it recruits new neurons into the network
as needed to reduce error, so the network topology is not de-
signed by the programmer but is constructed by the learning
algorithm (Baluja & Fahlman, 1994). The learning is split
into input and output phases. During the output phase, the
network aims to reduce E. During the input phase, the weights
to candidate hidden units are trained to increase the covari-
ance C:

C =
∑o |∑p(hp −⟨h⟩)(eop −⟨eo⟩)|

∑o ∑p(eop −⟨eo⟩)2 (2)

where C is the covariance between candidate-hidden-unit ac-
tivation and network error, hp represents the candidate hidden
unit activation from pattern p, ⟨h⟩ represents the mean candi-
date hidden unit activation, eop represents the residual error at
output o for pattern p, and eo represents the mean residual er-
ror for all input training patterns. The highest correlating unit
is then installed on the highest layer of hidden units, or on its
own layer, depending on which results in a better correlation
(Baluja & Fahlman, 1994).

Finally, output unit activations are computed with an asym-
metric sigmoid function to create values between 0 and 1
(Baluja & Fahlman, 1994; Shultz & Nobandegani, 2022)

The SDCC model was modified for the purpose of learning
probability distributions. SDCC’s determinism would cause
it to recruit new hidden units non-stop as it is never satis-
fied with the higher error of probabilistic outcomes (Shultz
& Nobandegani, 2022). To circumvent this, SDCC is al-
lowed to keep track of its own error reduction during train-
ing, and parameters for threshold and patience can be applied
to control the learning process. During the output phase of
SDCC, error reduction based on the error function is contin-
ued until the error stagnates. Then, SDCC switches to the
input phase by recruiting a new hidden unit, and weights are
again adjusted according to (2). Stagnation of error is char-
acterized by the absence of progress greater than the thresh-
old for the number of training epochs defined by the patience
(Shultz & Nobandegani, 2022). An additional loop with its
own set of thresholds and patience is introduced to monitor
the learning cycles of SDCC, where each cycle contains an
input phase and the output phase that follows (Shultz & Doty,
2014). These modifications allow the NPLS to learn unnor-
malized, multivariate probability distributions from examples
that indicate the occurrence of any outputs in the presence
of a particular input (Kharratzadeh & Shultz, 2016). Lastly,
the sampling process of NPLS is characterized by a Markov
Chain Monte Carlo (MCMC) sampling algorithm, which can
simulate experiments related to probabilistic reasoning and
decision-making in humans (Dasgupta et al., 2017; Shultz &
Nobandegani, 2022).

YOLO
YOLO, designed originally by Redmon et al. (2016), is a
supervised object detection algorithm that is able to predict
bounding boxes and class probabilities directly from images
in one evaluation. In object detection, the bounding box is
a box responsible for detecting an object in an image, char-
acterized by its center coordinate, width, and height. The
class probability is a variable associated with the bounding
box, responsible for describing the probability that this ob-
ject is an instance of a particular class (Redmon et al., 2016).
In YOLO, images are divided into an S by S grid, such that
each grid is able to predict B bounding boxes. Each bounding
box is associated with a confidence score for whether it con-
tains an object or not. Each bounding box is also associated
with a class probability vector C, which contains the prob-
ability scores for each candidate label. The predictions are
encoded by an S by S by (B*5 + C) tensor. Furthermore, the
YOLO network is trained using a sum-squared-error function
to minimize the distance error between the predicted bound-
ing box’s location and class and the ground truth’s bounding
box’s location and class (Redmon et al., 2016). See Figure 1
for an example.

The training process of YOLO is similar to how a basic
CNN is trained. As with any supervised learning algorithm,
the YOLO network is trained through the backpropagation of
sum-squared error from the target bounding box variables vs.
the predicted variables (Redmon et al., 2016). Neurons in a
convolutional layer are mapped from one neuron to the next
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Figure 1: YOLO prediction. Left: an input image is con-
tained in an S by S grid (left). Top: for each grid, the bound-
ing box described that grid, and the object confidence score
is recorded. The higher the confidence, the thicker the illus-
trated boundary. (bottom): the class probability score of each
grid, each color represents the most probable class contained
in that grid. (right): by combining the top and the bottom fig-
ures, an overall detection result can be generated by choosing
the bounding boxes with the highest confidence score from
grids that have the highest-class probability. By dividing an
image into small grids, we can encode additional information
within each grid. One could imagine each grid to contain an
array of information: the number of bounding boxes, the po-
sition and size of each bounding box, the confidence score as-
sociated with each bounding box, and class probability scores
for the list of possible classes (cat and dog).

neuron in the subsequent layer through convolutions using a
weight-containing kernel. In YOLO, the neuronal activities
of non-output layers are activated with a leaky Rectified Lin-
ear Unit (ReLU) function to introduce non-linearity. The out-
put neuronal activities use a linear activation function. Dur-
ing the training process, the objective function that YOLO
is trying to optimize is a sum-squared error (SSE) function
to minimize the discrepancy between the predicted bounding
box’s locations/classifications vs. the target bounding box’s
locations/classifications. (Redmon et al., 2016).

Experimental Design to Simulate O’Grady and Xu’s
(2019) Dataset
O’Grady and Xu’s (2020) experiments examined children’s
behavior when presented with an image containing two col-
lections of marbles on two trays. One of the trays contained
a higher proportion of favorable or target marbles, the color
of which the children have learned to prioritize beforehand
(the red marbles in this case). For example, if presented with
two collections of marbles, the winning collection contains
80% red and 20% white, and the losing collection contains
60% red and 40% white, then the correct choice for the chil-
dren to pick would be the former collection. A metric that
describes the proportion of marbles present in an image is

the RoR (ratio of ratios), which is given by the proportion
of target marbles in the “winning” collection divided by the
proportion of target marbles in the “losing” collection. While
in the original paper O’Grady and Xu (2020) had two major
sections of experiments, here we only considerred the second
section where there are three different types of experiments
conducted on children of ages 8, 10, and 12.

In the total equal trials (experiment 1), both the winning
and losing collections had the same number of marbles. In
the number vs. proportion trials (experiment 2), the winning
collection had a higher proportion of targets, but the losing
collection had more targets than the winning group. In the
size anti-correlated trials (experiment 3), the winning collec-
tion had a higher proportion of targets, but the losing collec-
tion contained targets with larger sizes than the non-targets.
For each experimental setup, the goal is to record the num-
ber of correct choices of the favorable collection vs. the total
number of choosing attempts by subjects of a specific age
category when presented with two marble collections that are
characterized by a particular RoR value.

The empirical results showed that, when the RoR of an
image was greater, children tended to select the more favor-
able collection (the one with more red marbles than white
marbles) with a higher probability in all three experimental
trials. However, on average, children performed better dur-
ing experiment 1 than experiments 2 and 3, regardless of
their age. This may be due to the lack of confounding fac-
tors such as frequency or size in experiment 1 that could re-
sult in heuristic shortcuts that are not based on proportional
reasoning (O’Grady & Xu, 2020). On average, children of
older ages achieved higher winning group selection probabil-
ity than children of younger ages. Another important char-
acteristic of the results is that the probability of selecting the
winning group increased linearly with respect to the log of
RoR. This suggests that Weber’s law is involved during the
decision-making process (O’Grady & Xu, 2020).

To train a YOLO network, the Yolov5 repository by Jocher
et al. (2021) is used. The marble image dataset is divided into
a training set, a validation set, and a testing set. The train-
ing set contains 54 randomly selected images from a total set
of 263 images used for the experiments of O’Grady and Xu
(2020). Image labeling is performed on the red marbles and
white marbles in the images, ensuring the labeled bounding
boxes properly enclose each marble.

The following image augmentation steps are performed to
improve the generalizability of the training set: (a) split im-
ages into 2 equivalent halves (because each original image
contained two collections placed side by side, this multiplies
the total number of images by two), (b) alter the hue of the
image by 26 degrees in both directions (this multiplies the
total number of images by three), (c) blur the images by up
to 10 pixels, and (d) add random noise pixels up to 4% of
the image’s pixels. The purpose of such preprocessing steps
is to prevent overfitting on a small sample of datasets. The
augmented training set now contains up to 324 images (see
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Figure 2: Example of a labeled training image, applied with
image modifications for data augmentation. Images were ob-
tained from O’Grady and Xu (2020).

Figure 2 for an example of image labeling).
The YOLO model selected, YOLOv5s by Jocher et al.

(2021), is a relatively lightweight and efficient YOLO model
suitable for the training of small datasets using the K80 GPU
provided by Google Collaboratory. Training on the 324 im-
ages is performed using the following parameters: grid size
= 540 pixels, number of epochs = 150, batch size = 16, and
the initialized yolov5s.pt lower-layer weights trained on the
COCO dataset (Common Objects in Context) which contains
a list of everyday objects (Lin et al., 2014).

Training the YOLO model with the custom dataset images
serves two purposes: to introduce the concept of red and
white marbles to the model, such that it knows to label ob-
jects with these classes, and to ensure a higher-than-chance
performance on the classification of marbles. Furthermore,
analyses on training performance are evaluated through a pre-
cision/recall analysis as well as the calculation of the mAP
(mean average precision) for object detection models.

The trained YOLO model is used to perform detections
on all 324 images used in the experiment, and the frequen-
cies of appearance of each type of marble in the collection of
marbles are recorded. A Python script is written to convert
these frequencies into inputs for the NPLS workflow and the
training outputs of NPLS are used for MCMC sampling. The
results of the MCMC sampling, which is quantified by the
mean-selection probability for the target group vs. the ratio
of ratio (RoR), are compared against the empirical data via
correlational studies. The score threshold parameter (ST) of
the NPLS model is set to correspond with the cognitive matu-
rity of children of different ages. The lower the ST parameter
is, the lower the training error must be before the NPLS ter-
minates its training process. A score of 0.51 corresponds with
children of age 8, a score of 0.50 corresponds with children
of age 10, and a score of 0.49 corresponds with children of
age 12 (Wang et al., 2023).

The performance of YOLO + NPLS on the marble datasets
is evaluated for experiment 1 and experiment 3 performed
by O’Grady and Xu (2020). The omission of experiment 2
is based on the argument that if the results of experiment 1
show a good correlation with empirical data, then the YOLO

model should be effective at performing accurate predictions
on same-sized marbles and there would be no need to ex-
amine the effects of perception experiment 2, which also use
same sized marbles. However, because experiment 3 con-
tained different-sized marbles, then it would be interesting
to see if YOLO would perceive, for example, larger marbles
with higher confidence scores, which may inadvertently im-
ply the existence of a heuristic shortcut in decision-making.
Additionally, an “early stopping” YOLO model trained for
only five epochs is also tested to see the effects of perceptual
error on probability reasoning.

Results

Figure 3: Results of full YOLO training over 150 epochs.
From the top to the bottom row, left to right: 1. The error of
the predicted bounding box coordinates/size over epochs. 2.
The error of the predicted presence of an object vs. the ground
truth over epochs. 3. The error of the predicted class proba-
bility over epochs. 4. The precision of the model over epochs.
5. The recall of the model over epochs. (6,7,8). The same
metrics as (1,2,3) but on a small validation set of 38 images.
9. The mean Average Precision (mAP) over epochs at a con-
fidence threshold of 0.5. 10. The average mAP over epochs
for all confidence score thresholds between 0.5 to 0.95, incre-
mented by 0.05 between every level.

The training results (Fig. 3) demonstrate a successful re-
duction of sum-squared-loss after 150 epochs, as the error re-
duction stagnates over time. The precision and recall scores
converge to 1.0 at the end of the training, which indicates
that by the end of the training process, the model confidently
detects all present marbles correctly and reliably. The mAP
scores at the confidence threshold = 0.5 converge to 1, which
suggests that if positive detections are only made for objects
predicted with a higher than 50% confidence, then the model
predicts objects with perfect precision and recall.

The detection process is run with the experimental images
of O’Grady and Xu (2020). For every image, the YOLO
model outputs a file containing the bounding boxes and clas-
sifications for each prediction made on the image. The pre-
dictions are counted and transformed into frequency patterns
required for NPLS training (e.g., 55:45, 90:10).

To examine the effects of errors in the perceptual stage, an
“early-stopping” model of YOLO is introduced. This model
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uses the exact same parameters as before but stops training
prematurely after only five epochs, causing some perceptual
errors. An examination of the model’s training metrics (Fig 4)
shows that the model is only about 73% accurate (shown by
a mAP@0.5 score of 0.73) However, the probability reason-
ing simulation of the NPLS using outputs from this YOLO
model still shows moderate correlation (see Table 3) with the
empirical data. This suggests that perceptual errors made by
YOLO do not actually affect the proportion of observed mar-
ble colors, but rather just the number of marbles seen.

Figure 4: Training results metrics of YOLO after only five
epochs. See equations 3, 4, 5 for an explanation of these
metrics.

To examine the growth of “winning” group selection prob-
ability as RoR increases, linear regression of selection proba-
bility vs. log(RoR) is conducted on all of the simulated trials,
shown in Table 2.

Table 2: Linear regression of log(RoR) for all of the simula-
tion trials. Column 1: type of trial; column 2: R2 adjusted
score; column 3: p-value for R2 adjusted score.

Simulation Type ∗ Adjusted R2 Score p <
1 (Age 8) 0.962 0.0001
1 (Age 10) 0.731 0.0001
1 (Age 12) 0.639 0.0001
2 (Age 8) 0.789 0.0001
2 (Age 10) 0.537 0.0001
2 (Age 12) 0.463 0.001
3 (Age 8) 0.985 0.0001
3 (Age 10) 0.970 0.001
3 (Age 12) 0.946 0.0001

To compare the simulated results with the empirical data,
the correlation between the “winning” group selection rate of
the empirical data and that of the simulation is calculated for
each simulated trial (Table 3).

Discussion
Overall, the YOLO model performs highly accurate detec-
tions after sufficient rounds of training on the marble dataset
by O’Grady and Xu (2020). After 150 epochs of training on

Table 3: Pearson correlation between the empirical
data (O’Grady & Xu, 2020) and the simulated winning
group selection rates from YOLO and NPLS.

Simulation Type ∗ Pearson r p <(N = 22)
1 (Age 8) 0.721 0.001
1 (Age 10) 0.717 0.001
1 (Age 12) 0.842 0.00001
2 (Age 8) 0.555 0.01
2 (Age 10) 0.477 0.05
2 (Age 12) 0.513 0.05
3 (Age 8) 0.688 0.001
3 (Age 10) 0.864 0.00001
3 (Age 12) 0.872 0.00001

∗Notes for Table 2 and Table 3: the simulation type
numbers correspond to the empirical experiment the
YOLO + NPLS model is trying to simulate as well
as the specific parameter set-ups for the model:
1 - Total Equal (Experiment 1) + Fully Trained
YOLO (150 epochs) predictions with confidence
score ≥ 0.5 ;
2 - Total Equal (Experiment 1) + ”Early Stop”
Trained on YOLO (5 Epochs) predictions with con-
fidence score ≥ 0.5 ;
3 - Size Anti-Correlated (Experiment 3) + Fully
Trained YOLO predictions with confidence score ≥
0.5;
The age label (in brackets) by the simulation type
numbers signifies the age of children that generated
the empirical data during the psychological experi-
ment. The score threshold (ST) of the NPLS model
is selected according to the age of the children it is
trying to simulate.

about a fifth of the data, the model produces frequencies of
target and non-target marbles in a matter of seconds. From
a utilitarian perspective, the use of perceptual models such
as YOLO greatly increases the efficiency of data processing
for simulation experiments and extends the models to cover
realistic perception of visual stimuli.

One of the more interesting aspects of YOLO is its appli-
cation in experiment 3 of O’Grady and Xu’s (2020) study.
The original coding technique used to generate inputs to the
NPLS cannot capture the effect of the size of certain mar-
bles. Fortunately, a detection algorithm like YOLO generates
probability scores for each predicted marble, and this may be
used as a metric to imply the amount of focus a subject may
place on targets of varying sizes. It is particularly interesting
to observe that larger marbles are typically assigned a higher
confidence score than smaller marbles. The explanation for
this phenomenon in a machine learning context may be that
smaller objects are more prone to noises because they take up
a bigger portion of pixels of smaller objects than they do for
larger objects. Smaller bounding boxes are associated with
distance losses that are less prioritized in YOLO’s loss func-
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Figure 5: Confidence scores associated with larger objects are
typically greater than those associated with smaller objects.

tion optimization, and their features are more difficult to ex-
tract by the CNN model due to their small size. To propagate
the effect of marble size using YOLO, the confidence score
threshold must be carefully chosen such that it can effectively
separate predictions of lower confidence from those that are
of higher confidence.

Psychologically, large objects tend to capture human atten-
tion in visual search (Proulx, 2010). The higher confidence
score assigned to larger objects in YOLO suggests that it may
simulate this aspect of human vision, as shown by the exam-
ple in Figure 5. The simulation of experiment 3 shows that a
perception algorithm such as YOLO has the potential to sim-
ulate attentional aspects of human perception, which can be
explored further. Future studies on YOLO could be employed
to see if it could simulate realistic human performance and re-
produce the same level and type of error that humans could
make.

Lastly, linear regression of the winning group selection
probability plotted against log(RoR) shows that with a fully
trained YOLO model, the selection probability of NPLS in-
creases linearly with respect to log(ROR). This is consistent
with the empirical data, which suggests that children would
typically follow Weber’s law when determining the winning
group (O’Grady & Xu, 2020). However, when using the
early-stopped YOLO model, this effect was not as apparent,
as shown by the relatively lower adjusted R2 score compared
to the fully trained model (Table 2). This suggests that fur-
ther work must be done to determine an optimal level of
training error permitted by YOLO that still adheres to We-
ber’s Law. Interestingly, the simulations of experiment 3 us-
ing a fully trained YOLO model produced good adjusted R2

scores, suggesting that the model is indeed adhering to We-
ber’s law when presented with area anti-correlated collections
of marbles and using a confidence threshold that differenti-
ates the sizes of the marbles. Furthermore, the correlation
between the simulated and empirical results (Table 3) shows
that the simulated probability of winning group selection us-
ing YOLO and NPLS correlated strongly with the empirical

data for both experiment 1 and experiment 3 when the model
is fully trained. When the model’s training is stopped early,
the simulated results only moderately correlated with the em-
pirical data, suggesting that the perceptual errors due to the
early-stopping training of YOLO alone may not be sufficient
to characterize the kinds of perceptual errors a human subject
would make.

There have been debates about whether machine learn-
ing, specifically supervised learning algorithms such as CNN,
serves as a good model of biological visual processing
(Whittington & Bogacz, 2019). The CNN is inspired by the
visual system, borrowing from the concept of the isolated,
binary simple cells and the integrative, distributed complex
cells (Hubel & Wiesel, 1962; Lindsay, 2021). However, the
biological plausibility of backpropagation has been long dis-
puted as it requires the propagation of a global error signal
based on the target to the earlier layers of a neural network
(Whittington & Bogacz, 2019). Such engineering seemed im-
plausible to the model of Hebbian plasticity, which describes
learning as a localized process between neighboring co-active
neurons (Hebb, 1949; Whittington & Bogacz, 2019). Other
visual processing models, such as the Boltzmann Machine
(Hinton, 2007) or the neocognitron (Fukushima & Miyake,
1982), can process and recognize visual stimuli via represen-
tation learning, which is unsupervised and does not rely on
backpropagation. However, the models focus on the extrac-
tion of representations or patterns that are useful for recogni-
tion but can be difficult to implement for detection. More ex-
tensive analysis of these models should be done before apply-
ing them to simulations of certain cognitive phenomena. Fur-
thermore, a potential limitation of all object detection models
could be the fact that it enumerates all individual objects dur-
ing visual processing, which may not be the case for human
subjects with limited time to observe the images.

Our work shows that YOLO shows promise as a perceptual
front-end for cognitive simulations of probabilistic learning
in developing children using NPLS. There are some interest-
ing directions of research that could be studied with YOLO
and NPLS. For example, more research could be done to de-
termine the ideal confidence-score threshold for YOLO to
study the effect of the physical features of an object on a hu-
man observer’s ability to detect it.
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