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ANALYSIS OF SIZE TRAJECTORY DATA USING AN ENERGETIC-BASED
GROWTH MODEL
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Santa Barbara, California 93106-5131 USA

3John Muir Institute of the Environment, Bodega Marine Laboratory, University of California,
Davis, California 95616 USA

Abstract. Individual growth rate of animals is increasingly used as an indicator of
ecological stressors. Environmental contaminants often affect physiological processes with-
in individuals, which in turn affect the animal’s growth rate. Consequently, there is an
increasing need to estimate parameters in physiologically based individual growth models.
Here, we present a method for estimating parameters in an energetic-based individual growth
model (a dynamic energy budget model). This model is a system of stochastic differential
equations in which one of the state variables (the energy reserve) is unobservable. There
is no analytical solution to the probability density of size at given age, so we use a numerical
nonlinear state–space method to calculate the likelihood. An algorithm to calculate the
likelihood is outlined in this paper. This method is general enough to apply to other sto-
chastic differential equation models. We assessed the estimability of parameters in the
individual growth model, and analyzed size trajectory data from delta smelt (Hypomesus
transpacificus). We expect this method to become an important tool in ecological studies
as computers become faster, as the models that we deal with become more complex, and
as the data that we collect become more detailed.

Key words: bioenergetics; dynamic energy budget; energy reserves; fluctuating food; Hypomesus
transpacificus; individual growth model; nonlinear state–space analysis; numerical maximum likeli-
hood; parameter estimation; size trajetory data; stochastic differential equation model.

INTRODUCTION

Individual growth of many animal species exhibits
tremendous plasticity, producing a large amount of in-
dividual size variability (e.g., Wikelski et al. 1997, Pfis-
ter and Stevens 2002, Gurney et al. 2003). This vari-
ability reflects past and current environmental condi-
tions. For example, past environmental conditions can
determine genetic variability, producing heterogeneity
in the growth rate among individuals that persists
throughout their entire life histories. On the other hand,
present resource heterogeneity in the environment can
produce instantaneous differences in growth rate (Pfis-
ter and Peacor 2003), even among genetically identical
individuals. Regardless of the causes of growth vari-
ability, consequent size variability is an important in-
dicator of population performance because the size of
individuals often determines how well the individuals
utilize food resources, escape predation pressure, and
reproduce (e.g., Caswell 2001: Section 3.2.1). Conse-
quently, understanding variability in individual growth
can provide important information that links population

Manuscript received 31 August 2004; accepted 21 October
2004; final version received 11 November 2004. Corresponding
Editor: L. Stone.

4 E-mail: fujiwara@lifesci.ucsb.edu

processes and the environment (see Rice et al. 1993,
Nisbet et al. 2000).

Individual growth is a complex energetic process.
Individual length increases only when enough energy
from food is available for growth. On the other hand,
a lack of food does not always lead to a reduction in
length, because organisms can lose body mass without
shrinking in length (Kooijman 2000, Nisbet et al.
2000). Energy may also be allocated to storage for
future use, producing ‘‘memory’’ in growth dynamics.
A model that encapsulates these characteristics is a
dynamic energy budget model (Kooijman 2000, Nisbet
et al. 2000).

Dynamic energy budget (DEB) models are based on
energetic pathways such as the one shown in Fig. 1.
The energetic pathways depict how ingested food is
stored and utilized for growth, reproduction, and main-
tenance of individuals. There are many studies that fit
deterministic DEB models to data on growth and re-
production of individual organisms (e.g., Kooijman
1986, Gurney et al. 1990, Noonburg et al. 1998, Nisbet
et al. 2004), and a few that use fitted DEB models to
reconstruct the environment experienced by organisms
whose growth history is known (van Haren and Kooij-
man 1993). However, a stochastic version of these mod-
els is yet to be explored beyond theoretical studies (e.g.,
Muller and Nisbet 2000, Fujiwara et al. 2004).
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FIG. 1. Energy flow within individuals (see Kooijman
[2000] for details). The feeding rate is assumed to be pro-
portional to the surface area of individuals. A fixed fraction
of energy flux coming out of the reserve is used for main-
tenance and growth, and the rest is used for reproduction,
including development of reproductive organs.

Here we present an analysis of individual size tra-
jectory data to study individual growth dynamics in a
fluctuating resource environment. We consider longi-
tudinal data in which the size of the same individuals
is measured repeatedly over time. Longitudinal size
data are advantageous because they provide informa-
tion on how changes in individual size vary among
individuals and over time (see Diggle et al. 2002). The
collection of size trajectory data is becoming increas-
ingly more common in ecological studies. In the lab-
oratory, the size of individuals is followed to investi-
gate the influence of toxicity (e.g., Kooijman and Be-
daux 1996) and other environmental factors (e.g., Cox
and Coutant 1981, Rogers and Westin 1981) on growth
rate. In the field, the size of marked individuals is often
followed over time to investigate the origin of size
variability among individuals (Pfister and Stevens
2002). In addition to these direct measurements, the
size history of teleost fish can be inferred using the
daily rings laid down in otoliths (Campana and Neilson
1985).

We fit an energetic-based individual growth model
to size trajectory data using a nonlinear state–space
model technique. This technique is commonly called
particle filtering or sequential Monte Carlo method in
statistics literature (see Gordon et al. 1993, Doucet et
al. 2001, de Valpine 2004). It allows the inclusion of
unobservable state variables, a common feature in
many ecological models, when estimating parameters.
As an example, we apply the method to data on the
delta smelt (Hypomesus transpacificus), a federally list-
ed threatened species of fish (U.S. Department of In-
terior 1994) that is endemic to San Francisco Estuary,
California, USA (Moyle et al. 1992, Sweetnam 1999,
W. A. Bennett, unpublished manuscript). The statistical
method outlined here is general enough to apply to
estimating parameters in other stochastic differential
equation models when longitudinal data are available.
Therefore, the section describing the method will also
be beneficial to readers with interest in the parameter
estimation procedure, but not necessarily in the study
of individual growth.

The paper has four main parts. First, we will present
a growth model that describes how individual growth
changes with individual size and available food. Sec-

ond, we will demonstrate a method to fit the model to
the size trajectory data using a nonlinear state–space
method. Then we investigate the estimability of param-
eters in the growth model. Finally, we apply the method
to actual size trajectory data constructed from the oto-
lith ring measurements on delta smelt.

A STOCHASTIC MODEL OF INDIVIDUAL GROWTH

Model formulation

The individual growth model used in this paper is
based on the energy flows shown in Fig. 1. Individual
organisms encounter and ingest food, which is then
assimilated. Assimilated food is transformed into re-
serve material such as protein and fat. A fixed fraction
of the energy coming out of the reserve is used for
both metabolic maintenance and growth, and the rest
is used for reproduction. Translating the energy flow
into a mathematical expression yields a system of dif-
ferential equations with the size, or volume (V ), of
individuals and reserve density (E ) as state variables
(Table 1). The main biological assumptions are: (1)
ingestion rate is proportional to the surface area (V 2/3)
and related to food density through functional response
(f (t)); (2) assimilation efficiency is constant; (3) the
energy flux coming out of the reserve is determined so
that the reserve density in a constant food environment
is independent of individual size (reserve homeostasis;
see Kooijman 2000: Section 3.4); (4) energy density
within the reserve is regulated by a linear control pro-
cess; (5) volume-specific cost of maintenance is con-
stant; and (6) volume-specific cost for growth is con-
stant. For additional assumptions and derivations of the
growth model, readers are referred to Kooijman (2000)
and Nisbet et al. (2000).

We assume that a fluctuating food supply ‘‘drives’’
the individual growth. Although there are other poten-
tial sources of variability in growth rate, we chose to
incorporate the resource variability because it is one
of the most important factors affecting growth rate.
Many organisms, as they grow, have access to an in-
creasing spectrum of food types and sizes and also may
be more effective at catching them (Rose and Cowan
1993, Nobriga 2002). To describe this, we assume that
a mean food level increases exponentially with the size
of animals up to a certain critical size (Vc) and remains
constant thereafter. Then we add a serially correlated
signal to the mean food level such that the density of
the food (w(t)) is given by Eq. 4 (Table 1). The inde-
pendent random signal in the food density z(t) is set
to be a serially correlated Gaussian signal (pink noise;
Nisbet and Gurney 2004). The coefficient (S/t)1/2 in Eq.
5 (Table 1) maintains the variance of the signal un-
changed with t (see Muller and Nisbet 2000). The in-
dependent signal represents different environments
(e.g., spatial resource heterogeneity) that are experi-
enced by the individuals within a population. Finally,
we use Holling’s type II functional response ( f (t)) to
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TABLE 1. Dynamic energy budget model.

a) Dynamics

Model equation
Equation

no.
2/3dV(t) [nV E(t) 2 mgV(t)]15 (1)

dt g 1 E(t)

dE(t) n
5 [ f (t) 2 E(t)] (2)

1/3dt V t

w(t)
f (t) 5 (3)

w 1 w(t)h

exp[a 1 bV(t) 1 z(t)] when V(t) , Vcw(t) 5 (4)5exp[a 1 bV 1 z(t)] when V(t) . Vc c

1/2dz(t) 2z(t) S
5 1 h(t) (5)1 2dt t t

b) Variables and parameters

Term Definition Units

Unobservable variables
V(t) structural biovolume at time t; V(t)

5 [dX(t)]3
mm3

E(t) scaled energy density in reserve at
time t; actual energy density is
EmE(t).

f (t) scaled functional response (Eq. 3)
z(t) a random signal that varies indepen-

dently among individuals
h(t) a standard Gaussian signal

Observable variables
X(t) length of individuals mm

Parameters characterizing processes
Am maximum assimilation rate per sur-

face area
J·mm22·d21

M maintenance energy per unit size per
unit time

J·mm23·d21

G energy costs for a unit increase in size J/mm3

Em maximum reserve density J/mm3

wh a half-saturation constant in the
functional response

Parameters for which crude estimates are available from
separate information
d shape correction factor (see Kooij-

man 2000: Sec. 8.2)
k fraction of utilized energy spent on

maintenance and growth
Vc size of organisms at which food densi-

ty becomes independent of the size
a, b slope and intercept parameters asso-

ciated with food

Parameter combinations that we hope to estimate

m maintenance rate coefficient,
M

m 5
G

d21

n energy conductance rate,
Amn 5
Em

mm/d

g energy investment ratio,
G

g 5
kEm

t memory retention time of the
food signal

S variance of the food signal

Note: This table was adapted from Nisbet et al. (2000: Table
2). In model 1, the subscript 1 indicates that the quantity in
parentheses must be nonnegative.

link the food density and the ingestion rate (Eq. 3 in
Table 1). A derivation of the functional response as-
suming a fixed handling time of food is presented in
Kooijman (2000: Section 3.1.3).

The scaled functional response involves six param-
eters (wh, a, b, Vc, S, and t). However, wh cannot be
separated from a. This leaves five parameters (a, b,
Vc, S, and t) to be estimated. The first three parameters
(a, b, and Vc) determine the ensemble average of food
density that individuals of a given size experience, and
the other two parameters (S and t) determine the in-
dependent signal experienced among individuals.
Throughout the paper, we assume that mean functional
response is measured separately, and is thus known.
This leaves the two free parameters (S and t) in the
food model to be estimated (Table 1).

Model characteristics

An important characteristic of the growth model is
its inclusion of an energy reserve as a state variable.
One key role of the reserve is the storage of energy in
anticipation of periods of food shortage. Without such
storage, organisms die unless they are able to feed with-
out interruption. Thus the existence of the reserve is a
ubiquitous feature of animals that inevitably experience
a period without feeding. Fujiwara et al. (2004) have
demonstrated that the reserve plays an important role
in determining individual growth dynamics in a fluc-
tuating food environment by acting as a low-pass filter
that reduces variance and increases the temporal scale
of autocorrelation in growth rate.

Inclusion of the reserve is also important for keeping
track of energetic content within an individual. Fish
and many other animals have limited ability to shrink
their length, if shrinkage occurs at all. This is because
the hard parts of the body (e.g., bones) prevent indi-
viduals from shrinking. Thus, without including the
additional state variable that keeps track of the energy
budget, which shrinks during starvation, a growth mod-
el becomes inconsistent with underlying energetic pro-
cesses. Having an energy reserve and size as state var-
iables in our model is analogous to having both mass
and length in more detailed growth models (e.g., Gur-
ney et al. 1990, Rose and Cowan 1993).

The model also has other desirable properties that
are consistent with commonly observed growth dy-
namics of animals. For example, in a constant food
environment (see Kooijman 2000: Section 3.7), the
model reduces to a von Bertalanffy equation (von Ber-
talanffy 1938), which is often used to represent the
individual growth of animals including fish (see Quinn
and Deriso 1999: Section 4.2). On the other hand, when
the available food increases with the size of animals,
the model can exhibit accelerating growth with size.
This is a frequently observed phenomenon of young
fish in the field, and is often attributed to an increased
availability of food due to increases in gape as well as
the ability of fish to capture more food organisms
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(Ricker 1958). Furthermore, a stochastic version of the
model (Fujiwara et al. 2004) exhibits increasing vari-
ance of size among individuals with age (growth de-
pensation), followed by decreased variance of size
(growth compensation), which are also phenomena of-
ten observed in the growth of fish and other animals
(Ricker 1958, DeAngelis and Huston 1987).

Finally, the growth model is expressed with two state
equations, one functional response and a small number
of parameters. Simulating this model is straightforward
based on the Ito interpretation of stochastic differential
equations (Higham 2001).

PARAMETER ESTIMATION BY NONLINEAR

STATE–SPACE METHOD

Our goal is to estimate two free parameters from size
trajectory data. The growth model has two state equa-
tions with three free parameters (n, m, and g) that de-
termine physiological rates within individuals, together
with one equation determining food variability, which
contains two additional free parameters (S and t) that
need to be estimated (Table 1).

Fitting the individual growth model to size trajec-
tories is complicated by the inclusion of an unobserv-
able state variable (reserve density, E(t)). Here, we use
the nonlinear state–space method, which accommo-
dates the ‘‘hidden’’ state variable, in order to fit the
model to the data. In this method, the size of an in-
dividual is forecasted numerically based on its previous
sizes and initial reserve density. Using the forecasted
size distribution, a likelihood is calculated. Finally,
best-fit parameter values that maximize the likelihood
are searched for. A similar method has been applied to
estimate parameters in population models (deValpine
and Hastings 2001). Here, we describe the algorithm
pictorially and also provide MATLAB (Version 6.1;
MathWorks 2001) code as an example in the supple-
ment. More mathematically rigorous presentation for
particle filtering can be found in Doucet et al. (2001)
and de Valpine (2004).

The size trajectory data consist of size xit of indi-
vidual i (i 5 1, . . . , N ) at age t (t 5 0, . . . , Ti) from
the time of the first size measurement of the individual,
where N is the number of individuals in the sample and
Ti is the final age at which the size of individual i is
determined. At age 0, we know the actual size of the
individual (xi0), and know or assume the value of the
functional response. Furthermore, we set the expected
reserve density to E0 5 f0, which is the expected value
when the scaled functional response f (t) 5 f0. Let li,t

(n, m, g, S, t) be the likelihood associated with the
sizes of a single individual i at age t (1 , t # Ti) that
is conditional on all previous sizes of the individual,
which is then calculated for individual i using the fol-
lowing recursive algorithm:

1. Projection from age 0 to 1.—The size at age 1 is
projected 3000 times using the initial conditions, the
equations in Table 1, and a given set of parameter val-

ues (Fig. 2a). The projected sizes are either equal to
or greater than xi0 because the model does not allow
shrinkage. Let ci1 be the number of projected sizes that
are equal to xi0 (i.e., no growth). Then pi1 5 ci1/3000
gives the probability of no growth, and 1 2 pi1 gives
the probability of positive growth. A probability den-
sity of the size of the individual i at age t conditional
on positive growth and the size at age 0 (Pr(xi1 z xi1 .
xi0, xi0); Fig. 2c) is calculated by smoothing the his-
togram of projected sizes (Fig. 2b).

2. Likelihood at age 1.—The likelihood associated
with the observed size at age t 5 1 of individual i is
given by the following:

l (n, m, g, S, t )i1

p when x 5 xi1 i1 i05 5(1 2 p )Pr(x z x . x , x ) when x . x .i1 i1 i1 i0 i0 i1 i0

3. Filtering at age 1.—At age 1, each projected size
also has an underlying projected reserve density (Fig.
2d) and food, which led to the size and reserve density.
Because we know the actual size of the individuals at
age 1, we take the projected sizes that are ‘‘close’’ to
the actual size (horizontal band in Fig. 2d), along with
the associated reserve density (Fig. 4e) and food tra-
jectory. Simulations suggest that defining ‘‘close’’ to
be ‘‘within 0.15 times the standard deviation of size at
age in the data’’ is a good rule of thumb (i.e., it balances
the number of trajectories that pass through the width
and that are filtered out; see de Valpine [2004] for other
ways of selecting the width). Then the sets of the pro-
jected sizes, reserve density, and food level at age 1
are sampled with replacement 3000 times.

4. Projection from age 1 to 2.—We now have 3000
sets of projected size, reserve density, and food tra-
jectory. From each of the sets, the size at age 2 is
projected using the individual growth equations (Table
1) and the same set of parameter values used at age 1
(Fig. 2f ). From the number of projected sizes that are
equal to xi1, the probability of no growth (pi2) and con-
ditional probability density Pr(xi2 z xi2 . xi1, xi1, xi0) are
calculated.

5. Likelihood at age 2.—Again, projected sizes are
either equal to or greater than xi1. The likelihood as-
sociated with age t 5 2 of individual i is given by:

l (n, m, g, S, t )i2

p when x 5 xi2 i2 i15 5(1 2 p )Pr(x z x . x , x , x ) when x . x .i2 i2 i2 i1 i1 i0 i2 i1

6. Filtering at age t 2 1.—In general, at age t 2 1
(2 , t # Ti), projected sets of size, reserve density,
and food trajectories are selected based on the actual
size of individuals as in step 3. Then the sets are sam-
pled with replacement 3000 times.

7. Projection from age t 2 1 to t (for t . 2).—From
each of the sampled sets, the size at age t is projected
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FIG. 2. Parameter estimation algorithm. (a) Projected length of individuals from age 0 to 1 for individual i; 100 out of
3000 trajectories are plotted. (b) Histogram of simulated length at age t 5 1 for individual i. (c) Probability density function
of length at age 1 approximated by applying a cubic spline to the histogram. (d) Scatter plot of simulated reserve density
and length at age t 5 1 for individual i. (e) Histogram of projected reserve density for individual i at age t 5 1 after filtering
process [i.e., individuals within the two lines in (d)]. Individuals within the two lines in (d) were sampled with replacement
3000 times to be used for projecting the size of the individual at age t 5 2. (f) Projections of size from age 0 to 5 for an
individual. They are filtered at ages 1, 2, 3, and 4 at the known lengths of the individual; 100 of 3000 trajectories are plotted.

using equations in Table 1 and the same set of param-
eter values used previously (Fig. 2f).

8. Likelihood at age t (for t . 2).—At age t, the
likelihood is calculated from the probability of no
growth and the fitted density function to projected sizes
in the same way it was done at ages t 5 1 and 2:

l (n, m, g, S, t )i,t

p when x 5 xi,t i,t i,t21
5 (1 2 p )Pr(x z x . x , x , . . . , x )i,t i,t i,t21 i1 i,t21 i0

when x . x . i,t i,t21

9. Sequential likelihood integrals.—Steps 6–8 are

repeated until t 5 Ti in order to obtain the likeli-
hoods associated with the sizes of individual from t
5 1 to Ti:

[l (n, m, g, S, t ), l (n, m, g, S, t ), . . . ,i1 i2

l (n, m, g, S, t )].iT

We emphasize that the likelihood here is conditional
on all previous sizes. This is repeated for all individuals
(i 5 1, . . . , N). Because we assume that the noise
experienced by individuals is independent, the log like-
lihood associated with the trajectory data of all N in-
dividuals evaluated at the set of parameter values is
given by the following:
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FIG. 3. Determination of estimability of parameters. (a) Simulated single-trajectory data: one size trajectory measured
daily from age 0 to 300. (b) Profile log likelihood (the difference from the maximum-likelihood value over m, n, and t when
S 5 1.0) of maintenance rate coefficient (m) when n 5 9.875, t 5 1.5, and S 5 1.0. (c) Estimated 95% confidence region
(solid) of energy conductance rate (n) and maintenance rate coefficient (m) when memory retention time of the food signal
t 5 1.5 and variance of the food signal S 5 1.0 (df 5 3). An ellipse (dotted line) was fitted visually to the confidence region.
(d) Estimated 95% confidence region (visually fitted ellipses) at t 5 1.3, 1.5, 1.7, and 1.9. Panel (d) also shows true values
(triangle when t 5 1.5) and the maximum-likelihood estimate (star when t 5 1.6). (e) Simulated size distribution data: 20
individual size trajectories measured daily from ages 0 to 50 and 100 individual size distributions at ages 120 and 300.
Parameters used to simulate the data are n 5 9.7639, m 5 0.063, t 5 1.5, S 5 1.0, and g 5 1.286 (where g is the
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TABLE 2. Maximum-likelihood estimates and the difference in maximum log likelihood using
the single-trajectory data.

Scenario n m g S t
D log

likelihood

True values 9.8 0.063 1.2 1.0 1.5
1 9.4 0.063 (1.29) (1.0) 1.6 0
2 8.7 0.058 (1.29) (5.0) 4.7 221
3 15.2 0.112 (1.29) (0.2) 2.8 218
4 9.5 0.062 (1.29) (1.0) (1.5) 22
5 13.8 0.040 (3.00) (1.0) (1.5) 26

Notes: The second row shows the true parameters used to simulate the data. In the rows
above, the parameters in parentheses were fixed as constants, and the log likelihood was
maximized over other parameters. The difference in log likelihood is measured from the max-
imum-likelihood value under Scenario 1. We used a 5 0.137, b 5 2.75, Vc 5 800 in Eq. 4
and d 5 1 in Table 1.

←

energy investment ratio). (f ) Profile log likelihood (the difference from the maximum-likelihood value over m, n, and t when
S 5 1.0) of maintenance rate coefficient (m) when n 5 9.400, t 5 1.5, and S 5 1.0. (g) Estimated 95% confidence region
(solid) of energy conductance rate (n) and maintenance rate coefficient (m) when t 5 1.5, and S 5 1.0 (df 5 3). An ellipse
(dotted line) was fitted visually to the confidence region. (h) Estimated 95% confidence region (visually fitted ellipses) at t
5 1.5 and 2.0. Panel (h) also shows true values (triangle when t 5 1.5) and the maximum-likelihood estimate (star when t
5 1.8).

L(n, m, g, S, t ) 5 log[l (n, m, g, S, t )]. (6)O O i,t
i t

Finally, a set of parameters that maximizes the log
likelihood function is the maximum-likelihood esti-
mate of the parameters.

We note a caveat with the nonlinear state–space
method. Because the probability density is constructed
using simulation of a stochastic model, there is an error
associated with it. Consequently, when likelihood is
evaluated repeatedly at the same parameter values, they
differ slightly but non-negligibly (i.e., likelihood is sto-
chastic; see Doucet et al. 2001). To overcome this prob-
lem, we estimated the likelihood with the same set of
parameter values multiple times in order to obtain a
convergence. For example, we evaluated the likelihood
eight times at the same parameter values in the current
analysis. This stochasticity increases with the number
of li,t(·)) evaluations in Eq. 6, and thus increases with
the size of the data. Although the confidence interval
associated with each parameter will shrink with the size
of the data, the numerical error will increase with the
data. However, this problem should be overcome by
increasing the number of simulations in evaluating the
probability density (i.e., by increased speed of com-
puters).

ESTIMABILITY OF PARAMETERS IN A DYNAMIC

ENERGY BUDGET MODEL

To demonstrate the estimability of parameters, we
fitted the model to two types of simulated data sets.
These data sets are motivated by the actual data avail-
able for delta smelt. In one data set, a size trajectory
of a single individual over 300 days is used (Fig. 3a);
we call this single-trajectory data. In the other data set,

size trajectories of 20 individuals over 50 days, as well
as size distributions of 100 individuals at time t 5 120
and 300, are used (Fig. 3e). The sizes of individuals at
time t 5 120 in the latter data set were treated as in-
dependent trajectories, each consisting of two points
(a typical size at birth and a size at t 5 120). We treated
the sizes at t 5 300 in the same way. We call this data
set size ‘‘distribution data.’’ In these examples, we used
the term ‘‘length’’ as a cubic root of the volume and
assumed that the initial length of the individuals was
known to be 4.5 mm. The values used for parameters
are shown in Table 2.

Parameters are estimable using a maximum-likeli-
hood method when they are not confounded in a like-
lihood function. They may be confounded because
there is not enough variation in the data (extrinsic es-
timability problem), or because different parameters
specify the same variation in the data (intrinsic estim-
ability problem; see McCullagh and Nelder 1989).
Here, we are addressing estimability of parameters
from specific types of data and a model. Thus, we are
taking a practical approach without separating these
causes. When an analytical expression for a likelihood
function is available, estimability of parameters can be
determined from second derivatives of the likelihood
function with respect to the parameters (see Catchpole
and Morgan 1997). Because we do not have the ana-
lytical expression, we examine likelihood values near
its maximum to examine the estimability. We consider
that, if the likelihood is peaked at a unique set of pa-
rameter values, then the parameters are estimable. In
order to do this, we first found the maximum-likelihood
value and compared it with likelihoods over the pa-
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FIG. 4. Simulated size trajectories using estimated param-
eters: (a) maximum-likelihood estimates ( 5 9.4, m̂ 5 0.063,n̂

5 1.6) based on the single-trajectory data in Fig. 3a; (b)t̂
maximum-likelihood estimates ( 5 9.8, m̂ 5 0.063, 5 1.8)n̂ t̂
based on the size distribution data in Fig. 3e. For both figures,
20 simulated size trajectories are shown.

rameter space around the maximum-likelihood esti-
mates.

For both data types, we evaluated likelihood at var-
ious values of m while other parameters were fixed as
constant, producing a projection of profile likelihood
over m (Fig. 3b, f). This likelihood was then repeated
at different values of n while the rest of the parameters
were fixed as constant, producing profile likelihood
projections over n and m (Fig. 3c, g). The maximum
values of the likelihood in Fig. 3c and g were taken as
conditional maximum-likelihood values (conditional
on the other parameters). The whole process was re-
peated over various values of t to search for a maxi-
mum-likelihood value over the three parameters (Fig.
3d, h). With both data types, the maximum-likelihood
value peaked at a unique set of parameter values, in-
dicating that the three parameters are estimable. Based
on these parameters, size trajectories were simulated
(Fig. 4).

Using the single-trajectory data, we searched for
maximum-likelihood values over the three parameters
(n, m, and t) at three different values of S (S 5 0.2,
1.0, and 5.0; Scenarios 1, 2, and 3 in Table 2). The
maximum-likelihood values were different at different
values of S, indicating that the likelihood is maximized
at a unique set of parameter values over the four pa-
rameters (n, m, t, and S). Thus, at least the four pa-
rameters (n, m, t, and S) are estimable separately. Sim-

ilarly, the likelihood was maximized over n and m at
two different values of g (g 5 1.0 and 3.0), while the
rest of the parameters were fixed as constant (Scenarios
4 and 5 in Table 2). The maximum-likelihood values
were different at different values of g, indicating that
g is also estimable when we know S and t from separate
information.

Fitting the model to simulated data sets revealed the
covariance structure of parameters. For example, n and
m are positively correlated with each other. This is
consistent with the fact that the ratio n/m determines
the maximum size of individuals when f (t) is a constant
(Kooijman 2000: Section 3.7). We also found that S
and m (thus, also S and n) are negatively correlated
with each other. This reflects the fact that when the
mean functional response is below 0.5, as in our ex-
amples during the early part of the life stage, the mean
functional response is increased with S because of the
form of nonlinearity in the functional response (the
Holling’s type II). The increased mean functional re-
sponse is compensated by the reduced m, which de-
termines how quickly an individual reaches the max-
imum size.

DELTA SMELT SIZE TRAJECTORY ANALYSIS

The delta smelt (Hypomesus transpacificus) is a eu-
ryhaline fish that is endemic to San Francisco Estuary,
California, USA (Moyle et al. 1992, Sweetnam 1999;
W. A. Bennett, unpublished manuscript). It generally
has an annual life span and spawns from March to June
(W. A. Bennett, unpublished manuscript). Its popula-
tion size declined dramatically during the early 1980s,
prompting its listing as a federal and state threatened
species (U.S. Department of Interior 1994). The cause
of the decline is yet to be determined, but is thought
to have occurred due to dramatic changes in the es-
tuarine food web from non-native invasive species,
losses in freshwater exported from the estuary by the
federal and state water pumping projects, as well as
the effects of toxicants such as pesticides (Bennett and
Moyle 1996; W. A. Bennett, unpublished manuscript).

Delta smelt used for the longitudinal size at age es-
timates using otoliths were collected in the estuarine
low-salinity zone in collaboration with monitoring of
summer juvenile fish conducted by the Interagency
Ecological Program for the San Francisco Estuary. Del-
ta smelt were sampled using a plankton net attached
to a towing sled, measured, and then fixed in 70%
ETOH. Detailed methods on otolith preparation and
analysis are presented in Hobbs et al. (2004). Briefly,
sagittal otoliths were extracted, mounted on slides, and
polished. Ring microstructure was then evaluated using
a light microscope attached to a computer with image
analysis software (Image Pro 4; MediaCybernetics
1998).

We used individual size trajectories of five individ-
uals that lived longer than 170 days (Fig. 5a), and fitted
the model to the data. Because the shape of the fish is
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FIG. 5. Delta smelt (Hypomesus transpacificus) size tra-
jectories: (a) actual size trajectory data of five individuals
and (b) 20 simulated trajectories based on maximum-likeli-
hood estimates ( 5 3.2, m̂ 5 0.11, 5 0.5, and Ŝ 5 1.8).n̂ t̂

not a cube, we used a shape correction factor (d 5
0.238; Table 2) estimated by Kooijman (2000: Section
8.2) for sand smelt (Atherina presbyter). In our anal-
ysis, we set values of a and b in Eq. 4 so that f̄ (0) 5
0.1 at birth and f̄ (t) 5 0.5 when V(t) 5 Vc. The lower
bound of the average food density was chosen so that
it is small but still provides room for fluctuations, and
the upper bound was set so that it allows some indi-
viduals to grow in fluctuating environments up to twice
the size of individuals in average food environments.
We also set Vc 5 800 mm3, which is approximately the
inflection point of the growth curves, and g 5 1, which
is a very crude estimate. We note that, in reality, these
values have associated uncertainties. Because our goal
of this paper is to demonstrate a statistical method, we
assume that there is no uncertainty associated with
them. Consequently, the actual estimates of other pa-
rameters should be interpreted cautiously.

The maximum-likelihood estimates of the four pa-
rameters (and associated standard errors) are 5 3.25n̂
(0.02) mm/d, m̂ 5 0.109 (0.01)/d, 5 0.46 (0.002) d,t̂
and Ŝ 5 1.81 (0.02). Based on these estimates, size
trajectories were simulated (Fig. 5b).

DISCUSSION

The numerical maximum-likelihood approach out-
lined in this paper allows estimation of parameters in
a system of nonlinear stochastic differential equations
in which one of the state variables is unobservable. We
used this method to estimate parameters in an ener-
getic-based individual growth model (a dynamic en-
ergy budget model) from size trajectory data.

The advantage of obtaining parameters in a mech-
anistic model such as the one used in this paper is that
results can be interpreted in relation to physiological
rate processes that can be measured independently. For
example, our estimated maintenance rate coefficient for
delta smelt is 0.11 d21. According to dynamic energy
budget theory, the respiration rate of a growing organ-
ism is the sum of maintenance rate and the overheads
associated with growth (Kooijman 2000, Nisbet et al.
2000). Our fit thus implies that a delta smelt will respire
at a rate equivalent to not less than 11% of its body
mass per day.

We investigated estimability of parameters in dy-
namic energy budget models. This is an important step
in developing a new likelihood-based parameter esti-
mation method, because some parameters may be in-
estimable, and extra information must be provided to
estimate them (e.g., Fujiwara and Caswell 2001). We
found that the maintenance rate coefficient (m), energy
conductance rate (n), variance in food (S), and memory
retention time in food (t) can be estimated separately
if we know the energy investment ratio (g) and the
mean functional response level. This scenario was ap-
plied to the analysis of growth in delta smelt. Alter-
natively, if we know how food fluctuates over time and
how individual feeding rate responds to it, we can es-

timate all three parameters (m, n, and g) associated with
the individual growth model. This also emphasizes the
importance of obtaining accurate food conditions of
organisms along with size trajectories.

The fact that g is separable from n is counterintuitive
because the two parameters only appear as n/g in a
deterministic model. We hypothesize that the infor-
mation on g in the data comes from the autocorrelation
in the size trajectory. Therefore, g, n, and t are unlikely
to be estimable together.

The parameter estimation technique presented here
is an application of the method commonly called state–
space model analysis and has been useful in separating
variability in different processes (e.g., de Valpine and
Hastings 2001). In this paper, we assumed that vari-
ability in growth rates originates from the fluctuation
in available food. Other potential sources of the vari-
ability include measurement noise and difference in
growth parameters among individuals and over time.
For example, the difference among individuals could
be environmentally determined during the early life of
individuals, or it could be genetically determined. The
parameters could vary over time due to variable toxic
effects. The state–space analysis method provides a
potential tool to separate these different types of signals
originating from the different processes.

Comparing actual (Fig. 5a) and fitted (Fig. 5b) tra-
jectories of delta smelt suggests the potential need for
improvements in the growth and/or food model. For
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example, model trajectories grow more rapidly and as-
ymptote more quickly than actual trajectories. This
might be overcome with the inclusion of other factors
such as temperature change, and more accurate rep-
resentation of food availability in the model or im-
provement in the energy allocation rule. Furthermore,
model size trajectories have more day-to-day variabil-
ity than the data, as evidenced by more ‘‘wiggliness’’
associated with lines in Fig. 5b than in Fig. 5a. This
suggests an inflated estimate of S in Eq. 5. We could
separate variation within and between individuals by
including individual heterogeneity in growth parame-
ters.

One important factor influencing the growth of in-
dividuals is availability of food, and we made one spe-
cial assumption relating food availability to organism
size. We expect variability among populations with re-
gard to how the food availability changes throughout
the life history of individuals, reflecting differences in
the community structures in which those individuals
live. One way to accommodate such variability is to
incorporate extensive information on food organisms
into the model. For example, Rose and Cowan (1993)
used measured changes in the distribution of various
food organisms, known size-specific behavior of fish,
and other environmental factors such as the length of
daylight period and temperature to model how the
availability of food for striped bass (Morone saxatilis)
changes with size and the day of the year. When such
data on food and feeding are available, they can be
used as covariate data specifying the food density in
the growth model.

The parameter estimation method outlined in this
paper is based on likelihood theory. Therefore, model
selection criteria such as Akaike Information Criteria
(AIC; Burnham and Anderson 1997) can be applied to
select best-fit models. In this paper, we only used one
type of model. However, a variety of energetic-based
individual growth models exists (e.g., Noonburg et al.
1998). Comparison of the models using AIC or other
model selection methods would be an interesting future
project.

We note that the parameters estimated in this paper
are ones for surviving individuals. Therefore, careful
interpretation of the results is needed when size-de-
pendent mortality is severe. We are currently investi-
gating the feasibility of including size-dependent mor-
tality in the parameter estimation method.

Individual growth rate of animals is increasingly
used as an ecological indicator (e.g., Bennett et al.
1995). Stresses, such as contaminants in the environ-
ment, often affect energetic processes within individ-
uals, which, in turn, affect individual growth rate. Thus
it is important to be able to estimate parameters in
energetic-based individual growth models. The method
presented in this paper uses longitudinal individual size
data, in which the size of the same individuals is mea-
sured repeatedly over time, to estimate parameters in

the growth models. The collection of size trajectory
data is becoming increasingly more common. It can be
conducted in vivo by repeatedly measuring the size of
marked individuals, and can be reconstructed retro-
spectively from patterns in hard body parts such as
otolith rings and shells. Thus we expect this technique
to become an important tool in ecological research.
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SUPPLEMENT

Matlab source code for the algorithm described in our study is available in ESA’s Electronic Data Archive: Ecological
Archives E086-079-S1.




