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BSJ: What is cognitive neuroscience?

RI: Well, I’m trained as a cognitive psychologist. Cognitive 
psychology is building models of the mind: how do we 

think, how do we use language, and how do we perceive objects? 
These questions are usually addressed in terms of psychological 
processes. Cognitive neuroscience was a real new push in the early 
1980s which recognized that we can use neuroscience methods 
not just to describe what part of the brain does something, but 
actually use that neuroscientific information to help shape our 
psychological theories. 

So, whereas behavioral neurology is solely interested in what 
part of the brain does what, cognitive neuroscience is the idea that 
not only can we use insights from our psychological experiments 
to understand how the brain works, but we can also then take the 
insights from studying the brain to build psychological theories. 
That’s the essence of cognitive neuroscience—it is a bidirectional 
interest. 

BSJ: What initially drew you to the field?

RI: I was in the right place at the right time. I entered graduate 
school in 1982 at the University of Oregon. One of the 

pioneers in the cognitive neuroscience movement, Mike Posner, 
was there (and is still there) as a professor. He was just starting to 
do research with people who had brain lesions, and he worked with 
stroke patients who had disorders of attention. He was interested 
in showing how you could use sophisticated cognitive experiments 
to build models of attention. 

I was in the right place to not only learn from him, but to 
realize that we could apply a similar strategy in studying movement 
disorders to understand how people perform skilled movements. I 
just landed happily in a graduate program as things were taking off.

BSJ: We read your paper on the influence of task outcome 
on implicit motor learning. Could you define implicit 

versus explicit learning for our readers?

RI: Tracing it all the way back to Freud, one of the most 
fundamental distinctions in psychology research is the 

notion that much of our mental life is occurring subconsciously, 
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BSJ: What is clamped visual feedback, and how did you use 
it to isolate implicit from explicit learning?

RI: If I reach for your phone, I’m getting feedback. I see how 
close my hand is to the phone. We can easily replace the 

hand with some proxy. This is what you do every time you’re on 
your computer and move your mouse. You move your mouse 
to click someplace. You’re using feedback because you recognize 
that your movements of the mouse are corresponding to the 
movement of the cursor.

It’s very easy for the human mind to accept that a moving 
cursor is representative of their hand position. If we want to 
create a perturbed world to study learning, we change this so 
that whenever you move your hand, the cursor becomes offset 
by 45 degrees. Then we can ask, “How do people adjust their 
behavior to compensate for that?” It’s what you’re doing all the 
time with your mouse anyhow. In this “game,” sometimes a small 
movement with the cursor takes a big movement of the mouse, 
or a big movement of the mouse is a big movement of the cursor. 
You very quickly adapt. 

Clamped feedback is fixed feedback. It’s the idea that we 
can fool the implicit system to think that the cursor is where the 

as opposed to consciously. Freud tended to frame this distinction 
in terms of a battle between the conscious and the unconscious. 
The unconscious was all your desires, and the conscious was the 
way to keep a check on things. 

But I don’t think it’s two armies battling each other, although 
I think it’s quite obvious that we’re only aware of a limited amount 
of our mental activity. Right now, I’m sure that everything in 
this room is activating sensory systems. Probably percolating 
somewhere in my brain is the thought of getting ready for my 
first Zoom class at one o’clock this afternoon. I’m only aware of 
a limited amount of that information. So that’s the fundamental 
question: why is there a limit on what we’re aware of? 

Setting that aside, our interest in human performance, at least 
in terms of motor control, is recognizing that when we learn a 
new skill, much of the learning is implicit. For instance, we can 
certainly benefit from coaching. In baseball, the coach tells you 
how to orient your shoulder to the pitcher, how to hold the bat, 
and so on. This information is the essence of something being 
explicit—I’m aware of it. If I’m aware of it, I can tell someone else 
about it. But a lot of that skill learning is really implicit, as in, “I 
can’t quite put my finger on it.” The classic example here is bicycle 
riding. It’s really hard to tell a person how to ride a bicycle. You 
can try to coach someone, but in the end, it basically comes down 
to giving them a shove and letting them go across the playground. 
The body figures it out. 

Lots of our memory is implicit. I’m not aware of all the 
different memories that are being activated; they’re all just 
churning around and away in my brain. As you say a word, all 
the things I associate with it get activated, but I will only become 
aware of some of that information. So whatever domain you study, 
whether it’s tension, memory, or motor control, there are always 
things happening at both the explicit and the implicit level. What 
we observe when someone performs a skilled behavior is the 
sum of those processes. Our research has been aimed at trying to 
dissect these skilled behaviors to determine the characteristics of 
what you can learn implicitly versus explicitly, as well as the brain 
systems that are essential for one type versus the other and how 
they interact.

BSJ: Some previous studies concluded that reward has no 
effect on the rate of learning, while others concluded 

that reward does have an effect. What do you think led to these 
inconsistencies?

RI: In the classic case, experiments that study these effects 
perturb the world in some way. In the laboratory we would 

certainly like to study real, natural skill development, but that’s a 
pretty difficult process. So, we usually try to make more contrived 
situations where we can accelerate that learning process, to do it 
within the confines of a one-hour experiment. In any learning 
situation, it’s quite likely that you could have both explicit and 
implicit processes operating, and it may be that reward only affects 
one of those two. So one account of the inconsistency is that in 
the older literature, they didn’t really have methods to separate the 
different contributions of the different learning systems. 

Figure 1:  During clamped feedback, the angle of deviation 
between the cursor and target remains constant. The difference 
in hand angle to the target depicts adaptation to the clamped 
feedback over the course of the experimental period (early 
to late). If the cursor is consistently to the left of the target, 
adaptation will result in hand angle increasing to the right 
(Kim et al., 2019).²
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hand is, even when you are explicitly aware that it isn’t; no matter 
where you reach, the cursor’s always going to do the exact same 
thing. This very primitive implicit motor learning system might 
not have access to that information, and it will respond as though 
it is the feedback. If I reach somewhere but the cursor tells me 
that I’m somewhere else, then I’m going to gradually correct my 
movement. The clamped feedback seems to be picked up by the 
motor system to recalibrate, even though I have no control over 
it (Fig. 1). 

We set up our experiment so that motor error would vary. 
The motor error is the discrepancy between the dead center of the 
target and where the cursor goes. We assume the motor system 
demands perfection. It really wants you to be right on the center 
of the target, so the motor system is going to respond to this error. 
The reward manipulation happens by using a big target or a small 
target. If it’s a small target, the clamp lands outside. That looks 
like an error. Not only did the cursor not go where you expected 
it to, but it missed the target. For the big target, it still didn’t go 
where you expected it to, because you’re probably aiming for the 
center. It goes off to the side, but it’s still within the target. So you 
have this contrast between “Did you hit the target? Or did you 
miss the target?” Then you can ask how that changes how much 
learning is observed, how much adaptation occurs as the result. 

What was surprising to us was that the amount of adaptation 
was really reduced in trials with a big target. For a variety of 
reasons, it was previously thought that the implicit system didn’t 
care about reward. And yet, the output of that implicit learning 
was attenuated when you hit the target. So we thought that reward 
might be attenuating how much you learn. 

BSJ: Can those results be generalized to different 
conditions? For instance, would you expect to see 

similar results if variables like hand angle were altered? 

RI: I think the results can be generalized. Since our paper 
came out, other groups have picked up on this question 

and have been testing different manipulations. The favorite one 
these days is that I reach towards a target, but as I’m reaching, 
the target jumps to where the clamp is, which the person knows 
they have no control over. You see a similar attenuation under 
those conditions. 

It’s like how the study of illusions has always been very useful 
to help us understand how perceptual systems work. Even when 
we know about them, we still see the illusions, and that is because 
they tell us something fundamental about how the perceptual 
system is organized. We’d like to think that the same thing is true 
here—we’re able to isolate a system that’s constantly happening. 
Every time you put on your  jacket, it’s a little heavier when you 
have to reach for something than when you don’t have that jacket 
on. The motor system has to constantly be recalibrating, right? So 
our belief is that this system is always operating at this implicit 
level, commanding perfection and making subtle changes to keep 
yourself perfectly calibrated.

 

BSJ: How do the movement reinforcement, adaptation 
modulation, and dual error models differ in their 

explanations of how reward and error affect learning?

RI: So we came up with hypotheses about different learning 
processes, each one subject to its own constraints. We have 

to specify what we really think is happening, and then by writing 
the computational models we can make quantitative predictions 
based on results. Sometimes, unexpected things come out of 
modeling.

The first model, the movement reinforcement model, just 
says that there’s one learning system driven by errors and another 
driven by rewards. It basically is the classic sort of reinforcement 

Figure 2: To distinguish between the three models, after an initial period of adaptation, subjects were “transferred” to 
a different target size. The size of the target is either increased (straddle-to-hit condition) or decreased (hit-to-straddle 
condition). As depicted in part (b), where the y-axis represents hand angle, the movement reinforcement makes different 
predictions for this experiment than the adaptation modulation and dual error models (Kim et al., 2019).²
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Figure 3:  Black lines are predictions made by the movement 
reinforcement model (top), adaptation modulation model 
(middle), and dual error modulation model (bottom). Purple 
and green dots are experimental data, representing the 
straddle-to-hit and hit-to-straddle conditions, respectively. 
As demonstrated by the discrepancy between the black line 
and the dots in part (a), experimental data fails to align with 
predictions made by the movement reinforcement model (Kim 
et al., 2019).2

learning model in the brain where if I do something, I get 
rewarded to do it again. So the first model says there are two 
different systems operating, one regarding independent learning 
and one that just reinforces rewards, and that actions and 
behaviors are the composite of those two. But that model makes 
predictions that don’t hold up very well.

The second model, the adaptation modulation model, shows 

a direct interaction between learning systems—I have an error-
based system, and I can turn the strength up and down depending 
on reward. The third model, the dual error model, says there are 
two separate implicit learning systems that independently operate, 
where one system cares about whether my hand went where I 
wanted it to go (that’s the sensory prediction error), and another 
system cares about whether I achieved my goal. Performance is 
the sum of their two outputs.

BSJ: What did your experiments suggest about the accuracy 
of each of these three models? How were you able to 

differentiate between them?

RI: Well, we weren’t able to differentiate between the last two 
models. We saw that once you start hitting the target, the 

amount of adaptation decreases. That’s how we can rule out the 
first model, due to a qualitative difference between the prediction 
and the result (Fig. 2, Fig, 3). 

It’s more of a quantitative distinction between the dual error 
and the adaptation modulation model. We just didn’t have good 
enough data yet to distinguish between the two, so that’s why we 
continue on the project, having to come up with new experiments 
to differentiate between those models, or find out that they’re both 
wrong and find some other alternative.

BSJ:  We also read your paper on neural signatures of 
reward prediction error.3 Could you explain for our 

readers what reward prediction error is, and its relevance in 
understanding human cognition? 

RI: Sensory prediction error is what we typically think of 
as motor system error. I expect that when I reach for this 

phone, I’m going to grab it. If I miss, I call it a sensory prediction 
error. I have an expectation of what I’m going to experience, 
and what I’m going to feel. If what I feel is different than what I 
expected, that’s a sensory prediction error. It is used to recalibrate 
the motor system to improve your movements in a very fine-
tuned way. 

A reward prediction error is when I have an expectation 
of how rewarding something’s going to be. For example, I go to 
Peet’s Coffee and order a latte, and I have an expectation of what 
a latte tastes like. But there’s a lot of variability in those baristas. 
Say I get one of the bad ones. I take a sip of the coffee, and it’s 
a badly-made latte. That’s a negative prediction error. I had my 
expectation of what it tastes like, and it wasn’t as good, so I didn’t 
get the full reward I cared about. If it happens consistently, I’m 
going to use those prediction errors. Sometimes I get a great 
coffee, so I’m going to figure out which coffee shops I like and 
use those reward prediction errors to help me make choices in 
life. The reward prediction error influences our choices, while 
the sensory prediction errors are more of, once I made a choice, 
whether I actually succeeded in accomplishing the desired action. 
It’s a distinction between selection (the reward prediction error) 
and execution (the sensory prediction error).
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BSJ:  What parts of the brain are thought to be involved 
in reward prediction error, and how do their roles 

differ? 

RI: To have a reward prediction error, I have to have a reward 
prediction. So what’s my expected outcome? Staying with 

the Peet’s Coffee example, I have an expected reward for getting 
a latte at one Peet’s, and I have a different one for getting it at 
another Peet’s. That represents what we call the value; I think 
one Peet’s location is more valuable than another. Then we need 
a system that actually processes the feedback, to recognize if I 
got a tasty coffee or not. Finally, we have to compare the two. 
That’s the reward prediction error. So I need the prediction, I need 
the outcome, and I need the comparison to generate the reward 
prediction error. 

What are the neural systems involved? There isn’t a simple 
answer, but evidence suggests that a lot of the frontal lobes, 
especially the orbital frontal lobes, are important for long-term 
memory, or at least having access to our memories of the values 
of things (Fig. 4). That may also be tied up with an intersection 
of goals and memory systems. If we said the orbital frontal cortex 
has a big role in the value, then it’s going to be our sensory systems 
that are going to give us information about the feedback: the taste 
of coffee, the sound of the music I hear, or the experience I have 
when I try to hit a baseball. That feedback can come from very 
different systems depending on what kind of reward we’re talking 
about. The activity level of dopamine neurons is, in a sense, best 
described as a reward prediction error. It used to be thought 
that dopamine was for reward only. Rats would press levers to 
get dopamine even if they’d starve to death, so it was thought 
that dopamine was a reward reinforcement signal. The subtle 
difference is that rather than just the reward signal, it’s actually 
more about the reward prediction error. So if I expect tasty coffee 
and I get a tasty cup of coffee, that’s a good thing, but I don’t get 
much of a reward signal. I don’t really get a strong dopamine 

signal because there was no error. I got the reward that I expected. 
It’s not a negative prediction error signal, but it doesn’t strengthen 
things.  

BSJ: Could you briefly describe what multi-armed bandit 
tasks and button-press tasks are? What is the distinction 

between execution failure and selection error, and how did you 
modify the setup of the classic 2-arm bandit task to distinguish 
between the two?

RI: To study human behavior, one of the things that 
economists like to do is to set up probabilistic reward tests. 

The bandit tasks come from the idea of slot machines, which are 
frequently called one-armed bandits because they’re stealing your 
money. Classic behavioral economics experiments present three 
different slot machines, but the experimenter controls the payoff 
and probability for each of those three machines, which change 
over time. If I’m smart, I’m always going to go to the machine with 
big payoffs and big probabilities because I have greater expected 
value. I might choose a slot machine with big payoffs but low 
probabilities, or one with little payoffs but big probabilities. Then 
it’s a matter of whether the person is risk-seeking or cautious. 

But in the classic way that these studies have been done, you 
just press buttons and there are no reward errors. We basically 
repeat that, but we now make people reach out and touch the 
bandit. They don’t have to pull the slot machine, but they have 
to reach out, because if you’re just pressing the buttons, there 
isn’t any action or execution error. We’re making a more realistic 
situation. Actually, this project got started partly by us watching 
big ospreys on the east coast. An osprey is like an eagle, but it’s a 
seabird. It swoops around and then suddenly, it does a dramatic 
dive. From my informal observations, the osprey’s hit rate is 
maybe about 25%, so it’s diving a lot but coming up with no fish. 
It can’t be all that pleasant to slam your face into the water. So 
the osprey has to make a decision. It wants that fish, it values 

Figure 4: Regions of the brain implicated in reward prediction error, determined by fMRI. Note that many of these regions are 
localized to the frontal lobe (McDougle et al., 2019).3
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it, and it has to make the right choice. Then, it has to make a 
perfectly timed dive. Afterwards, the osprey has to figure out, 
“Did I actually dive at the right thing, and I just missed because 
I didn’t dive well? Or was I diving at something that didn’t really 
exist?” The latter question is a choice problem. The osprey has 
to decide: “Did I really make the right choice to think that that 
little flash I saw was a fish?” And then another problem: “If it was 
a fish, then what did I do wrong in my motor system that I can 
learn from to do better in the future?” So that’s why we thought it 
was important to bring in the action component to these choices. 
How do you decide if it was a problem of choice (selection error) 
or a problem of execution (execution failure)? It’s a fundamental 
distinction we always have to make.

BSJ: What is functional magnetic resonance imaging (fMRI), 
and what are its applications in cognitive neuroscience?

RI: Well, fMRI has definitely taken over cognitive 
neuroscience. An MRI is a way to get a picture of internal 

anatomical structures. It takes advantage of the fact that the body 
is composed of a lot of water, and molecules can be made to vibrate 
at certain frequencies by exposing them to a magnetic field. That 
allows you to get these beautiful pictures of the structure of 
the body. We take an MRI scan to look for things like tumors. 
Functional MRI (fMRI) resulted from the insight that as parts 
of the brain are active, their demands for oxygenation change 
because they use up the oxygen and they have to be resupplied. 
The molecules in oxygenated versus deoxygenated blood are 
different. So we can then set up a magnetic field to perturb those 
molecules and then measure the signals emitted when we remove 
that magnetic field. Basically, it’s an indirect way to measure how 
oxygen is being utilized in the brain, or how blood supply is being 
distributed in the brain. We’re only measuring metabolism, not 
neurons. But we make inferences because we know that the parts 
of the brain that are more active are going to require more blood.

BSJ: Through fMRI, you demonstrated how specific 
brain regions respond to the distinct types of failure 

we previously discussed.  How do neural signatures differ for 
execution versus selection failures, and what is the significance 
of these differences? 

RI: There’s literature from doing standard button bandit 
tests in the fMRI scanner which shows that when people 

play the slot machine and get a big payoff, there is a big positive 
reward prediction error in the dopaminergic parts of the brain, 
implicating those regions in reward prediction error. So if I don’t 
get that reward, but it’s because of an execution error rather than 
a reward prediction error, do I still see that dopaminergic signal? 

When I don’t get the payoff from the slot machine because 
of an execution error—say I didn’t pull the slot machine arm 
properly—we don’t see much of a reward prediction error or the 
corresponding dopamine signal. These results suggest that the 
reward system has input from the motor execution system.

BSJ: You are on the editorial board for Cerebellum, and you 
have been an editor for many scientific journals in the 

past. What do you foresee for the future of scientific publication?

RI: There’s a financial challenge because everyone wants 
everything to be available online and open access. But 

then how do you pay for the costs of the publication process? 
Of course, there are people who say that we shouldn’t have the 
publication process anymore, we should just post the articles 
and then word of mouth will help spread the good ones, that we 
should just let natural selection operate and get rid of the journals 
entirely. Others think that the journals serve a useful purpose 
by facilitating the peer review process, by having some insiders 
evaluate the merits of the paper. But again, people also think, 
“Why should we allow two or three reviewers to have such power 
over whether something gets published or not?” So journals are 
experimenting with different techniques. 

I’m actually one of the editors at eLife, [a peer-reviewed, 
open access journal]. One of the papers we talked about in this 
interview was published through a new experiment at eLife. We 
send them the paper, and they look it over and decide whether 
it’s worthy of review. Then, if they invite you to have it reviewed, 
they have a policy where the reviewers don’t decide whether it’s 
published, but the authors do. That’s pretty radical. So we get the 
feedback, and we then decide how we want to change the paper in 
response. We could publish the paper as it is or retract the paper. 
Or, we could modify the paper and say we’d like the reviewers to 
comment a second time. So you can see both the author’s view 
along with some commentaries on the value of the paper. I think 
more experiments like this are going to come along because there 
is a fundamental question: should editors and a very small number 
of reviewers be making the big decisions about publication, or 
should there be a way to actually get all the information about 
the process out there?
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