
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Delegating responsibility in digital systems: horton's "who done it?"

Permalink
https://escholarship.org/uc/item/0ws2h714

Authors
Miller, Mark S.
Donnelley, Jed
Karp, Alan H.

Publication Date
2008-05-09

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0ws2h714
https://escholarship.org
http://www.cdlib.org/

Delegating Responsibility in Digital Systems:

Horton’s “Who Done It?”

Mark S. Miller
Hewlett-Packard Labs

Jed Donnelley
NERSC, LBNL

Alan H. Karp
Hewlett-Packard Labs

May 10, 2007

Programs do good things, but also do bad,
making software security more than a fad.
The authority of programs, we do need to tame.
But bad things still happen. Who do we blame?

From the very beginnings of access control,
should we be safe by construction?
Or should we patrol?
Horton shows how, in an elegant way,
we can simply do both, and so save the day.

1 Introduction

There are two approaches to protect users from the
harm programs can cause, proactive control and re-
active control [22]. Proactive control is intended to
prevent bad things from happening, or to limit the
damage when it does. But when repeated patterns
of abuse occur, we need some workable notion of
“who” to blame, so we can reactively suspend the
access of the responsible party. For example, grant-
ing read-only access to a wiki proactively prevents
the recipient from modifying the contents. Knowing
“who” posted spam allows reactively suspending that
party’s write access.

In the 1960’s and 1970’s the dominant access con-
trol paradigms were capbilities and Access Control
Lists (ACLs). A capability—like an object-reference
in a memory-safe language—is an unforgeable token
used both to designate some object and to provide
access to that object. Because the term “capabili-
ties” has since been used for many alternative access

control rules [10], we now refer to the original pure
model [1] as object-capabilities or ocaps for short.

ACL systems consider a program to be acting on
behalf of its “user”. Access is allowed or disallowed
by checking whether this operation on this resource
is permitted for this user.

By allowing the controlled delegation of authority,
ocap systems support proactive control well. The
invoker of an object normally passes as arguments
just those objects that the receiver needs to carry
out that request. A user can likewise delegate to an
application just that portion of the user’s authority
the application needs [20], limiting damage should it
be corrupted by a virus. But because ocaps operate
on an anonymous “bearer right” basis; they seem to
make reactive control impossible. Indeed, although
many of the historical criticisms of ocaps have since
been refuted [10, 9, 15], a remaining unrefuted crit-
icism is that they cannot record who to blame for
which action [5].

Only ACLs currently support reactive control. By
tagging all actions with the identity of the user they
are supposedly serving, they can log who to blame,
and whose access to suspend. But ACL systems are
weak at proactive control. Solitaire runs with all its
user’s privileges. If it runs amok, it could do its user
great harm.

The lack of reactive control has been an important
enough problem for people to forego the advantages
of ocaps. One answer would be to try to mix elements
of the two paradigms in one security architecture.
There have been many such attempts [6, 3]; perhaps

1

some day one of these will bear fruit. Another is to
emulate some of the virtues of one paradigm as a pat-
tern built on the other. For example, Polaris [18] uses
lessons learned from ocaps to limit the authority of
ACL-based applications for Windows, as Plash [14]
does for Unix, without modifying either these appli-
cations or their underlying ACL OS.

In this paper, we show how to attribute actions in
an ocap system. As a tribute to Dr. Seuss [4], we call
our protocol Horton (H igher-Order Responsibility
Tracking of Objects in Networks). Horton can be in-
terposed between existing ocap-based application ob-
jects, without modifying either these objects or their
underlying ocap foundations. Horton supports the
tracking of responsibility and the reactive suspension
of access based on attributed abuse. Horton thereby
refutes this criticism of the ocap paradigm. Horton
also makes the full chain of responsibility available,
something ACL systems do not do.

2 The Horton Protocol

Every protocol which builds some sort of secure rela-
tionship between their players must face two issues.
The base case, building an initial secure relationship
between players not yet connected by this protocol,
and the inductive case, in which a new secure rela-
tionship is bootstrapped from earlier assumed-secure
relationships. Horton contributes nothing to the is-
sues of initial connectivity, so this paper only treats
the inductive case.

As with object computation, ocap references are
conveyed as arguments in messages from a sender to
a receiver. Here, we examine a scenario in which
a sender, object A in step , executes b.foo(c),
“thinking” it is sending the message “foo” to receiver
B with a reference to object C as an argument.

Our round objects, A, B, and C, are application-
level objects unaware of Horton. The boxes repre-
sent messages in flight. Other shapes depict parts of
the Horton infrastructure. When a proxy (an out-
going half circle such as P1) receives an app-level
message, it encodes and sends it (Figure 2,) in
a deliver message to its corresponding stub (an in-
coming half circle such as S1). The stub decodes

def makeProxy(beMe, whoBlame, stub) {
def proxy implements Proxy {
to getGuts() { # as P2

beMe=BeAlice whoBlame=Carol stub=S2
12: return [whoBlame, stub]}
: match [verb, [p2 :Proxy]] { # as P1

beMe=BeAlice whoBlame=Bob stub=S1
11: def [carolWho, s2] := p2.getGuts()
: def gs3 := s2.intro(whoBlame)

32: def p3Desc := ["t", gs3, carolWho]
...log request to Bob...

: stub.deliver(verb, [p3Desc])}}
return proxy}

it into an app-level message which it delivers to its
target object (Figure 3,). For Horton to be trans-
parent, the message delivered to B in step must
have the same app-level meaning as the message sent
by A in step . To complete the induction, the rela-
tionship represented by the new B→P3→S3→C path
must have the security we need, assuming that the
A→P1→S1→B and A→P2→S2→C paths already
have this security.

To support reactive security, we need to attribute
actions to responsible identities. Cryptographic pro-
tocols often represent an electronic identity as a key
pair. For example, a public encryption key identifies
whoever knows the corresponding private decryption

2

key. Put another way, knowledge of a decryption key
provides the ability to be (or speak for [8]) the entity
identified by the corresponding encryption key. In
ocap systems, the sealer/unsealer pattern [11] pro-
vides a similar logic. Rectangles such as the one
labeled “Alice” represent Who objects, providing a
seal(contents) operation, returning an opaque box
encapsulating the contents. The corresponding BeAl-
ice object provides the authority to be the entity iden-
tified by Alice’s Who object. BeAlice provides an
unseal(box) operation that returns the contents of
a box sealed by Alice’s Who. The large round rectan-
gles and colors aggregate all objects whose behavior
should be blamed on a given Who.

A complete Horton implementation in Java is avail-
able from erights.org/download/horton/. For ex-
pository purposes, this paper uses E to show just the
Horton code needed for the illustrated case: sending
a proxy as the single argument of a message with no
return result. The line numbers on the code show
the sequence of steps taken by our example. A di-
agram step ×10 = (the corresponding line number),
i.e., ()+1 = (21). Mostly, this simplified code uses
just the simple sequential five-minute subset of E ex-
plained in [9, Ch6: A Taste of E]. We also use a some
reflection which we explain as needed.

We need reflection immediately. When the foo
message arrives at proxy P1, it does not match any
of the method definitions, so it falls through to the
match clause (), which receives messages reflec-
tively. The clause’s head is a pattern matched against
a pair of the message name (here, "foo") and the list
of arguments (here, a list holding only proxy P2).

P1 asks P2 for the value of P2’s whoBlame and
stub fields, which hold Carol’s Who and S2 (11,12).
P1 then sends intro(bobWho) to S2 (), by which
Alice is saying in effect “Carol, I’d like to share with
Bob my access to C. Could you create a stub for Bob’s
use?” Nothing forces Alice to share her rights in this
indirect way; Alice could just give Bob direct access
to S2. But then Carol would necessarily blame Alice
for Bob’s use of S2, which Alice might not like.

Carol makes S3 for Bob’s use of C (21). Carol
tags S3 with Bob’s Who, so Carol can blame Bob for
messages sent to S3. Carol then “gift wraps” S3 for
Bob and returns the gift-wrapped S3 (gs3) to Alice

def makeStub(beMe, whoBlame, targ) {
def stub {
: to intro(bobWho) { # as S2

beMe=BeCarol whoBlame=Alice targ=C
...log Alice delegating to Bob...

21: def s3 := makeStub(beMe,bobWho,targ)
: return wrap(s3, bobWho, beMe)}
: to deliver(verb, [p3Desc]) { # as S1

beMe=BeBob whoBlame=Alice targ=B
...log access by Alice...

41: def [=="t", gs3, carolWho] := p3Desc
: def s3 := unwrap(gs3, carolWho, beMe)

59: def p3 := makeProxy(beMe,carolWho,s3)
: E.call(targ, verb, [p3])}}
return stub}

as the result of the intro message (). Alice includes
gs3 in the p3Desc record encoding the p2 argument
of the original message (32). By including this in the
deliver request to Bob’s S1 (), Alice is saying in
effect “Bob, please unwrap this to get the ability to
use an object provided by Carol.”

Bob’s S1 unpacks the record (41), unwraps gs3 to
get S3 (), which it uses to make proxy P3 (59).
Bob tags P3 with Carol’s Who, so Bob can blame
Carol for the behavior of S3. S1 then includes P3 as
the argument of the app-level foo message sent to B
using E’s reflective E.call primitive ().

3

http://erights.org/download/horton/

Clearly, the unwrap function must be the inverse
of the wrap function. Using identity functions would
be simplest, but would also give Alice access to S3.
This would enable Alice to fool Carol into blaming
Bob for messages Alice sends to S3. If Carol also
believes she has independent evidence that Bob is
not a pseudonym of Alice’s, then this mis-attribution
would be a loss of security. (Without such evidence
this mis-attribution would not matter, since Carol
would blame Alice for Bob’s behavior anyway.)

Carol should at least gift-wrap S3 so only Bob can
unwrap it. Could we simply use the seal/unseal
operations of Bob’s who/be pair as the wrap/unwrap
functions? Unfortunately, this would still enable Al-
ice to give Bob a gift allegedly from Carol, but which
Bob unwraps to obtain a faux S3 created by Alice.

In our solution, Carol’s wrap creates a provide
function, seals it so only Bob can unseal it, and re-
turns the resulting box as the wrapped gift (31).
Bob’s unwrap unseals it to get a provide function
allegedly from Carol (51). Bob will need to call
provide (54) so that only Carol can provide S3 to
him. Bob declares an s3hole variable (52), and a
fill function for Carol to call to fill in this hole with
S3. He seals this in a box only Carol can unseal (53)
and passes this to provide (54). Carol’s provide un-
seals it to get Bob’s fill function (55), which Carol
can call (56) to fill in the s3hole with S3 (57). Af-
ter Carol’s provide returns, Bob’s unwrap returns
whatever it finds in the s3hole (58).

Should Bob and Carol ever come to know each
other independently of Alice, they can then blame
each other, rather than Alice, for actions logged by
P3 and S3. Say C is a wiki page. If Carol decides
that Bob has spammed this page, Carol could then
revoke Bob’s access without revoking Alice’s access
by shutting off S3. If Bob decides that C is flaky, he
can stop using Carol’s services by shutting off proxies
such as P3. This completes the induction.

3 Related Work

Some distributed ocap systems interpose objects to
serialize/deserialize messages [2, 13], stretching the
reference graphic between local ocap systems. Secure

: def wrap(s3, bobWho, beCarol) { # as S2
def provide(fillBox) {

55: def fill := beCarol.unseal(fillBox)
56: fill(s3)}
31: return bobWho.seal(provide)}
: def unwrap(gs3,carolWho,beBob){ # as S1

51: def provide := beBob.unseal(gs3)
52: var s3hole := null
57: def fill(s3) {s3hole := s3}
53: def fillBox := carolWho.seal(fill)
54: provide(fillBox)
58: return s3hole}

Network Objects [19] and Client Utility [7] leveraged
their intermediation to add some identity tracking.
Horton unbundles such policy-based intermediation
as a separately composable abstraction.

Reactive security ocap patterns include the logging
forwarder [16] and the caretaker [12]. These patterns,
however, provide no means for Alice to ask Carol to
issue a separately accountable access to Bob.

Petmail [21] and SPKI [3] also provide similar fea-
tures as Horton in a non-ocap environment. They
also show how petnames [17] can enable secure hu-
man interpretation of the identities. Future Horton
extensions should similarly support petnames.

4

4 Conclusions

Delegation is a fundamental part of human society.
If digital systems are to mediate ever more of our
interactions, we must be able to delegate responsi-
bility within them. While some systems support the
controlled delegation of authority, and other systems
support assignment of responsibility, today we have
no means for delegating responsibility, that is, dele-
gating authority coupled with assigning responsibility
for using that authority. Horton demonstrates how
delegation of responsibility can be added to systems
that already support delegation of authority—object-
capability systems.

5 Acknowledgments

We thank the e-lang and cap-talk communities, espe-
cially Tyler Close, Norm Hardy, Chip Morningstar,
Jonathan Shapiro, Terry Stanley, Marc Stiegler, Bill
Tulloh, Brian Warner, Meng Weng Wong, and Ka-
Ping Yee.

References
[1] J. B. Dennis and E. C. V. Horn. Programming Semantics

for Multiprogrammed Computations. Technical Report
MIT/LCS/TR-23, M.I.T. Laboratory for Computer Sci-
ence, 1965.

[2] J. E. Donnelley. A Distributed Capability Comput-
ing System. In Proc. Third International Conference
on Computer Communication, pages 432–440, Toronto,
Canada, 1976.

[3] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas,
and T. Ylonen. SPKI Certificate Theory (IETF RFC
2693), Sept. 1999.

[4] T. S. Geisel. Horton Hears a Who! Random House Books
for Young Readers, 1954.

[5] V. D. Gligor, J. C. Huskamp, S. Welke, C. Linn, and
W. Mayfield. Traditional capability-based systems: An
analysis of their ability to meet the trusted computer
security evaluation criteria. Technical report, National
Computer Security Center, Institute for Defense Analy-
sis, 1987.

[6] P. A. Karger and A. J. Herbert. An Augmented Capabil-
ity Architecture to Support Lattice Security and Trace-
ability of Access. In Proc. 1984 IEEE Symposium on Se-
curity and Privacy, pages 2–12, Oakland, CA, Apr. 1984.
IEEE.

[7] A. H. Karp, R. Gupta, G. Rozas, and A. Banerji. The
Client Utility Architecture: The Precursor to E-Speak.
Technical Report HPL-2001-136, Hewlett Packard Labo-
ratories, June 09 2001.

[8] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in Distributed Systems: Theory and Prac-
tice. ACM Trans. Comput. Syst., 10(4):265–310, 1992.

[9] M. S. Miller. Robust Composition: Towards a Unified Ap-
proach to Access Control and Concurrency Control. PhD
thesis, Johns Hopkins University, Baltimore, Maryland,
USA, May 2006.

[10] M. S. Miller, K.-P. Yee, and J. S. Shapiro. Capability
Myths Demolished. Technical Report Report SRL2003-
02, Systems Research Laboratory, Department of Com-
puter Science, Johns Hopkins University, mar 2003.

[11] J. H. Morris, Jr. Protection in Programming Languages.
Communications of the ACM, 16(1):15–21, 1973.

[12] D. D. Redell. Naming and Protection in Extensible Op-
erating Systems. PhD thesis, Department of Computer
Science, University of California at Berkeley, Nov. 1974.

[13] R. D. Sansom, D. P. Julin, and R. F. Rashid. Extending a
Capability Based System into a Network Environment. In
Proc. 1986 ACM SIGCOMM Conference, pages 265–274,
Aug. 1986.

[14] M. Seaborn. Plash: The Principle of Least Authority
Shell, 2005.
plash.beasts.org/.

[15] A. Spiessens. Patterns of Safe Collaboration. PhD the-
sis, Université catholique de Louvain, Louvain la Neuve,
Belgium, February 2007.

[16] M. Stiegler. A picturebook of secure cooperation, 2004.
www.skyhunter.com/marcs/SecurityPictureBook.ppt.

[17] M. Stiegler. An Introduction to Petname Systems. In Ad-
vances in Financial Cryptography Volume 2. Ian Grigg,
2005.

[18] M. Stiegler, A. H. Karp, K.-P. Yee, T. Close, and M. S.
Miller. Polaris: virus-safe computing for windows xp.
Commun. ACM, 49(9):83–88, 2006.

[19] L. van Doorn, M. Abadi, M. Burrows, and E. P. Wobber.
Secure Network Objects. In Proc. 1996 IEEE Symposium
on Security and Privacy, pages 211–221, 1996.

[20] D. Wagner and E. D. Tribble. A Security Analysis of the
Combex DarpaBrowser Architecture, Mar. 2002.
www.combex.com/papers/darpa-review/.

[21] B. Warner. Petmail. Codecon, 2004.
petmail.lothar.com/design.html.

[22] K.-P. Yee. Firefighters and engineers. interactions,
13(3):48–49, 2006.

5

http://plash.beasts.org/
http://www.skyhunter.com/marcs/SecurityPictureBook.ppt
http://www.combex.com/papers/darpa-review/
http://petmail.lothar.com/design.html

	Introduction
	The Horton Protocol
	Related Work
	Conclusions
	Acknowledgments

