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Abstract

Building performance simulation is an important tool
in building design and operations. Its purpose is to
evaluate and optimize energy use, environmental im-
pact, and occupant comfort of buildings. However,
the current state of building performance simulation
tools is highly fragmented, and the models themselves
can be of low quality. In this paper, we present
a platform-based design paradigm for building per-
formance models. This approach offers a standard-
ized design flow to ensure that the models are devel-
oped in a consistent and systematic way. Addition-
ally, our approach addresses the lack of model per-
formance metrics, allowing for the quantification of
model performance. We explore the design flow and
model performance quantification with a case study,
demonstrating the use of the platform-based design
paradigm.

Highlights

• A platform-based design framework is proposed
for constructing building models.

• Performance metrics for a two-zone model are
developed for model selections.

• The framework is demonstrated through a case
study of a testbed.

Introduction

Building performance modeling has numerous ad-
vantages in various applications, including de-
sign (Machairas et al. (2014)), control (Li and
Wen (2014)), demand response (Raza and Khos-
ravi (2015)), fault diagnosis (Kim and Katipamula
(2018)), and indoor air quality (Spengler and Chen
(2000)). However, models for each application are
usually developed independently of each other. For
instance, building models constructed during the de-
sign phase are frequently not carried over to the oper-
ations phase. Additionally, building models designed
for fault diagnosis purposes may require a higher level
of detail compared to those created for demand re-
sponse methods. Fault diagnosis models require de-
tailed information about the building’s systems and
their behavior to identify potential faults accurately.
On the other hand, demand response models only
need to provide accurate building load predictions to

optimize the building’s energy usage during peak pe-
riods.

Creating a building model for an already constructed
building is a complex and challenging task. The level
of abstraction is a term that refers to the degree of de-
tail and complexity in a model. It is demonstrated in
the electronic design industry, ranging from the sys-
tem level (less detailed) to the layout level (more de-
tailed) (Weber and Van Noije (2012)). This concept
facilitates the creation of a more structured approach
to model generation. However, researchers typically
build a single model and evaluate its accuracy by com-
paring it with specific outcomes, such as room tem-
perature or energy consumption often without con-
sidering the needed complexity (level of abstraction)
would work best for their particular application. The
process can be time-consuming and requires signifi-
cant expertise. To address these challenges, there is
a need for an automated, structured, and integrated
design method to construct a building model at the
required level of abstraction for a specific application.

Building models can be categorized into three dif-
ferent types: white box, black box, and gray box
models. White box models, the most common to-
day, involve employing first-principle modeling tech-
niques to capture the dynamics of the physical sys-
tems in detail. This type of model has advantages
in terms of high fidelity, interpretability, and extrap-
olation capacity. However, building a physics-based
model requires a deep understanding of the system’s
structures and operations, making it difficult to con-
struct. Additionally, obtaining every required pa-
rameter from the physical system can be challeng-
ing, increasing the number of uncertainty parameters
and making it computationally expensive to solve the
systems of equations. Common tools for white box
building models include EnergyPlus (Crawley et al.
(2001)), TRNSYS (Solar Energy Laboratory (1975)),
ESP-r (Strachan et al. (2008)), and Modelica (Fritz-
son and Engelson (1998)). Solmaz (Solmaz (2019))
provides a comprehensive review of various tools in
building simulation, evaluating them based on their
features and limitations. Black box models, on the
other hand, are easier to construct and can be created
based on available sensor data. These models uti-
lize data-driven approaches to create a model based



on observed data, without explicitly considering the
underlying physical processes. However, black box
models are rarely physically interpretable, may suf-
fer from overfitting, may be fragile, and have limited
extrapolation capacity. Common data-driven tech-
niques used for predicting the energy performance
of a building include artificial neural networks, sup-
port vector machines, and Gaussian-based regressions
and clustering (Seyedzadeh et al. (2018)). Gray box
models find a middle ground between white box and
black box models, leveraging available sensor data
while also incorporating some level of physics-based
understanding. Gray box models aim to preserve
some relevant physical properties of the system while
also incorporating data-driven techniques to capture
system behavior. These models can improve on the
limitations of both white box and black box models
by offering a better balance between accuracy, inter-
pretability, and computational complexity. Widely
employed gray box models of buildings include resis-
tor and capacitor networks (Li et al. (2021)), as well
as hybrid models that integrate both physics-based
and data-driven techniques (Dong et al. (2016); Lin
et al. (2021); Cui et al. (2019)).

Despite the availability of various modeling tech-
niques for building systems, there is a notable gap in
comprehensive performance indicators for these mod-
els, leading to uncertainty when it comes to selecting
the most suitable model for a particular application.
Most studies tend to focus solely on accuracy as the
primary performance metric, while overlooking essen-
tial attributes such as prediction horizon and mea-
surement cost, which are vital aspects of evaluating
model performance.

In this paper, we present a platform-based design
framework for constructing building models. This
framework provides a structured approach to model
building at an appropriate level of abstraction for a
specific application. Furthermore, we compare three
different types of models in terms of multiple perfor-
mance criteria. These criteria include accuracy, ex-
ecution time, measurement cost, prediction horizon,
and output resolution. By considering these diverse
aspects of model performance, we aim to provide a
more holistic and comprehensive evaluation of the dif-
ferent modeling techniques used in the field of build-
ing systems.

Methodology

Platform-based Design (PBD) approach was devel-
oped in the electronic industry as a solution to tackle
the rising complexity of hardware-software co-design
(Ferrari and Sangiovanni-Vincentelli (1999)). The ap-
proach emphasizes the reuse of components across
various designs, at varying levels of abstraction, to
enable faster and more efficient development of de-
signs. To achieve this, PBD separates function, which
characterizes the input-output behavior of the sys-

tem, from architecture, which refers to the system
components, allowing for design space exploration. A
mapping process is then employed to match a library
of components to the function, enabling the design to
move from one level of abstraction to the next. This
mapping process can be framed as a multi-objective
optimization, where performance metrics are opti-
mized over the design space. The PBD approach
involves starting the design process at a high level
of abstraction without detailed information and cre-
ating an abstract model that limits the design based
on a library of components (a platform). This allows
for a more modular and structured approach to de-
sign, where components can be reused across various
designs. The design process itself involves several re-
finements, from the initial specification to the final
implementation, and platforms at different levels of
abstraction are utilized throughout these iterations.
These platforms serve as a means of organizing and
structuring the design process, enabling easier inte-
gration of components and a faster turnaround time
for design development.

Building performance simulation software can serve
as a platform for design, and an example of such soft-
ware is Modelica (Fritzson and Engelson (1998)) sim-
ulation environment. Modelica is an object-oriented
language for modeling complex systems. To aid
in building modeling, Lawrence Berkeley National
Lab (LBNL) developed the Modelica building library
(Wetter et al. (2014)) for building modeling that con-
tains white box and gray box models. While the plat-
form has facilitated streamlining the construction of
building models, it lacks black box models for de-
sign. Although black box models require training
data, they can still be developed using previously ob-
tained data from similar buildings and subsequently
be updated with measured data. Furthermore, there
is still much progress that needs to be made towards
achieving the automatic generation of designs. The
Functional Mock-up Interface (FMI), a standard for
exchanging dynamic simulation models, may be a po-
tential solution for addressing these gaps.

In addition to FMI, other research efforts toward a
common platform mostly center around developing
control strategies. For example, the Building Op-
timization Testing Framework (BOPTEST) (Blum
et al. (2021)) is a platform that allows users to test
various control strategies, while Chen et al. (Chen
and Treado (2014)) developed a platform in Mat-
lab for HVAC control analysis. Another approach
is the PBD approach, as suggested by Jia et al. (Jia
et al. (2018)) for smart building systems, which lever-
ages shared infrastructures for software and hardware
components. They demonstrate the effectiveness of
their approach through a case study of retrofitting
the HVAC system in a smart building, which involved
installing sensors and actuators to enhance energy ef-
ficiency and improve comfort for occupants.



Our goal is to streamline the process of creating build-
ing models for a range of applications. We develop a
design flow that is similar to the PBD approach pro-
posed by Jia et al. (2018) but specifically tailored to
building model development. Figure 1 illustrates the
proposed design flow, which consists of two layers: the
functional design layer and the module design layer.
Each layer has its own library, which includes the
virtual design platform and module platform. The
hourglass design in each layer represents a “meet-in-
the-middle” strategy, rather than a strictly top-down
or bottom-up approach. The design flow begins with
a high-level functional specification that outlines the
input-output requirements of the model. In the func-
tional design layer, these specifications are mapped
to a prototype design using white, gray, and black
box models, with the topology provided by the input
data model. In the module design layer, the pro-
totype design serves as the specification for further
refinement. The final model is constructed by explor-
ing different modules, such as the schedule module,
control module, and data analytic module. One key
aspect of this design flow is the input data model,
which should include the topology of the system to
facilitate the design process. Existing data models,
such as Brick (Balaji et al. (2016)), can be utilized in
this process.

To map a function to components, it is necessary to
have performance metrics for building models. Typ-
ically, these metrics involve comparing the accuracy
of the models by comparing predicted and actual en-
ergy consumption or temperature profiles. However,
different applications may require different levels of
model detail. For example, black box models may suf-
fice for building load forecasting for demand response
applications (Chen et al. (2017); Javed et al. (2012)),
while more complex models may be necessary for fault
diagnosis (Kim and Katipamula (2018)). Therefore,

other performance metrics are needed to determine
whether a model is appropriate for a specific applica-
tion. In this paper, we develop performance metrics
for a 2-zone model based on both its black box and
white box models. Defining these metrics is not a
simple task, as it may vary depending on the type
and size of the building. For this study, we focus
on a small space and plan to develop a more general
framework in future work.

Case Studies

In this section, we present a case study involving the
construction of three different types of models for a
testbed (2 climatic chambers). These models include
a white box model, a black box model, and a hybrid
box model created at a proper level of abstraction
using experimental data. The purpose of creating the
white box and black box models is to facilitate the
development of performance metrics, while the gray
box model serves as a demonstration of the proposed
framework.

Experimental Testbed

The measurements used in this study were obtained
from a well-instrumented testbed located in Singa-
pore that we designed, build and operate. The
testbed has precise control and operation capabilities,
and the indoor environment is well-regulated. The
testbed room used in the study has dimensions of 25
m2 and a height of 2.6m. It is worth noting that
the testbed is insulated from the outdoor weather,
but an Outdoor Air Emulator (OAE) is available to
emulate the outdoor environmental conditions. The
measurement period covers May 17th, 2021 to May
31st, 2021. In particular, we develop models of the
Heating, Ventilation, and Air-Conditioning (HVAC)
system of the physical testbed. The structure of the
air system in the testbed is shown in Figure 2.

Figure 1: An overview of the proposed PBD design flow. The components that are colored in black, gray, and
white in the virtual design platforms represent the black box, gray box, and white box models, respectively.



Figure 2: The air system of the testbed, which con-
sists of an Air Handling Unit (AHU) that serves two
zones, with a Variable Air Volume (VAV) in each
zone. The available measurements in the system are
also depicted on the graph.

White Box Model

We used Modelica (Fritzson and Engelson (1998))
for the white box model of the testbed. Modelica
is a high-level, object-oriented, and equation-based
modeling language used for modeling and simulat-
ing complex physical systems. Additionally, Model-
ica Building Library (Wetter et al. (2014)) developed
by Lawrence Berkeley National Laboratory was used
to create the model. The constructed model is shown
in Figure 3. The result of the cooling load compari-
son between the measured data and the output of the
Modelica is shown in Figure 4a. The Mean Squared
Error (MSE) is 0.65 kW .

Figure 3: The Modelica Model

Black Box Model

The Random Forest (RF) model has shown promis-
ing results in building load forecasting (Dudek (2015);
Lahouar and Slama (2015); Fan et al. (2022)). It is
an ensemble learning method that combines the pre-
dictions of multiple decision trees to produce a more
accurate and stable prediction. In a RF model, a
large number of decision trees are trained on differ-
ent subsets of the training data, using random subsets
of features at each node to avoid overfitting. During
the prediction stage, each decision tree in the for-
est generates its prediction, and the final output is
determined by taking the majority vote of all the in-
dividual decision trees.

The cooling load comparison in Figure 4b shows that
the black box (RF) model is able to accurately predict
cooling load up to a certain time horizon (roughly a

day and a half) before the accuracy starts to dete-
riorate over time. The vertical red dotted line sepa-
rating the training and validation data indicates that
the model was trained on the left side of the line and
validated on the right side. The MSE is 0.8 kW .
However, the observation that the model’s accuracy
deteriorates over time suggests that the model may
not be capturing all of the underlying dynamics of
the system.

Gray Box Model

Figure 5: A block diagram that shows the white, gray,
and black box model of each component in the air sys-
tem of the room.

In the gray box modeling approach, developed in Lin
et al. (2021), we utilize all three types of modeling,
white box, black box, and gray box model to cre-
ate a model at the level of abstraction of the avail-
able sensor data. Figure 5 shows a block diagram of
the resulting model. The Air Handling Unit (AHU),
which contains a cooling coil and a fan, is modeled as
a white box model.

The electric heater and Variable Air Volume (VAV)
are modeled together as a black box model. The black
box model is created through a two-hidden-layer neu-
ral network (Russell and Norvig (2009)) that cap-
tures the relationship between the inputs and outputs
of the components. ReLu function, which is defined
as relu(x) = max(x, 0), was used to introduce non-
linearity in the model. Given the input x, the output
f(x) is given by

f(x) = relu(w1x+ b1) · w2 + b2 (1)

Parameters w1, b1, w2, b2 are learned during gradient
descent. The ML model is trained with a week worth
of past data and results in an MSE of 0.1 ◦C.

The properties of the room are modeled as a Resistor-
Capacitor (RC) thermal network. A Proportional-
Integral-Derivative (PID) feedback controller con-
trolled the chilled water supply flow rate through the
cooling coil to indirectly maintain the room set point
temperature. The controller is modeled as a white
box model. The design choices are made by the infor-
mation available from the physical testbed to reduce
the number of uncertain parameters.

The MSE between the actual and estimated values is
0.2kW . The gray box model has improved prediction



(a)

(b)
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Figure 4: Comparison of measured and estimated cooling load. The blue line represents the measured cooling
load, while the orange line represents the estimated cooling load based on the (a) White Box, (b) Black Box, and
(c) Gray Box models. The vertical red dotted line separates the training/calibrating (left) and validation (right)
data.



accuracy (0.2 kW vs 0.65 kW for the white box model
and 0.8 kW for the black box model) and it also is
able to predict the temperature over a long period of
the horizon. It combines the strength of both black
box and white box models based on the information
known in the system.

Model Performance Metrics

Although the case studies have shown that the gray
box model provides better prediction results, it’s im-
portant to note that other factors need to be taken
into account to accurately quantify the model’s per-
formance. In addition to accuracy, factors such as ex-
ecution time, measurement cost, prediction horizon,
and output resolution are also critical in understand-
ing a model’s performance.

As mentioned earlier, accuracy is typically defined
as the MSE over a given period of time. Execution
time, on the other hand, refers to the amount of time
required for the model to predict a certain period of
data, such as a week’s worth of information. Measure-
ment cost indicates the level of detail required in the
input data to build the model, and prediction horizon
is the amount of time into the future the model can
accurately predict without losing accuracy. Finally,
output resolution refers to the number of variables
that the model can predict.

To better understand the relative importance of these
factors, we provide a table of boundary values specific
to a small office space in Table 1. It’s important to
note that these boundary values may vary depending
on the size and complexity of the model being used.
Our goal is to emphasize that accuracy is just one of
many factors that should be considered when select-
ing the most suitable model for a given application,
and that it’s essential to find the most appropriate
level of abstraction when evaluating and comparing
different models.

Figure 6 presents the ranking of three models based
on various attributes. Although their accuracies are
comparable, the gray box model achieves the best ac-
curacy, which is crucial considering the unit of cooling
load is kW. The execution time of all three models is
relatively fast, as the models are small-scale (two-zone
model). However, for multi-zone models, the execu-
tion time may significantly differ, with the white box
model taking the longest time, while the black box
model taking the shortest. The black box model re-
quires the least amount of measurements to construct,
whereas the white box model requires a higher level of
detail about the system to create an accurate model.
The gray box model lies between the two in terms
of measurement requirements. Both white box and
gray box models have a long prediction horizon due
to their underlying understanding of physics, while
black box models do not benefit from this knowledge.
Lastly, the output resolution of the white box model
is high due to its complex nature, allowing retrieval

of temperature, mass flow rate, or humidity values
between each component throughout time. On the
other hand, black box models usually only train on
a given output or specified outputs. The gray box
models lie in between based on the available informa-
tion.

Figure 6: Model performance comparison between
white box, black box, and gray box models based on
model attributes including accuracy, execution time,
measurement cost, prediction horizon, and output res-
olution.

Different applications often have distinct require-
ments regarding model performance, and it’s essen-
tial to consider various attributes to identify the most
appropriate model for a specific application. For in-
stance, a highly accurate model that takes a long time
to execute may not be suitable for a real-time appli-
cation, where rapid predictions are critical. More-
over, evaluating different model attributes allows for
a more comprehensive understanding of the strengths
and weaknesses of various models. It helps to iden-
tify trade-offs and enables one to choose the most
suitable model based on the specific needs of the ap-
plication. For example, a model with a lower level of
accuracy may be preferred if it executes quickly and
has a longer prediction horizon, as it may still pro-
vide useful insights for the application. This section
serves as a starting point for improving the evalua-
tion of model performance beyond simply comparing
model accuracy. The ultimate goal is to establish
standardized performance quantification metrics for
model selection, allowing researchers to develop the
most suitable model for their specific applications.

Discussion

The proposed design flow offers a methodology that
aims to streamline the process of generating build-
ing models for various applications. However, au-
tomating this process fully presents challenges, such
as mapping the data model towards the simulation
environment and developing a common platform that
contains libraries for white box, black box, and gray
box models. One of the major challenges is standard-
ization. Standardization is vital to facilitate the reuse
of components and improve the efficiency of the de-



Table 1: Model Performance Metric

Model Attribute Description 1 (Bad) 2 3 4 5 (Good)

Accuracy MSE [kW] > 2 < 2 < 1 < 0.7 < 0.1
Execution Time Time taken for the model to

predict a week worth of data
[min]

> 10 < 10 < 5 < 3 < 1

Measurement Cost Measurements requirements
to build the model

> 20 < 20 < 15 < 10 < 5

Prediction Horizon How long can the model
predict into the future with-
out losing accuracy [day]

< 0.25 < 1 < 2 < 5 > 5

Output Resolution The number of variables the
model can predict

1 < 3 < 5 < 10 < 15

sign process. The lack of standardization can lead to
inefficiencies in modeling and simulation, which can
result in suboptimal designs. Thus, there is an urgent
need to develop data and library standardization in
the building industry.

In this study, we partially realize the PBD frame-
work by developing hybrid models that utilize white
box, black box, and gray box models. This approach
demonstrates the potential of using these three strate-
gies to create models at an appropriate level of ab-
straction. However, the current development process
is still tedious, as connecting a black box model to
a gray or white box model may be difficult due to
input-output constraints between components.

Furthermore, the limitations of the case studies are
addressed as follows. Measurements under testbed
conditions are easier to obtain compared to those
taken in real-life buildings because the testbed has
a higher density of sensors than a typical building.
Further work needs to be done to develop more gen-
eralizable models that can be used to model a given
physical entity with a smaller and more realistic sen-
sor density. Additionally, the performance metrics
are based on small office spaces and may not be suit-
able for all building sizes and types. Therefore, there
is a need to develop more diverse and comprehensive
performance metrics that can be applied to a wider
range of applications and building types.

Conclusion

In this paper, we developed and compared different
types of building models, namely white box, black
box, and gray box models, using a testbed in Sin-
gapore as the case study. These models are cre-
ated based on existing data standards, such as Brick,
which streamline the model creation process and
make it easily transferable to other buildings. We
also develop a model performance metric to objec-
tively compare the advantages of different models.

The white box model involves detailed knowledge of
the building components, systems, and operations. It
requires a high level of input data and incorporates
physical laws and equations to simulate the energy
performance of the building. The black box model
uses empirical data and statistical methods to model
the building’s energy performance without explicit

knowledge of the building’s components or systems.
It is the simplest and most scalable model, but may
sacrifice accuracy. Lastly, the gray box model, on the
other hand, uses a combination of detailed and aggre-
gated data, with some components represented in a
simplified manner. It enables the creation of models
at different levels of abstraction based on the avail-
ability of data.

To compare the performance of these models, we de-
velop a set of model performance metrics that takes
into account factors such as accuracy, execution time,
measurement cost, prediction horizon, and output
resolution. By evaluating the models using this met-
ric, designers can objectively assess their strengths
and weaknesses, and identify which type of model
may be more suitable for their specific applications.

One of the challenges in developing these models is
that the process is not entirely automatic. It requires
manual efforts to combine various components into a
single platform, especially when using a mix of white,
black, and gray box approaches. However, the avail-
ability of co-simulation platforms that allow differ-
ent software programs to interact with each other
has paved the way for developing an automatic ap-
proach to creating building models. These platforms
enable the integration of different model types and fa-
cilitate the exchange of data and information among
them, which can streamline the model creation pro-
cess. Furthermore, the platform-based approach pro-
vides a solid foundation for developing models at dif-
ferent levels of abstraction, which can be tailored to
specific applications.
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