UC Berkeley

UC Berkeley Previously Published Works

Title

Study of the p-p-K+ and p-p-K- dynamics using the femtoscopy technique

Permalink

https://escholarship.org/uc/item/18z0b5zw

Journal

The European Physical Journal A, 59(12)

ISSN

1434-6001

Authors

Acharya, S Adamová, D Adler, A <u>et al.</u>

Publication Date

2023

DOI

10.1140/epja/s10050-023-01139-9

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at <u>https://creativecommons.org/licenses/by/4.0/</u>

Peer reviewed

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

Study of the p-p-K⁺ and p-p-K⁻ dynamics using the femtoscopy technique

ALICE Collaboration*

Abstract

The interactions of kaons (K) and antikaons (\overline{K}) with few nucleons (N) were studied so far using kaonic atom data and measurements of kaon production and interaction yields in nuclei. Some details of the three-body KNN and \overline{K} NN dynamics are still not well understood, mainly due to the overlap with multi-nucleon interactions in nuclei. An alternative method to probe the dynamics of three-body systems with kaons is to study the final state interaction within triplet of particles emitted in pp collisions at the Large Hadron Collider, which are free from effects due to the presence of bound nucleons. This Letter reports the first femtoscopic study of p–p–K⁺ and p–p–K⁻ correlations measured in high-multiplicity pp collisions at $\sqrt{s} = 13$ TeV by the ALICE Collaboration. The analysis shows that the measured p–p–K⁺ and p–p–K⁻ correlation functions can be interpreted in terms of pairwise interactions in the triplets, indicating that the dynamics of such systems is dominated by the two-body interactions without significant contributions from three-body effects or bound states.

© 2023 CERN for the benefit of the ALICE Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

^{*}See Appendix A for the list of collaboration members

The nature of kaons and antikaons is closely related to the chiral symmetry breaking pattern of lowenergy QCD [1, 2]. Therefore, the study of kaon properties and their modification in dense nuclear matter has received the attention of the scientific community in the past decades. In particular, the hadronic interactions of charged kaons, K⁺ and K⁻, with nucleons (N) were investigated using kaonic atoms [3– 5] and by studying the interaction or the production of kaons in light [6-14] and heavy nuclei [15-23]. Such measurements demonstrated the repulsive and attractive nature of the K^+N and K^-N strong interactions [1, 2], respectively. Information on the in-medium modification of the K^+ and K^- potentials with the increasing baryon density was extracted from the comparison of kaon production yields and flow observables measured in nucleus–nucleus collisions [15–17] and pion- and proton-induced reactions [18– 23] with the expectations from transport models. Several K^+ nuclear potentials have been tested and the best agreement with the data results in a repulsive strength of 20-40 MeV at nuclear saturation density. On the other hand, the K⁻N interaction is known to be sufficiently attractive in the isospin I = 0 channel to dynamically generate the $\Lambda(1405)$ just below the K⁻p threshold [24]. Such a state is interpreted as a quasi-bound antikaon-nucleon $\overline{K}N$ system which couples strongly to the $\pi\Sigma$ channel, giving rise to a sizable K⁻ absorption [25]. In the case of K⁻ nuclear interaction, the influence of singleand multi-nucleon absorption processes in nuclei currently prevents extracting firm conclusions on the strength of the K^- in-medium attractive potential [1]. This ambiguity triggered a longstanding debate in the literature about the possible existence of exotic kaonic bound objects with nucleons (see [1] and references therein). Recently, the E15 Collaboration reported the first experimental evidence of the KNN state with a binding energy of about 42 MeV and a decay width of about 100 MeV [26]. From the theoretical side, binding energies in the range 9-95 MeV and decay widths between 16 and 110 MeV are expected [27–42]. The uncertainties in the models mainly arise from scarce knowledge of the full KNN three-body effects, such as three-body coupled channels and two-nucleon absorption processes. Additionally, three-body forces, which are relevant in the calculation of the nuclear binding energies [43, 44], are currently not included in kaonic bound state models. Further experimental investigations on the K^+NN and K^-NN three-body dynamics, in addition to the studies of K^+ and K^- interaction in nuclei, are required to isolate and quantify the contribution from genuine three-body effects in such systems.

An alternative method to explore the three-body dynamics of K^+ and K^- with nucleons is to employ the femtoscopy technique at high-energy collider facilities. In small colliding systems, such as pp and p-Pb at the Large Hadron Collider (LHC), the inter-hadron distances at the time of the particle emission range from a few femtometers down to scales compatible with the nucleon size. This leads to an enhancement of the strength of the signal due to the short-range strong interaction in the measured correlation function [45]. The femtoscopy method was proven to be able to test and constrain the hadron-hadron interaction for various two-particle systems [46–57], providing data with unprecedented precision on the hadronic interactions with strangeness at low relative momenta, down to the energy threshold of the produced pairs. Furthermore, the measured femtoscopic correlation functions are sensitive to the presence of bound states in the energy region below the threshold. Thus, they were also used to constrain the parameters of bound hadron-hadron systems [49, 58]. Recently, the ALICE Collaboration has extended the method to explore the correlation among three baryons, such as p-p-p and p-p-A, to study the dynamics of three-body systems [59]. The analysis exploited Kubo's cumulant expansion method [60] and the projector method [61] to isolate the genuine three-particle correlations from the measured correlation functions. As a result, a first experimental hint of genuine three-body effects in the unbound p-p-p system was found. The study in this Letter applies the same analysis procedure adopted in [59] to the case of $p-p-K^+$ and $p-p-K^-$ particle triplets to explore possible genuine three-body effects in the correlation functions induced by the strong interaction and bound state formation. The main advantage of the femtoscopy method with respect to the previous experimental techniques is the possibility to investigate for the first time the K^+ and K^- three-body dynamics with nucleons, free from additional effects induced by the presence of the surrounding nucleons in nuclei.

The analysed data sample of pp collisions at $\sqrt{s} = 13$ TeV was recorded by ALICE [62–64] during the

LHC Run 2 (2015–2018) data-taking period. In the following, the information from the V0 detector system [65], the Inner Tracking System (ITS) [66], the Time Projection Chamber (TPC) [67] and the Time-Of-Flight (TOF) detector [68] is used. The V0 detector is employed to trigger on high-multiplicity (HM) events. This trigger selects events within the 0.17% largest charged-track multiplicity of the INEL > 0class, which is defined as inelastic collisions with at least one measured charged particle in the pseudorapidity range $|\eta| < 1$ [65]. This condition results in an average of about 30 charged particles in the range $|\eta| < 0.5$ [51], hence increasing the probability of finding triplets of the desired particle species with respect to the minimum-bias sample. The primary vertex position is reconstructed with the combined information of the ITS and the TPC, and, independently, with track segments in the two innermost layers of the ITS. Only events with a reconstructed primary vertex position along the beam axis within 10 cm from the centre of the ALICE detector are selected. A total of 10^9 HM events are used in this analysis. The $p-p-K^+$ and $p-p-K^-$ data samples are built by combining three charged-particle tracks (triplets) reconstructed with the TPC. Assuming the same interactions in the particle and antiparticle systems, triplets of particles and the corresponding antiparticles are combined: $p-p-K^+ \equiv (p-p-K^+ \oplus \overline{p}-\overline{p}-K^-)$ and $p-p-K^- \equiv (p-p-K^- \oplus \overline{p}-\overline{p}-K^+)$. The agreement of the corresponding correlation functions confirmed the validity of this assumption.

Particles and antiparticles are identified using the same kinematic and topological selections. Protons and kaons are selected in the range $|\eta| < 0.8$ and in the transverse momentum intervals $p_{\rm T} \in (0.5-4.05)$ GeV/c and $p_{\rm T} \in (0.2-2.5)$ GeV/c, respectively. A minimum of 80 space points (hits) inside the TPC, out of the total 159, is required to guarantee track quality and good momentum resolution. Particle identification (PID) is conducted by requiring that the measured energy loss (dE/dx) in the TPC gas is compatible with the expected one from protons and kaons within three standard deviations (σ). For high momentum particles, the dE/dx information is combined with the time-of-flight measurement provided by the TOF, using a 3σ selection on the expected value for a given particle hypothesis at a given momentum. The PID selection for protons is described in detail in [46]. The selection of kaons is based on the procedure described in [54] with several changes as explained in the following. TPC reconstructed tracks are identified as kaons either by using TPC PID information for momenta lower than 0.85 GeV/c, or, if a signal in the TOF is matched to the TPC track, by using the combined PID information from TPC and TOF up to a momentum of 2.5 GeV/c. To improve the purity of the kaon selection, the TPC and TOF information are also used to reject candidates that are compatible with the pion or electron hypothesis. To reject particles that are non-primary or come from pile-up collisions, the distance of closest approach (DCA) to the primary vertex of the tracks is required to be less than 0.1 cm in the transverse plane and less than 0.2 cm along the beam axis. The purity of the proton and kaon candidates is estimated employing Monte Carlo simulations based on PYTHIA 8 [69] (Monash 2013 Tune) event generator with a dedicated high-multiplicity selection to mimic the V0 high-multiplicity trigger and the GEANT4 package [70, 71]. The purity averaged over the $p_{\rm T}$ ranges of the identified protons and kaons is about 98% for both particle species.

The number of selected and analysed triplets amounts to 4530 for p–p–K⁺, 3161 for $\bar{p}-\bar{p}-K^-$, 6200 for p–p–K⁻ and 4937 for $\bar{p}-\bar{p}-K^+$ in the femtoscopic region $Q_3 < 0.4$ GeV/c. The kinematic variable Q_3 , which is used in three-body analyses [59, 72], is a Lorentz-invariant scalar defined as $Q_3 = \sqrt{-q_{12}^2 - q_{23}^2 - q_{31}^2}$, where q_{ij} is the norm of the relative four-momentum of the pair *ij* in the triplet $q_{ij}^{\mu} = 2 [m_j/(m_i + m_j) p_i^{\mu} - m_i/(m_i + m_j) p_j^{\mu}]$. The systematic uncertainties of the correlation functions are evaluated by performing simultaneous variations of the selection criteria for particles and antiparticles. For protons and antiprotons, the same variations for the track selection and PID criteria as in [59] are performed. Similar variations are used for the kaons and antikaons. In order to account for the correlations between the systematic uncertainties, the variations are randomly combined in sets in which at least one selection criteria are avoided by requiring that the yield of the triplets changes by less than 10% with

respect to the standard selection in the femtoscopic region $Q_3 < 0.4 \text{ GeV}/c$. The main contribution at low $Q_3 \approx 0.15 \text{ GeV}/c$ is given by the variation of the DCA selection and it is found to be smaller than 5%.

The final state interactions (FSIs) among the hadrons emitted in the collisions can be explored using correlation functions [73, 74] in momentum space, defined as

$$C_3(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = \frac{P_3(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)}{P_1(\mathbf{p}_1)P_1(\mathbf{p}_2)P_1(\mathbf{p}_3)},$$
(1)

where \mathbf{p}_i is the momentum vector of the *i*-th particle and $P_3(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3)$ and $P_1(\mathbf{p}_i)$ are the probabilities of finding three particles and one particle with the corresponding momentum, respectively. If the particles are not correlated $P_3(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = P_1(\mathbf{p}_1)P_1(\mathbf{p}_2)P_1(\mathbf{p}_3)$ and then the correlation function becomes identical to unity. The presence of FSIs induces a correlation signal imprinted in the correlation function which causes deviations from unity depending on the nature of the interactions, attractive or repulsive, as well as on the properties of the emitting source (see [45, 75] for the details). In the case of three-particle systems, the correlation function can be evaluated in terms of Q_3 . Hence, three-particle correlation functions are experimentally obtained as

$$C_3(Q_3) = \mathscr{N} \frac{N_{\text{same}}(Q_3)}{N_{\text{mixed}}(Q_3)}, \qquad (2)$$

where \mathcal{N} is a normalisation parameter, $N_{\text{same}}(Q_3)$ is the Q_3 distribution of the particle triplets emitted in the same collision and $N_{\text{mixed}}(Q_3)$ is the distribution of uncorrelated triplets. The latter are obtained by taking the three particles needed to form a triplet from three different collisions, thus called mixed event sample. Only events with similar multiplicity and position of the primary vertex along the beam axis are mixed. The number of events used for the mixing is set to 30. To account for the two-track merging and splitting effects due to the finite two-track resolution in the same event sample, a minimum value of the distance between the same charge tracks on the azimuthal-polar angle plane $\Delta \eta - \Delta \varphi$ is applied to both the same and mixed event samples. The default selection is $\Delta \eta^2 + \Delta \varphi^2 \ge (0.017)^2$ for p-p tracks and $\Delta \eta^2 / (0.012)^2 + \Delta \varphi^2 / (0.04)^2 \ge 1$ for p-K⁺ tracks. A systematic variation of about +10% for the values of the minimum distance is applied in the analysis. The correlation function is normalised to unity in the range $1.0 < Q_3 < 1.2$ GeV/c, where no signal from FSIs is expected. Variations of the normalisation range are performed and included in the systematic uncertainties. In the case of a particle triplet X–Y–Z, pairwise correlations with one uncorrelated particle (X-Y)–Z, X–(Y-Z) and (Z-X)–Y also occur in the system. Genuine three-particle correlations were isolated in [59] by applying the cumulant expansion method to the femtoscopic correlation functions. The three-particle cumulant $c_3(Q_3)$, which incorporates information about the three-body effects in the system, is computed from the measured correlation function $C_3(Q_3)$ as follows

$$c_3(Q_3) = C_3(Q_3) - C_{\text{two-body}}(Q_3) , \qquad (3)$$

where pairwise correlations are evaluated following the cumulant decomposition as

$$C_{\text{two-body}}(Q_3) = C_{(X-Y)-Z}(Q_3) + C_{X-(Y-Z)}(Q_3) + C_{(Z-X)-Y}(Q_3) - 2.$$
(4)

Each component $C_{(i-j)-k}(Q_3)$ of the lower-order contributions in Eq. (4) is computed using two methods [59, 61]: *i*) a data-driven approach based on the event mixing technique, building triplets in which the correlated (i–j) pairs are emitted in the same collision and the uncorrelated particle –k from another collision; *ii*) the projector method which uses as input the measured two-particle correlation function $C(k^*)$ for the correlated pair (i–j), evaluated in terms of the relative momentum k^* in the pair rest frame (PRF), and calculates all the possible k^* configurations in the phase space for each Q_3 value of the i–j–k triplet. The input correlation functions $C(k^*)$ used in the projector method are obtained by selecting p–p, p–K⁺ and p–K⁻ pairs using the same dataset as for the three-body analysis. Unlike the p–p and p–K⁺ pairs, the p–K⁻ correlation is significantly affected by the contribution from jet-like events [76]. To use particles emitted in collisions with the same event shape as in the case of the analysed triplets, $p-K^-$ pairs are selected from $p-p-K^-$ triplets with $Q_3 < 1$ GeV/c, while for p-p and p-K⁺ pairs such additional requirement is not used as the correlation functions with and without the Q_3 selection are in agreement. A ± 0.1 GeV/c variation of the Q_3 limit is included in the systematic uncertainties of the projector method and it is combined with the uncertainties propagated from the data points of the p-p, p-K⁺ and p-K⁻ correlation functions. The latter include the variations in the selection criteria for particles, variations in the track splitting/merging rejection criteria, and normalisation range.

Figure 1: Correlation functions for $(p-p)-K^+$ (panel a_1), $(p-p)-K^-$ (panel a_2), $p-(p-K^+)$ (panel b_1), $p-(p-K^-)$ (panel b_2) as well as the total lower-order contributions for $p-p-K^+$ (panel c_1) and $p-p-K^-$ (panel c_2) as a function of Q_3 . The points represent the results obtained using the data-driven approach, with the statistical and systematic uncertainties represented by the error bars and the green boxes, respectively. The grey bands are the expectations of the projector method, with the band width representing the combined statistical and systematic uncertainties.

For the p-p-K⁺ and p-p-K⁻ systems, the lower-order contributions to the three-particle correlation functions are shown in Fig. 1, using the data-driven approach (data points) and the projector method (grey bands). The three-particle correlation functions of two correlated protons and an uncorrelated kaon, denoted as (p-p)-K⁺ and (p-p)-K⁻, are shown in panels a₁) and a₂), respectively. In both cases, the correlation functions are larger than unity in the low Q_3 region as a result of the attractive p-p strong interaction, combined with the repulsive Coulomb and quantum statistics effects (see [46, 48] for more details). In the case of correlated p-K⁺ pairs with uncorrelated protons, p-(p-K⁺), the correlation function shown in panel b₁) is lower than unity as a result of the repulsive p-K⁺ strong and Coulomb interactions, consistent with the measurement reported in [47]. In the p-(p-K⁻) correlation function, shown in panel b₂), the main features of the p-K⁻ interaction are visible [47]: the cusp structure due to the opening of the \overline{K}^0 n channel as well as the bump due to the $\Lambda(1520) \rightarrow pK^-$ decay appear at $Q_3 \approx 0.15$ GeV/*c* and $Q_3 \approx 0.7$ GeV/*c*, respectively. The total lower-order contributions to the p-p-K⁺, panel c₁), and p-p-K⁻, panel c₂), correlation functions evaluated with the data-driven approach and the projector method are in agreement. The reduced χ^2 between the two methods, evaluated in the Q_3 range shown in Fig. 1 (21 degrees of freedom) by adding in quadrature the statistical and systematic uncertainties of the data, is 1.6 and 1.4 for $p-p-K^+$ and $p-p-K^-$, respectively. Since the projector method does not depend on the third particle mixing, it provides significantly smaller uncertainties than the data-driven approach and hence is used to extract the cumulants. This choice does not affect the final results of the analysis. Figure 2 shows the measured $p-p-K^+$ (left panel) and $p-p-K^-$ (right panel) correlation functions (data points) compared to the lower-order contributions evaluated using the projector method (grey bands).

Figure 2: Correlation functions (data points) for $p-p-K^+$ (left panel) and $p-p-K^-$ (right panel) compared to the lower-order contributions evaluated using the projector method (grey bands). Statistical and systematic uncertainties are represented by error bars and green boxes, respectively. The band widths represent the combined statistical and systematic uncertainties propagated from the two-particle correlation functions used as input to the projector method.

The corresponding cumulants are extracted using Eq. (3). The measured cumulants include the correlations of the primary particles as well as the feed-down from resonances and particle misidentifications, which need to be accounted for as discussed in [59]. The number of correctly identified primary triplets is about 66% of the total sample for both $p-p-K^+$ and $p-p-K^-$. The remaining contribution mainly stems from the feed-down of the Λ (17%) and Σ^+ (7%) hyperon decays into protons and from the ϕ meson (4%) decay into charged kaons. These numbers are obtained combining the primary and secondary fractions with particle purities. The primary and secondary fractions are extracted using Monte Carlo template fits to the measured distributions of the DCA to the primary vertex [46]. The fraction of charged kaons from ϕ decays is calculated using the expectations from a thermal model [77]. The correction of the measured cumulants to obtain the contribution from primary triplets is performed following the decomposition procedure adopted in [59]. Due to the absence of theoretical and experimental information on the genuine $p-\Lambda-K^{\pm}$, $p-\Sigma^+-K^{\pm}$ and $p-p-\phi$ correlations, the corresponding feed-down contributions to the p-p-K^{\pm} cumulants are considered to be flat, without any specific dependence on Q_3 . This assumption was tested in the case of p-p-p correlations [59], where a similar contribution (about 19%) for the Λ feed-down into protons was found. The results obtained by using the flat and non-flat corrections are found to be in agreement within the uncertainties. A flat feed-down contribution in the cumulant corresponds to negligible correlations from genuine three-body effects in the mother particle systems X–Y–Z decaying into p–p–K \pm . The dominant feed-down contributions coming from pairwise correlations in the triplets, such as (X-Y)-Z and X-(Y-Z), are already removed as they are included in the lower-order correlations. The resulting cumulants of the correctly identified primary $p-p-K^+$ and $p-p-K^-$ particle triplets are shown in left and right panels of Fig. 3, respectively.

In the absence of genuine three-particle correlations in the triplets, the measured three-particle correlation function would be identical to the lower-order contributions $C_3(Q_3) = C_{\text{two-body}}(Q_3)$. Consequently, from Eq. (3), the cumulant would be compatible with zero within the experimental uncertainties. In the case of the p-p-K⁺ and p-p-K⁻ systems, the agreement of the measured cumulants with zero is evaluated

Figure 3: Cumulants for the $p-p-K^+$ (left panel) and $p-p-K^-$ (right panel) primary triplets. The error bars and the blue boxes on the data points represent the statistical and systematic uncertainties, respectively. The n_{σ} deviations from zero in each bin are shown in the bottom panels, adding in quadrature the statistical and systematic uncertainties of the data.

by performing a χ^2 test in the region $Q_3 < 0.4$ GeV/c. In this region, the relative momentum for all the pairs in the particle triplets is lower than 0.2 GeV/c, which is the kinematic region sensitive to the strong interaction. Larger O_3 values are dominated by kinematic configurations in which one of the pairs has a relative momentum larger than 0.2 GeV/c, meaning that only two of the three particles in the triplet can be in a kinematic configuration which is favourable for the strong interaction. Thus, at $Q_3 > 0.4$ GeV/c the contributions from the two-body interaction dominate. The local statistical significance at $Q_3 < 0.4$ GeV/c is obtained from the p-value of the χ^2 distribution, which is converted in a number n_{σ} of Gaussian standard deviations. As the systematic uncertainties in different Q_3 bins are correlated, the χ^2 is calculated using the cumulants extracted from each systematic variation with the corresponding statistical uncertainties. Finally, the average χ^2 in the interval $Q_3 < 0.4$ GeV/c is extracted. The corresponding n_{σ} values are 2.5 and 1.5 for $p-p-K^+$ and $p-p-K^-$, respectively. As the Q_3 range of the genuine three-body effects is not known a priori, the n_{σ} values have been evaluated as well in the region $Q_3 < 0.2$ GeV/c and they are found to be 2.7 and 1.4 for p-p-K⁺ and p-p-K⁻, respectively. Such results indicate that the measured $p-p-K^+$ and $p-p-K^-$ correlation functions are compatible, within the quoted significance levels, with the assumption of pairwise correlations in the triplets without additional contributions from genuine three-body effects. More solid conclusions require a larger data sample to reduce the statistical uncertainties and full-fledged theoretical calculations for the three-particle correlation functions. In order to provide a comparison of the kinematic range accessible with this measurement to the study of K^+ and K^- interactions in light nuclei, the momenta of the three particles in the triplets with $Q_3 < 0.4 \text{ GeV}/c$ are evaluated in the PRF of the two protons. The momentum of each proton in the PRF is $p_{\rm p}^* < 180 \text{ MeV}/c$, compatible with the typical Fermi momenta of nucleons in light nuclei (e.g. the Fermi momentum in Carbon-12 is about 220 MeV/c). In the rest frame of the two protons, the momentum of the K^+ and $K^$ ranges from 30 MeV/c (in the first bin in Fig. 3) to 130 MeV/c (eighth bin in Fig. 3). This demonstrates that even for low kaon momenta, i.e. at energies close to the $p-p-K^+$ and $p-p-K^-$ thresholds, three-body effects such as kaonic bound state formation below threshold or three-body interactions do not contribute significantly to the measured correlation functions. These results provide additional experimental information for theoretical models aiming to understand the role of genuine three-body effects in $p-p-K^+$ and

 $p-p-K^-$ systems. The LHC Run 3 data taking will deliver a larger data set for more detailed studies of the K⁺ and K⁻ three-body dynamics in the low momentum region, down to the energy threshold of the triplets.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Bulgarian Ministry of Education and Science, within the National Roadmap for Research Infrastructures 2020-2027 (object CERN), Bulgaria; Ministry of Education of China (MOEC), Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research | Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; National Research and Innovation Agency - BRIN, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Education and Science, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics, Ministry of Research and Innovation and Institute of Atomic Physics and University Politehnica of Bucharest, Romania; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA), Thailand Science Research and Innovation (TSRI) and National Science, Research and Innovation Fund (NSRF), Thailand; Turkish Energy, Nuclear and Mineral Research Agency (TENMAK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America. In addition, individual groups or members have received support from: European Research Council, Strong 2020 - Horizon 2020 (grant nos. 950692, 824093), European Union; Academy of Finland (Center of Excellence in Quark Matter) (grant nos. 346327, 346328), Finland; Programa de Apoyos para la Superación del Personal Académico, UNAM, Mexico.

References

- L. Tolos and L. Fabbietti, "Strangeness in Nuclei and Neutron Stars", Prog. Part. Nucl. Phys. 112 (2020) 103770, arXiv:2002.09223 [nucl-ex].
- [2] T. Hyodo and W. Weise, "Theory of kaon-nuclear systems", in *Handbook of Nuclear Physics*, H. T. I. Tanihata and T. Kajino, eds. Springer, 2, 2022. arXiv:2202.06181 [nucl-th].
- [3] C. Batty, E. Friedman, and A. Gal, "Strong interaction physics from hadronic atoms", *Phys. Rep.* 287 (1997) 385–445.
- [4] E. Friedman and A. Gal, "K⁻N amplitudes below threshold constrained by multinucleon absorption", *Nucl. Phys. A* **959** (2017) 66–82, arXiv:1610.04004 [nucl-th].
- [5] C. Curceanu *et al.*, "The modern era of light kaonic atom experiments", *Rev. Mod. Phys.* **91** (2019) 025006.
- [6] P. A. Katz et al., "Reactions of stopping K⁻ in helium", Phys. Rev. D 1 (1970) 1267–1276.
- [7] C. Vander Velde-Wilquet *et al.*, "Determination of the Branching Fractions for K⁻ Meson Absorption at Rest in Carbon Nuclei", *Nuovo Cim.* A**39** (1977) 538–547.
- [8] R. Michael *et al.*, "K⁺ elastic scattering from C and ⁶Li at 715 MeV/c", *Phys. Lett. B* 382 (1996) 29–34.
- [9] FINUDA Collaboration, M. Agnello *et al.*, "Σ⁻p emission rates in K⁻ absorptions at rest on ⁶Li, ⁷Li, ⁹Be, ¹³C, and ¹⁶O", *Phys. Rev. C* 92 (2015) 045204, arXiv:1508.00139 [nucl-ex].
- [10] O. Vazquez Doce *et al.*, "K⁻ absorption on two nucleons and ppK⁻ bound state search in the Σ⁰p final state", *Phys. Lett. B* **758** (2016) 134–139, arXiv:1511.04496 [nucl-ex].
- [11] K. Piscicchia *et al.*, "First measurement of the K⁻n $\rightarrow \Lambda \pi^-$ non-resonant transition amplitude below threshold", *Phys. Lett. B* **782** (2018) 339–345.
- [12] R. Del Grande *et al.*, "K⁻ multi-nucleon absorption cross sections and branching ratios in Λ p and Σ^0 p final states", *Eur. Phys. J. C* **79** (2019) 1–13, arXiv:1809.07212 [nucl-ex].
- [13] C. M. Kormanyos et al., "Quasielastic K⁺ scattering", Phys. Rev. C 51 (1995) 669–679.
- [14] R. Weiss *et al.*, "Measurement of low energy K⁺ total cross sections on N=Z nuclei", *Phys. Rev. C* 49 (1994) 2569–2577.
- [15] FOPI Collaboration, P. Crochet *et al.*, "Sideward flow of K⁺ mesons in Ru+Ru and Ni+Ni reactions near threshold", *Phys. Lett. B* 486 (2000) 6–12, arXiv:nucl-ex/0006004.
- [16] KaoS Collaboration, A. Förster *et al.*, "Production of K⁺ and of K⁻ mesons in heavy-ion collisions from 0.6A to 2.0A GeV incident energy", *Phys. Rev. C* 75 (2007) 024906, arXiv:nucl-ex/0701014.

- [17] FOPI Collaboration, V. Zinyuk *et al.*, "Azimuthal emission patterns of K⁺ and of K⁻ mesons in Ni + Ni collisions near the strangeness production threshold", *Phys. Rev. C* 90 (2014) 025210, arXiv:1403.1504 [nucl-ex].
- [18] M. Büscher *et al.*, "Phenomenological analysis of K⁺-meson production in proton-nucleus collisions", *Phys. Rev. C* 65 (2002) 014603, arXiv:nucl-ex/0107011.
- [19] KaoS Collaboration, W. Scheinast *et al.*, "In-medium effects on phase space distributions of antikaons measured in proton-nucleus collisions", *Phys. Rev. Lett.* 96 (2006) 072301, arXiv:nucl-ex/0512028.
- [20] **HADES** Collaboration, J. Adamczewski-Musch *et al.*, "Strong absorption of hadrons with hidden and open strangeness in nuclear matter", *Phys. Rev. Lett.* **123** (2019) 022002, arXiv:1812.03728 [nucl-ex].
- [21] ANKE Collaboration, M. Büscher *et al.*, "Inclusive K[±] meson production in proton-nucleus interactions", *Eur. Phys. J. A* 22 (2004) 301–317, arXiv:nucl-ex/0401031.
- [22] FOPI Collaboration, K. Piasecki *et al.*, "Wide-acceptance measurement of the K⁻/K⁺ ratio from Ni+Ni collisions at 1.91A GeV", *Phys. Rev. C* 99 (2019) 014904, arXiv:1807.00576 [nucl-ex].
- [23] **FOPI** Collaboration, M. L. Benabderrahmane *et al.*, "Measurement of the In-Medium K⁰ Inclusive Cross Section in π^- -Induced Reactions at 1.15 GeV/*c*", *Phys. Rev. Lett.* **102** (2009) 182501, arXiv:0807.3361 [nucl-ex].
- [24] M. Mai, "Review of the Λ(1405) A curious case of a strangeness resonance", *Eur. Phys. J. ST* 230 (2021) 1593-1607, arXiv:2010.00056 [nucl-th].
- [25] T. Sekihara, D. Jido, and Y. Kanada-En'yo, "Λ(1405)-induced nonmesonic decay in kaonic nuclei", *Phys. Rev. C* 79 (2009) 062201, arXiv:0904.2822 [nucl-th].
- [26] **E15** Collaboration, T. Yamaga *et al.*, "Observation of a $\overline{K}NN$ bound state in the ⁴He (K⁻, Λ p) n reaction", *Phys. Rev. C* **102** (2020) 044002, arXiv:2006.13433 [nucl-ex].
- [27] T. Yamazaki and Y. Akaishi, " (K^-, π^-) production of nuclear \overline{K} bound states in proton-rich systems via Λ^* doorways", *Phys. Lett. B* **535** (2002) 70–76.
- [28] N. Shevchenko, A. Gal, and J. Mareš, "Faddeev Calculation of a K⁻pp Quasibound State", *Phys. Rev. Lett.* **98** (2007) 082301, arXiv:nucl-th/0610022.
- [29] N. V. Shevchenko, A. Gal, J. Mareš, and J. Révai, "KNN quasibound state and the KN interaction: Coupled-channels Faddeev calculations of the KNN-πΣN system", *Phys. Rev. C* 76 (2007) 044004, arXiv:0706.4393 [nucl-th].
- [30] Y. Ikeda and T. Sato, "Strange dibaryon resonance in the KNN-π Y N system", *Phys. Rev. C* 76 (2007) 035203, arXiv:0704.1978 [nucl-th].
- [31] A. Dote, T. Hyodo, and W. Weise, "K⁻pp system with chiral SU(3) effective interaction", Nucl. Phys. A 804 (2008) 197–206, arXiv:0802.0238 [nucl-th].
- [32] Y. Ikeda and T. Sato, "Resonance energy of the KNN -πYN system", Phys. Rev. C 79 (2009) 035201, arXiv:0809.1285 [nucl-th].
- [33] S. Wycech and A. M. Green, "Variational calculations for K-few-nucleon systems", *Phys. Rev. C* 79 (2009) 014001, arXiv:0808.3329 [nucl-th].

- [34] T. Koike and T. Harada, "The $\overline{K} N \rightarrow \pi \Sigma$ decay threshold effect in ³He(in-flight K⁻, n) reaction spectrum", *Hyperfine Interact.* **193** (2009) 221–227.
- [35] Y. Ikeda, H. Kamano, and T. Sato, "Energy dependence of KN interactions and resonance pole of strange dibaryons", *Prog. Theor. Phys.* **124** (2010) 533–539, arXiv:1004.4877 [nucl-th].
- [36] N. Barnea, A. Gal, and E. Liverts, "Realistic calculations of KNN, KNNN, and KKNN quasibound states", *Phys. Lett. B* **712** (2012) 132–137, arXiv:1203.5234 [nucl-th].
- [37] M. Bayar and E. Oset, "KNN absorption within the framework of the fixed-center approximation to Faddeev equations", *Phys. Rev. C* 88 (2013) 044003, arXiv:1207.1661 [hep-ph].
- [38] J. Révai and N. Shevchenko, "Faddeev calculations of the KNN system with a chirally motivated KN interaction. II. The K⁻pp quasibound state", *Phys. Rev. C* 90 (2014) 034004, arXiv:1403.0757 [nucl-th].
- [39] A. Doté, T. Inoue, and T. Myo, "Application of a coupled-channel complex scaling method with Feshbach projection to the K⁻pp system", *Prog. Theor. Exp. Phys.* **2015** (2015) 043D02.
- [40] T. Sekihara, E. Oset, and A. Ramos, "On the structure observed in the in-flight ³He (K⁻, Ap) n reaction at J-PARC", *Prog. Theor. Exp. Phys.* **2016** (2016) 123D03.
- [41] S. Ohnishi *et al.*, "Few-body approach to the structure of K-nuclear quasibound states", *Phys. Rev. C* 95 (2017) 065202, arXiv:1701.07589 [nucl-th].
- [42] A. Doté, T. Inoue, and T. Myo, "Fully coupled-channels complex scaling method for the K⁻pp system", *Phys. Rev. C* **95** (2017) 062201, arXiv:1702.08002 [nucl-th].
- [43] H.-W. Hammer, A. Nogga, and A. Schwenk, "Colloquium: Three-body forces: From cold atoms to nuclei", *Rev. Mod. Phys.* 85 (2013) 197–217, arXiv:1210.4273 [nucl-th].
- [44] L. E. Marcucci *et al.*, "The hyperspherical harmonics method: a tool for testing and improving nuclear interaction models", *Front. in Phys.* 8 (2020) 69, arXiv:1912.09751 [nucl-th].
- [45] L. Fabbietti, V. M. Sarti, and O. V. Doce, "Study of the strong interaction among hadrons with correlations at the LHC", Ann. Rev. Nucl. Part. Sci. 71 (2021) 377–402, arXiv:2012.09806 [nucl-ex].
- [46] ALICE Collaboration, S. Acharya *et al.*, "p–p, p–Λ and Λ–Λ correlations studied via femtoscopy in pp reactions at √s =7 TeV", *Phys. Rev. C* 99 (2019) 024001, arXiv:1805.12455 [nucl-ex].
- [47] ALICE Collaboration, S. Acharya *et al.*, "Scattering studies with low-energy kaon-proton femtoscopy in proton-proton collisions at the LHC", *Phys. Rev. Lett.* **124** (2020) 092301, arXiv:1905.13470 [nucl-ex].
- [48] ALICE Collaboration, S. Acharya *et al.*, "Investigation of the p-Σ⁰ interaction via femtoscopy in pp collisions", *Phys. Lett. B* 805 (2020) 135419, arXiv:arXiv:1910.14407.
- [49] ALICE Collaboration, S. Acharya *et al.*, "Study of the Λ-Λ interaction with femtoscopy correlations in pp and p-Pb collisions at the LHC", *Phys. Lett. B* 797 (2019) 134822, arXiv:1905.07209 [nucl-ex].
- [50] ALICE Collaboration, S. Acharya *et al.*, "First Observation of an Attractive Interaction between a Proton and a Cascade Baryon", *Phys. Rev. Lett.* **123** (2019) 112002, arXiv:1904.12198 [nucl-ex].

- [51] ALICE Collaboration, S. Acharya *et al.*, "Unveiling the strong interaction among hadrons at the LHC", *Nature* 588 (2020) 232–238, arXiv:2005.11495.
- [52] ALICE Collaboration, S. Acharya *et al.*, "Experimental Evidence for an Attractive p-φ Interaction", *Phys. Rev. Lett.* **127** (2021) 172301, arXiv:2105.05578 [nucl-ex].
- [53] ALICE Collaboration, S. Acharya *et al.*, "Investigating the role of strangeness in baryon–antibaryon annihilation at the LHC", *Phys. Lett. B* 829 (2022) 137060, arXiv:2105.05190 [nucl-ex].
- [54] ALICE Collaboration, S. Acharya *et al.*, "Constraining the KN coupled channel dynamics using femtoscopic correlations at the LHC", *Eur. Phys. J. C* 83 (2023) 340, arXiv:2205.15176 [nucl-ex].
- [55] ALICE Collaboration, S. Acharya *et al.*, "Exploring the NΛ-NΣ coupled system with high precision correlation techniques at the LHC", *Phys. Lett. B* 833 (2022) 137272, arXiv:2104.04427 [nucl-ex].
- [56] ALICE Collaboration, S. Acharya *et al.*, "First measurement of the Λ-Ξ interaction in proton-proton collisions at the LHC", *Phys. Lett. B* 844 (2023) 137223, arXiv:2204.10258 [nucl-ex].
- [57] ALICE Collaboration, S. Acharya *et al.*, "First study of the two-body scattering involving charm hadrons", *Phys. Rev. D* 106 (2022) 052010, arXiv:2201.05352 [nucl-ex].
- [58] E. Chizzali *et al.*, "Evidence of a p-φ bound state", *Phys. Lett. B* 848 (2024) 138358, arXiv:2212.12690 [nucl-ex].
- [59] ALICE Collaboration, S. Acharya *et al.*, "Towards the understanding of the genuine three-body interaction for p-p-p and p-p-Λ", *Eur. Phys. J. A* 59 (2023) 145, arXiv:2206.03344 [nucl-ex].
- [60] R. Kubo, "Generalized Cumulant Expansion Method", J. Phys. Soc. Jpn. 17 (1962) 1100–1120.
- [61] R. Del Grande *et al.*, "A method to remove lower order contributions in multi-particle femtoscopic correlation functions", *Eur. Phys. J. C* 82 (2022) 244, arXiv:2107.10227 [nucl-th].
- [62] ALICE Collaboration, K. Aamodt *et al.*, "The ALICE experiment at the CERN LHC", J. Instr. 3 (2008) S08002.
- [63] ALICE Collaboration, B. Abelev et al., "Performance of the ALICE Experiment at the CERN LHC", Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
- [64] ALICE Collaboration, "The ALICE experiment A journey through QCD", arXiv:2211.04384 [nucl-ex].
- [65] ALICE Collaboration, E. Abbas et al., "Performance of the ALICE VZERO system", JINST 8 (2013) P10016, arXiv:1306.3130 [nucl-ex].
- [66] ALICE Collaboration, K. Aamodt *et al.*, "Alignment of the ALICE Inner Tracking System with cosmic-ray tracks", JINST 5 (2010) P03003, arXiv:1001.0502 [physics.ins-det].
- [67] J. Alme *et al.*, "The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events", *Nucl. Instrum. Methods* A622 (2010) 316–367.
- [68] A. Akindinov *et al.*, "Performance of the ALICE Time-of-Flight detector at the LHC", *Eur. Phys. J. Plus* **128** (2013) 44.

- [69] T. Sjöstrand et al., "An introduction to PYTHIA 8.2", Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].
- [70] GEANT4 Collaboration, S. Agostinelli et al., "GEANT4: A Simulation toolkit", Nucl. Instrum. Meth. A506 (2003) 250–303.
- [71] V. Uzhinsky *et al.*, "Antinucleus-nucleus cross sections implemented in GEANT4", *Phys. Lett.* B705 (2011) 235–239.
- [72] ALICE Collaboration, B. B. Abelev *et al.*, "Two- and three-pion quantum statistics correlations in Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV at the CERN Large Hadron Collider", *Phys. Rev. C* 89 (2014) 024911, arXiv:1310.7808 [nucl-ex].
- [73] R. Lednický, "Correlation femtoscopy of multiparticle processes", *Phys. At. Nucl.* 67 (2004) 72–82.
- [74] M. A. Lisa *et al.*, "Femtoscopy in relativistic heavy ion collisions", Ann. Rev. Nucl. Part. Sci. 55 (2005) 357–402, arXiv:nucl-ex/0505014.
- [75] ALICE Collaboration, S. Acharya *et al.*, "Search for a common baryon source in high-multiplicity pp collisions at the LHC", *Phys. Lett. B* **811** (2020) 135849, arXiv:2004.08018 [nucl-ex].
- [76] ALICE Collaboration, K. Aamodt *et al.*, "Femtoscopy of pp collisions at $\sqrt{s} = 0.9$ and 7 TeV at the LHC with two-pion Bose-Einstein correlations", *Phys. Rev. D* 84 (2011) 112004, arXiv:1101.3665 [hep-ex].
- [77] V. Vovchenko and H. Stoecker, "Thermal-FIST: A package for heavy-ion collisions and hadronic equation of state", *Comput. Phys. Commun.* **244** (2019) 295–310.

A The ALICE Collaboration

S. Acharya ^{© 125}, D. Adamová ^{© 86}, A. Adler⁶⁹, G. Aglieri Rinella ^{© 32}, M. Agnello ^{© 29}, N. Agrawal ^{© 50}, Z. Ahammed (2)¹³², S. Ahmad (2)¹⁵, S.U. Ahn (2)⁷⁰, I. Ahuja (2)³⁷, A. Akindinov (2)¹⁴⁰, M. Al-Turany (2)⁹⁷, D. Aleksandrov (2)¹⁴⁰, B. Alessandro (2)⁵⁵, H.M. Alfanda (2)⁶, R. Alfaro Molina (2)⁶⁶, B. Ali (2)¹⁵, A. Alici (2)²⁵, N. Alizadehvandchali 6 ¹¹⁴, A. Alkin 32 , J. Alme 20 , G. Alocco 51 , T. Alt 63 , I. Altsybeev 140 , M.N. Anaam 6 , C. Andrei 45 , A. Andronic 135 , V. Anguelov 94 , F. Antinori 53 , P. Antonioli 50 , N. Apadula ⁶⁷⁴, L. Aphecetche ¹⁰³, H. Appelshäuser ⁶³, C. Arata ⁷³, S. Arcelli ²⁵, M. Aresti ⁵¹, R. Arnaldi ⁶ ⁵⁵, J.G.M.C.A. Arneiro ⁶ ¹¹⁰, I.C. Arsene ⁶ ¹⁹, M. Arslandok ⁶ ¹³⁷, A. Augustinus ⁶ ³², R. Averbeck ⁶ ⁹⁷, M.D. Azmi ⁶ ¹⁵, A. Badalà ⁶ ⁵², J. Bae ⁶ ¹⁰⁴, Y.W. Baek ⁶ ⁴⁰, X. Bai ⁶ ¹¹⁸, R. Bailhache ⁶ ⁶³, Y. Bailung ⁶ ⁴⁷, A. Balbino ⁶ ²⁹, A. Baldisseri ⁶ ¹²⁸, B. Balis ⁶ ², D. Banerjee ⁶ ⁴, Z. Banoo ⁶ ⁹¹, R. Barbera ⁶ ²⁶, F. Barile ⁶ ³¹, L. Barioglio ⁹⁵, M. Barlou⁷⁸, G.G. Barnaföldi ⁶ ¹³⁶, L.S. Barnby ⁸⁵, V. Barret ⁶ ¹²⁵, L. Barreto ⁶ ¹¹⁰, C. Bartels ⁶ ¹¹⁷, K. Barth ⁶ ³², E. Bartsch ⁶ ⁶³, N. Bastid ⁶ ¹²⁵, S. Basu ⁶ ⁷⁵, G. Batigne ⁶ ¹⁰³, L. Barreto (a) ¹¹⁰, C. Bartels (a) ¹¹⁷, K. Barth (a) ⁵², E. Bartsch (a) ⁶⁰, N. Bastid (a) ⁶², S. Basu (a) ⁶³, G. Baugie (a) ⁶⁴, D. Battistini (a) ⁹⁵, B. Batyunya (a) ¹⁴¹, D. Bauri⁴⁶, J.L. Bazo Alba (a) ¹⁰¹, I.G. Bearden (a) ⁸³, C. Beattie (a) ¹³⁷, P. Becht (a) ⁹⁷, D. Behera (a) ⁴⁷, I. Belikov (a) ¹²⁷, A.D.C. Bell Hechavarria (a) ¹³⁵, F. Bellini (a) ²⁵, R. Bellwied (a) ¹¹⁴, S. Belokurova (a) ¹⁴⁰, G. Bencedi (a) ¹³⁶, S. Beole (a) ²⁴, A. Bercuci (a) ⁴⁵, Y. Berdnikov (a) ¹⁴⁰, A. Berdnikova (a) ⁹⁴, L. Bergmann (a) ⁹⁴, M.G. Besoiu (a) ⁶², L. Betev (a) ³², P.P. Bhaduri (a) ¹³², A. Bhasin (a) ⁹¹, M.A. Bhat (a) ⁴, B. Bhattacharjee (a) ⁴¹, L. Bianchi (a) ²⁴, N. Bianchi (a) ⁴⁸, J. Bielčík (a) ³⁵, J. Bielčíková (a) ⁸⁶, J. Biernat (a) ¹⁴⁰, A. Berdnikova (a) ¹⁴⁰, A. Berdnikova (a) ¹⁴⁰, A. Bordnikova (a) ¹⁴⁰, A. Berdnikova (a) ¹⁴⁰, B. Bhattacharjee (a) ¹²⁷, A. Bianchi (a) ¹³⁶, S. Bience (a) ¹³⁶, S. Bience (a) ¹³⁶, J. Bielčík (a) ³⁵, J. Bielčíková (a) ⁸⁶, J. Biernat (a) ¹⁴⁰, A. Bianchi (a) ¹⁴⁰, A. Bianchi (a) ¹⁴⁰, A. Bience (a) ¹⁴⁰, A. Bience (a) ¹⁴⁰, B. Bienc A.P. Bigot (127, A. Bilandzic (1995, G. Biro (1136, S. Biswas (140, N. Bize (1037, J.T. Blair (1037, D. Blau (1407, N. Bize (1037, J.T. Blair (1037, D. Blau (1407, N. Bize M.B. Blidaru 97 , N. Bluhme³⁸, C. Blume 63 , G. Boca 21,54 , F. Bock 87 , T. Bodova 920 , A. Bogdanov¹⁴⁰, S. Boi 922 , J. Bok 57 , L. Boldizsár 136 , M. Bombara 37 , P.M. Bond 32 , G. Bonomi 131,54 , H. Borel 128 , A. Borissov 140 , A.G. Borquez Carcamo 94 , H. Bossi 137 , E. Botta 24 , Y.E.M. Bouziani 63 , L. Bratrud ⁶³, P. Braun-Munzinger ⁹⁷, M. Bregant ¹¹⁰, M. Broz ³⁵, G.E. Bruno ^{96,31}, M.D. Buckland ²³, D. Budnikov (140, H. Buesching (63, S. Bufalino (127), P. Buhler (107), Z. Buthelezi (167, 121), A. Bylinkin (167), B. Bylinkin S.A. Bysiak¹⁰⁷, M. Cai ⁶, H. Caines ¹³⁷, A. Caliva ²⁸, E. Calvo Villar ¹⁰¹, J.M.M. Camacho ¹⁰⁹, P. Camerini () ²³, F.D.M. Canedo () ¹¹⁰, M. Carabas () ¹²⁴, A.A. Carballo () ³², F. Carnesecchi () ³², R. Caron () ¹²⁶, L.A.D. Carvalho ¹¹⁰, J. Castillo Castellanos ¹²⁸, F. Catalano ^{32,24}, C. Ceballos Sanchez ¹⁴¹, I. Chakaberia ⁶ ⁷⁴, P. Chakraborty ⁶ ⁴⁶, S. Chandra ⁶ ¹³², S. Chapeland ⁶ ³², M. Chartier ⁶ ¹¹⁷, S. Chattopadhyay ⁶ ¹³², S. Chattopadhyay ⁶ ⁹⁹, T.G. Chavez ⁶ ⁴⁴, T. Cheng ⁶ ^{97,6}, C. Cheshkov ⁶ ¹²⁶, B. Cheynis ⁶ ¹²⁶, V. Chibante Barroso ⁶ ³², D.D. Chinellato ⁶ ¹¹¹, E.S. Chizzali ⁶ ^{11,95}, J. Cho ⁶ ⁵⁷, S. Cho ⁶ ⁵⁷, P. Chochula ⁶ ³², P. Christakoglou ⁶ ⁸⁴, C.H. Christensen ⁶ ⁸³, P. Christiansen ⁶ ⁷⁵, T. Chujo ⁶ ¹²³, M. Ciacco ⁶ ²⁹, C. Cicalo ⁵¹, F. Cindolo ⁵⁰, M.R. Ciupek⁹⁷, G. Clai^{III,50}, F. Colamaria ⁴⁹, J.S. Colburn¹⁰⁰, D. Colella ^{96,31}, C. Cicalo ^{9,1}, F. Cindolo ^{5,6}, M.R. Ciupek⁹⁷, G. Clat^{111,30}, F. Colamaria ^{6,49}, J.S. Colburn¹⁰⁰, D. Colella ^{6,51}, M. Colocci ^{9,25}, G. Conesa Balbastre ⁷³, Z. Conesa del Valle ⁷², G. Contin ^{9,23}, J.G. Contreras ³⁵, M.L. Coquet ¹²⁸, T.M. Cormier^{I,87}, P. Cortese ^{9,130,55}, M.R. Cosentino ^{9,112}, F. Costa ³², S. Costanza ^{9,21,54}, C. Cot ⁷², J. Crkovská ⁹⁴, P. Crochet ¹²⁵, R. Cruz-Torres ⁷⁴, P. Cui ⁶, A. Dainese ⁵³, M.C. Danisch ⁹⁴, A. Danu ⁶², P. Das ⁸⁰, P. Das ⁶⁴, S. Das ⁶⁴, A.R. Dash ^{9,135}, S. Dash ⁶⁴⁶, A. De Caro ²⁸, G. de Cataldo ⁶⁴⁹, J. de Cuveland³⁸, A. De Falco ²², D. De Gruttola ²⁸, N. De Marco ⁵⁵, C. De Martin ²³, S. De Pasquale ²⁸, R. Deb¹³¹, S. Deb ⁴⁷, K.R. Deja¹³³, R. Del Grande ⁹⁵, L. Dello Stritto ²⁸, W. Deng ⁶, R. Divià ³², D.U. Dixit ¹⁸, Ø. Djuvsland²⁰, U. Dmitrieva ¹⁴⁰, A. Dobrin ⁶², B. Dönigus ⁶³, J.M. Dubinski¹³³, A. Dubla ⁹⁷, S. Dudi ⁹⁰, P. Dupieux ¹²⁵, M. Durkac¹⁰⁶, N. Dzalaiova¹², T.M. Eder ¹³⁵, R.J. Ehlers ⁶⁷⁴, F. Eisenhut ⁶³, D. Elia ⁴⁹, B. Erazmus ⁶¹⁰³, F. Ercolessi ⁶²⁵, F. Erhardt ⁸⁹, M.R. Ersdal²⁰, B. Espagnon [©]⁷², G. Eulisse [©]³², D. Evans [©]¹⁰⁰, S. Evdokimov [©]¹⁴⁰, L. Fabbietti [©]⁹⁵, M. Faggin [©]²⁷, B. Espagnon 6^{1/2}, G. Eulisse 6^{1/2}, D. Evans 6^{1/20}, S. Evdokimov 6^{1/30}, L. Paboletti 6^{1/20}, M. Paggin 6^{1/20}, J. Faivre 6^{1/3}, F. Fan 6⁶, W. Fan 6^{1/4}, A. Fantoni 6^{4/8}, M. Fasel 6⁸⁷, P. Fecchio²⁹, A. Feliciello 6^{5/5}, G. Feofilov 6^{1/40}, A. Fernández Téllez 6^{4/4}, L. Ferrandi 6¹¹⁰, M.B. Ferrer 6^{3/2}, A. Ferrero 6^{1/28}, C. Ferrero 6^{5/5}, A. Ferretti 6^{2/4}, V.J.G. Feuillard 6^{9/4}, V. Filova^{3/5}, D. Finogeev 6^{1/40}, F.M. Fionda 6^{5/1}, F. Flor 6^{11/4}, A.N. Flores 6¹⁰⁸, S. Foertsch 6^{6/7}, I. Fokin 6^{9/4}, S. Fokin 6^{1/40}, E. Fragiacomo 6^{5/6}, E. Frajna 6^{1/36}, 6^{0/40}, 7^{1/40}, 7^{1/} U. Fuchs ¹², N. Funicello ²⁸, C. Furget ⁷³, A. Furs ¹⁴⁰, T. Fusayasu ⁹⁸, J.J. Gaardhøje ⁸³, M. Gagliardi ^{© 24}, A.M. Gago ^{© 101}, C.D. Galvan ^{© 109}, D.R. Gangadharan ^{© 114}, P. Ganoti ^{© 78}, C. Garabatos ^{© 97}, J.R.A. Garcia ⁶⁴⁴, E. Garcia-Solis ⁹, C. Gargiulo ³², A. Garibli⁸¹, K. Garner¹³⁵, P. Gasik ⁹⁷, A. Gautam ¹¹⁶, M.B. Gay Ducati ⁶⁵, M. Germain ¹⁰³, A. Ghimouz¹²³, C. Ghosh¹³², M. Giacalone ^{50,25}, P. Giubellino ^{97,55}, P. Giubilato ²⁷, A.M.C. Glaenzer ¹²⁸, P. Glässel ⁹⁴, E. Glimos¹²⁰, D.J.Q. Goh⁷⁶, V. Gonzalez ¹³⁴, S. Gorbunov³⁸, M. Gorgon ², K. Goswami ⁴⁷, S. Gotovac³³, V. Grabski ⁶⁶, L.K. Graczykowski 133, E. Grecka 86, A. Grelli 58, C. Grigoras 52, V. Grigoriev 140, S. Grigoryan 141,1, F. Grosa ³², J.F. Grosse-Oetringhaus ³², R. Grosso ⁹⁷, D. Grund ³⁵, G.G. Guardiano ¹¹¹, R. Guernane ¹⁷³, M. Guilbaud ¹⁰³, K. Gulbrandsen ⁸³, T. Gundem ⁶³, T. Gunji ¹²², W. Guo ⁶, A. Gupta ⁹¹, R. Gupta ⁹¹, R. Gupta ⁴⁷, S.P. Guzman ⁴⁴, K. Gwizdziel ¹³³, L. Gyulai ¹³⁶, M.K. Habib⁹⁷,

C. Hadjidakis ¹², F.U. Haider ⁹¹, H. Hamagaki ⁷⁶, A. Hamdi ⁷⁴, M. Hamid⁶, Y. Han ¹³⁸, B.G. Hanley (134), R. Hannigan (108), J. Hansen (175), M.R. Haque (133), J.W. Harris (137), A. Harton (197), H. Hassan (137), S.T. Heckel (137), A. Harton (137), P. Hauer (137), P. Hauer (137), S.T. Heckel (137), F. Hellbär (137), P. Hauer (137), P. Hauer (137), S.T. Heckel (137), P. Hauer (137), P. Hauer (137), S.T. Heckel (137), P. Hauer (137), P H. Helstrup ¹³⁴, M. Hemmer ⁶³, T. Herman ³⁵, G. Herrera Corral ⁸, F. Herrmann¹³⁵, S. Herrmann ¹²⁶, K.F. Hetland ³⁴, B. Heybeck ⁶³, H. Hillemanns ³², B. Hippolyte ¹²⁷, F.W. Hoffmann ⁶⁹, B. Hofman ⁵⁸, B. Hohlweger ⁸⁴, G.H. Hong ¹³⁸, M. Horst ⁹⁵, A. Horzyk ⁹², Y. Hou ⁶, P. Hristov ³², C. Hughes ¹²⁰, P. Huhn⁶³, L.M. Huhta ¹¹⁵, T.J. Humanic ⁸⁸, A. Hutson ¹¹⁴, D. Hutter ³⁸, R. Ilkaev¹⁴⁰, H. Ilyas ¹³, M. Inaba ¹²³, G.M. Innocenti ³², M. Ippolitov ¹⁴⁰, A. Isakov ⁸⁶, T. Isidori ¹¹⁶, M.S. Islam ⁹⁹, M. Ivanov¹², M. Ivanov ⁹⁷, V. Ivanov ¹⁴⁰, K.E. Iversen ⁷⁵, M. Jablonski ⁹², B. Jacak ⁷⁴, N. Jacazio ²⁵, P.M. Jacobs ⁷⁴, S. Jadlovska¹⁰⁶, J. Jadlovsky¹⁰⁶, S. Jaelani ⁸², C. Jahnke¹¹¹, M.J. Jakubowska ⁸¹, J. Jakubowska ⁸⁷, J.M. Jacazio ⁸⁷, J. Jacobs ⁸⁷, J. Jakubowska ⁸⁷, J. Jacobs ⁸⁷, J. Jakubowska ⁸⁷, J. Jacobs ⁸⁸, J. Jakubowska ⁸⁷, J. Jakubowska ⁸⁹, J. Jakubowska ⁸⁷, J. Jakubowska ⁸⁷, J. Jakubowska ⁸⁹, J. Jakubowska M.A. Janik ¹³³, T. Janson⁶⁹, M. Jercic⁸⁹, S. Ji ¹⁶, S. Jia ¹⁶, A.A.P. Jimenez ⁶⁴, F. Jonas ⁸⁷, J.M. Jowett ⁽⁶⁾ ^{32,97}, J. Jung ⁽⁶⁾ ⁶³, M. Jung ⁽⁶⁾ ⁶³, A. Junique ⁽⁶⁾ ³², A. Jusko ⁽⁶⁾ ¹⁰⁰, M.J. Kabus ⁽⁶⁾ ^{32,133}, J. Kaewjai¹⁰⁵, P. Kalinak ⁶⁵⁹, A.S. Kalteyer ⁹⁷, A. Kalweit ³², V. Kaplin ¹⁴⁰, A. Karasu Uysal ⁷¹, D. Karatovic ⁸⁹, O. Karavichev 140, T. Karavicheva 140, P. Karczmarczyk 133, E. Karpechev 140, U. Kebschull 16, 69, R. Keidel 139 , D.L.D. Keijdener⁵⁸, M. Keil 32 , B. Ketzer 42 , S.S. Khade 47 , A.M. Khan 118,6 , S. Khan 15 , A. Khanzadeev 140 , Y. Kharlov 140 , A. Khatun 116 , A. Khuntia 107 , M.B. Kidson¹¹³, B. Kileng 34 , B. Kim 104 , C. Kim 16 , D.J. Kim 115 , E.J. Kim 68 , J. Kim 138 , J.S. Kim 640 , J. Kim 57 , J. Kim 68 , M. Kim 18 , S. Kim 17 , T. Kim 138 , K. Kimura 92 , S. Kirsch 63 , I. Kisel 38 , S. Kiselev 140 , A. Kisiel 0133 , J.P. Kitowski 02 , J.L. Klay 05 , J. Klein 32 , S. Klein 74 , C. Klein-Bösing 0135 , M. Kleiner 63 , T. Klemenz 95 , A. Kluge 32 , A.G. Knospe 014 , C. Kobdaj 105 , T. Kollegger 97 , A. Kondratyev 141 , N. Kondratyeva © ¹⁴⁰, E. Kondratyuk © ¹⁴⁰, J. Konig © ⁶³, S.A. Konigstorfer © ⁹⁵, P.J. Konopka © ³², G. Kornakov 133 , S.D. Koryciak 2 , A. Kotliarov 86 , V. Kovalenko 140 , M. Kowalski 107 , V. Kozhuharov © ³⁶, I. Králik © ⁵⁹, A. Kravčáková © ³⁷, L. Krcal © ^{32,38}, M. Krivda © ^{100,59}, F. Krizek © ⁸⁶, K. Krizkova Gajdosova 32 , M. Kroesen 94 , M. Krüger 63 , D.M. Krupova 35 , E. Kryshen 140 , V. Kučera 57 , C. Kuhn 127 , P.G. Kuijer 84 , T. Kumaoka 123 , D. Kumar 132 , L. Kumar 90 , N. Kumar 90 , S. Kumar 31 , S. Kundu 32 , P. Kurashvili 79 , A. Kurepin 140 , A.B. Kurepin 140 , A. Kuryakin 140 , S. Kushpil ⁶⁸⁶, J. Kvapil ⁶¹⁰⁰, M.J. Kweon ⁵⁷, Y. Kwon ⁶¹³⁸, S.L. La Pointe ⁶³⁸, P. La Rocca ⁶²⁶, A. Lakrathok¹⁰⁵, M. Lamanna $^{\circ}$ ³², R. Langoy $^{\circ}$ ¹¹⁹, P. Larionov $^{\circ}$ ³², E. Laudi $^{\circ}$ ³², L. Lautner $^{\circ}$ ^{32,95}, R. Lavicka ¹⁰², R. Lea ^{131,54}, H. Lee ¹⁰⁴, I. Legrand ⁴⁵, G. Legras ¹³⁵, J. Lehrbach ³⁸, T.M. Lelek², R.C. Lemmon ⁸⁵, I. León Monzón ¹⁰⁹, M.M. Lesch ⁹⁵, E.D. Lesser ¹⁸, P. Lévai ¹³⁶, X. Li¹⁰, X.L. Li⁶, J. Lien [©] ¹¹⁹, R. Lietava [©] ¹⁰⁰, I. Likmeta [©] ¹¹⁴, B. Lim [©] ²⁴, S.H. Lim [©] ¹⁶, V. Lindenstruth [©] ³⁸, A. Lindner⁴⁵, C. Lippmann [©] ⁹⁷, A. Liu [©] ¹⁸, D.H. Liu [©] ⁶, J. Liu [©] ¹¹⁷, G.S.S. Liveraro [©] ¹¹¹, I.M. Lofnes [©] ²⁰, C. Loizides [©] ⁸⁷, S. Lokos [©] ¹⁰⁷, J. Lomker [©] ⁵⁸, P. Loncar [©] ³³, J.A. Lopez [©] ⁹⁴, X. Lopez [©] ¹²⁵, E. López Torres [©] ⁷, P. Lu [©] ^{97,118}, J.R. Luhder (a) ¹³⁵, M. Lunardon (a) ²⁷, G. Luparello (a) ⁵⁶, Y.G. Ma (a) ³⁹, M. Mager (a) ³², A. Maire (b) ¹²⁷, M.V. Makariev ³⁶, M. Malaev ¹⁴⁰, G. Malfattore ²⁵, N.M. Malik ⁹¹, Q.W. Malik ¹⁹, S.K. Malik ⁹¹, L. Malinina ¹⁰ ^{VI,141}, D. Mallick ¹⁰ ⁸⁰, N. Mallick ¹⁴⁷, G. Mandaglio ^{130,52}, S.K. Mandal ¹⁶ ⁷⁹, V. Manko ¹⁴⁰, F. Manso 125, V. Manzari 149, Y. Mao 16, R.W. Marcjan 12, G.V. Margagliotti 123, A. Margotti 150, A. Marín © ⁹⁷, C. Markert © ¹⁰⁸, P. Martinengo © ³², M.I. Martínez © ⁴⁴, G. Martínez García © ¹⁰³,
M.P.P. Martins © ¹¹⁰, S. Masciocchi © ⁹⁷, M. Masera © ²⁴, A. Masoni © ⁵¹, L. Massacrier © ⁷²,
A. Mastroserio © ^{129,49}, O. Matonoha © ⁷⁵, S. Mattiazzo © ²⁷, P.F.T. Matuoka¹¹⁰, A. Matyja © ¹⁰⁷, C. Mayer © ¹⁰⁷, A.L. Mazuecos $^{\circ}$ ³², F. Mazzaschi $^{\circ}$ ²⁴, M. Mazzilli $^{\circ}$ ³², J.E. Mdhluli $^{\circ}$ ¹²¹, A.F. Mechler⁶³, Y. Melikyan $^{\circ}$ ^{43,140}, A. Menchaca-Rocha 66, E. Meninno 102,28, A.S. Menon 114, M. Meres 12, S. Mhlanga 113,67, Y. Miake 123, L. Micheletti ¹²⁶, L.C. Migliorin¹²⁶, D.L. Mihaylov ⁹⁵, K. Mikhaylov ^{141,140}, A.N. Mishra ¹³⁶, D. Miśkowiec ⁹⁷, A. Modak ⁴, A.P. Mohanty ⁵⁸, B. Mohanty ⁸⁰, M. Mohisin Khan ^{1V,15}, M.A. Molander ⁴³, Z. Morakce⁷, A.F. Monanty ⁶⁴, B. Monanty ⁶⁴, M. Monanty ⁶⁴, M. Monashi Khan ⁶⁴, M. Morzov ⁶¹⁴⁰, M.A. Molander ⁶⁴³, Z. Moravcova ⁶³, C. Mordasini ⁶⁹⁵, D.A. Moreira De Godoy ⁶¹³⁵, I. Morozov ⁶¹⁴⁰, A. Morsch ⁶³², T. Mrnjavac ⁶³², V. Muccifora ⁶⁴⁸, S. Muhuri ⁶¹³², J.D. Mulligan ⁶⁷⁴, A. Mulliri²², M.G. Munhoz ⁶¹¹⁰, R.H. Munzer ⁶³, H. Murakami ⁶¹²², S. Murray ⁶¹¹³, L. Musa ⁶³², J. Musinsky ⁶⁵⁹, J.W. Myrcha ⁶¹³³, B. Naik ⁶¹²¹, A.I. Nambrath ⁶¹⁸, B.K. Nandi⁴⁶, R. Nania ⁶⁵⁰, E. Nappi ⁶⁴⁹, A.F. Nassirpour ^{617,75}, A. Nath ⁶⁹⁴, C. Nattrass ⁶¹²⁰, M.N. Naydenov ⁶³⁶, A. Neagu¹⁹, A. Negru¹²⁴, L. Nuse ⁶⁴³, G. Nu Live ⁶⁴⁴, G. Nu L L. Nellen ⁶⁴, G. Neskovic ³⁸, B.S. Nielsen ⁸³, E.G. Nielsen ⁸³, S. Nikolaev ¹⁴⁰, S. Nikulin ¹⁴⁰, V. Nikulin © ¹⁴⁰, F. Noferini © ⁵⁰, S. Noh © ¹¹, P. Nomokonov © ¹⁴¹, J. Norman © ¹¹⁷, N. Novitzky © ¹²³, P. Nowakowski $^{\circ}$ ¹³³, A. Nyanin $^{\circ}$ ¹⁴⁰, J. Nystrand $^{\circ}$ ²⁰, M. Ogino $^{\circ}$ ⁷⁶, A. Ohlson $^{\circ}$ ⁷⁵, V.A. Okorokov $^{\circ}$ ¹⁴⁰, J. Oleniacz ¹³³, A.C. Oliveira Da Silva ¹²⁰, M.H. Oliver ¹³⁷, A. Onnerstad ¹¹⁵, C. Oppedisano ⁵⁵, A. Ortiz Velasquez ⁶⁴, J. Otwinowski ¹⁰⁷, M. Oya⁹², K. Oyama ⁷⁶, Y. Pachmayer ⁹⁴, S. Padhan ⁴⁶, D. Pagano ^{131,54}, G. Paić ⁶⁴, A. Palasciano ⁴⁹, S. Panebianco ¹²⁸, H. Park ¹²³, H. Park ¹⁰⁴, J. Park ⁵⁷, J.E. Parkkila ³², R.N. Patra⁹¹, B. Paul ²², H. Pei ⁶, T. Peitzmann ⁵⁸, X. Peng ⁶, M. Pennisi ²⁴,

D. Peresunko 140, G.M. Perez 7, S. Perrin 128, Y. Pestov¹⁴⁰, V. Petrov 140, M. Petrovici 140, M. Pet S. Pisano ⁶⁴⁸, M. Płoskoń ⁶⁷⁴, M. Planinic⁸⁹, F. Pliquett⁶³, M.G. Poghosyan ⁶⁸⁷, B. Polichtchouk ⁶¹⁴⁰, S. Politano ²⁹, N. Poljak ⁸⁹, A. Pop ⁴⁵, S. Porteboeuf-Houssais ¹²⁵, V. Pozdniakov ¹⁴¹, I.Y. Pozos ⁴⁴, K.K. Pradhan ⁶⁴⁷, S.K. Prasad ⁶⁴, S. Prasad ⁶⁴⁷, R. Preghenella ⁶⁵⁰, F. Prino ⁵⁵, C.A. Pruneau ¹³⁴, I. Pshenichnov 140, M. Puccio 132, S. Pucillo 124, Z. Pugelova¹⁰⁶, S. Qiu 1384, L. Quaglia 124, R.E. Quishpe¹¹⁴, S. Ragoni ¹⁴, A. Rakotozafindrabe ¹²⁸, L. Ramello ^{130,55}, F. Rami ¹²⁷, S.A.R. Ramirez ⁴⁴, T.A. Rancien⁷³, M. Rasa ²⁶, S.S. Räsänen ⁴³, R. Rath ⁵⁰, M.P. Rauch ²⁰, I. Ravasenga ⁸⁴, K.F. Read ^{87,120}, C. Reckziegel ¹¹², A.R. Redelbach ³⁸, K. Redlich ^{V,79}, C.A. Reetz ⁹⁷, A. Rehman²⁰, F. Reidt ³², H.A. Reme-Ness ³⁴, Z. Rescakova³⁷, K. Reygers ⁹⁴, A. Riabov ¹⁴⁰, V. Riabov ¹⁴⁰, R. Ricci ¹², M. Richter ¹⁹, A.A. Riedel ⁹⁵, W. Riegler ³², C. Ristea ⁶², M.V. Rodriguez ³², M. Rodríguez Cahuantzi ⁶⁴⁴, K. Røed ¹⁹, R. Rogalev ¹⁴⁰, E. Rogochaya ¹⁴¹, T.S. Rogoschinski ⁶³, M. Rodriguez Cahuantzi 6 ⁴⁴, K. Røed 6 ¹⁹, R. Rogalev 6 ¹⁴⁰, E. Rogochaya 6 ¹⁴¹, T.S. Rogoschinski 6 ⁰⁵, D. Rohr 6 ³², D. Röhrich 20 , P.F. Rojas⁴⁴, S. Rojas Torres 35 , P.S. Rokita 133 , G. Romanenko 6 ¹⁴¹, F. Ronchetti 648 , A. Rosano 30,52 , E.D. Rosas⁶⁴, K. Roslon 133 , A. Rossi 53 , A. Roy 647 , S. Roy⁴⁶, N. Rubini 25 , O.V. Rueda 114 , D. Ruggiano 133 , R. Rui 23 , P.G. Russek 62 , R. Russo 84 , A. Rustamov 81 , E. Ryabinkin 140 , Y. Ryabov 140 , A. Rybicki 6107 , H. Rytkonen 115 , J. Ryu 616 , W. Rzesa 133 , O.A.M. Saarimaki 643 , R. Sadek 6103 , S. Sadhu 31 , S. Sadovsky 6140 , J. Saetre 20 , K. Šafařík 35 , P. Saha⁴¹, S.K. Saha 64 , S. Saha 80 , B. Sahoo 46 , B. Sahoo 647 , R. Sahoo 67 , S. Sambusl 91 D. Sahu 6 ⁴⁷, P.K. Sahu 60 , J. Saini 6132 , K. Sajdakova³⁷, S. Sakai 6123 , M.P. Salvan 697 , S. Sambyal 691 M.H.P. Sas ¹³⁷, J. Schambach ⁸⁷, H.S. Scheid ⁶³, C. Schiaua ⁴⁵, R. Schicker ⁹⁴, A. Schmah⁹⁴, M.H.F. Saster V, J. Schambach V, H.S. Scheld V, C. Schnad V, K. Schicker V, A. Schman V, C. Schmidt ⁹⁷, H.R. Schmidt⁹³, M.O. Schmidt ³², M. Schmidt⁹³, N.V. Schmidt ⁸⁷, A.R. Schmier ¹²⁰, R. Schotter ¹²⁷, A. Schröter ³⁸, J. Schukraft ³², K. Schwarz⁹⁷, K. Schweda ⁹⁷, G. Scioli ²⁵, E. Scomparin ⁵⁵, J.E. Seger ¹⁴, Y. Sekiguchi¹²², D. Sekihata ¹²², I. Selyuzhenkov ⁹⁷, S. Senyukov ¹⁴⁰, L. Šerkšnytė ⁹⁵, A. Sevcenco ⁶², T.J. Shaba ⁶⁷, A. Shabetai ¹⁰³, ¹⁰⁷ R. Shahoyan³², A. Shangaraev 140 , A. Sharma⁹⁰, B. Sharma 91 , D. Sharma 46 , H. Sharma 53,107 , M. Sharma 91 , S. Sharma 76 , S. Sharma 91 , U. Sharma 91 , A. Shatat 72 , O. Sheibani¹¹⁴, K. Shigaki 92 , M. Shimomura⁷⁷, J. Shin¹¹, S. Shirinkin ¹⁴⁰, Q. Shou ³⁹, Y. Sibiriak ¹⁴⁰, S. Siddhanta ⁵¹, T. Siemiarczuk ⁶⁷⁹, T.F. Silva ¹¹⁰, D. Silvermyr ⁷⁵, T. Simantathammakul¹⁰⁵, R. Simeonov ³⁶, B. Singh⁹¹, B. Singh ⁹⁵, K. Singh ⁶⁴⁷, R. Singh ⁶⁸⁰, R. Singh ⁶⁹¹, R. Singh ⁶⁴⁷, S. Singh ⁶¹⁵, V.K. Singh ⁶¹³², V. Singhal ⁶¹³², T. Sinha ⁶⁹⁹, B. Sitar ⁶¹², M. Sitta ^{6130,55}, T.B. Skaali¹⁹, G. Skorodumovs ⁶⁹⁴, M. Slupecki ⁶⁴³, N. Smirnov ⁶¹³⁷, R.J.M. Snellings ⁶⁵⁸, E.H. Solheim ⁶¹⁹, J. Song ⁶¹¹⁴, A. Songmoolnak¹⁰⁵, C. Sonnabend ^{32,97}, F. Soramel ²⁷, A.B. Soto-hernandez ⁸⁸, R. Spijkers ⁸⁴, I. Sputowska ¹⁰⁷, J. Staa ⁷⁵, J. Stachel ⁹⁴, I. Stan ⁶², P.J. Steffanic ¹²⁰, S.F. Stiefelmaier ⁹⁴, D. Stocco ¹⁰³, I. Storehaug ⁹¹, P. Stratmann ¹³⁵, S. Strazzi ²⁵, C.P. Stylianidis⁸⁴, A.A.P. Suaide ¹¹⁰, C. Suire ⁷², M. Sukhanov ¹⁴⁰, M. Suljic ³², R. Sultanov ¹⁴⁰, V. Sumberia ⁹¹, S. Sumowidagdo ⁸², S. Swain⁶⁰, I. Szarka ¹², M. Szymkowski¹³³, S.F. Taghavi ⁹⁵, G. Taillepied ⁹⁷, J. Takahashi ¹¹¹, G.J. Tambave ⁸⁰, S. Tang ⁶, M. Szynkowski ⁽⁴⁾, S.F. Tagnavi ⁽⁴⁾, O. Taniepied ⁽⁴⁾, J. Takanashi ⁽⁴⁾, O.J. Tanibave ⁽⁴⁾, S. Tang ⁽⁴⁾,
Z. Tang ⁽⁶⁾ ¹¹⁸, J.D. Tapia Takaki ⁽⁶⁾ ¹¹⁶, N. Tapus¹²⁴, L.A. Tarasovicova ⁽⁶⁾ ¹³⁵, M.G. Tarzila ⁽⁶⁾ ⁴⁵, G.F. Tassielli ⁽⁶⁾ ³¹,
A. Tauro ⁽⁶⁾ ³², G. Tejeda Muñoz ⁽⁶⁾ ⁴⁴, A. Telesca ⁽⁶⁾ ³², L. Terlizzi ⁽⁶⁾ ²⁴, C. Terrevoli ⁽⁶⁾ ¹¹⁴, S. Thakur ⁽⁶⁾ ⁴,
D. Thomas ⁽⁶⁾ ¹⁰⁸, A. Tikhonov ⁽⁶⁾ ¹⁴⁰, A.R. Timmins ⁽⁶⁾ ¹¹⁴, M. Tkacik ¹⁰⁶, T. Tkacik ⁽⁶⁾ ¹⁰⁶, A. Toia ⁽⁶⁾ ⁶³,
R. Tokumoto⁹², N. Topilskaya ⁽⁶⁾ ¹⁴⁰, M. Toppi ⁽⁶⁾ ⁴⁸, T. Tork ⁽⁷⁾, A.G. Torres Ramos ⁽⁶⁾ ³¹, A. Trifiró ⁽⁶⁾ ^{30,52}, A.S. Triolo (32,30,52, S. Tripathy 50, T. Tripathy 646, S. Trogolo 32, V. Trubnikov 3, W.H. Trzaska 115, T.P. Trzcinski 133 , A. Tumkin 140 , R. Turrisi 53 , T.S. Tveter 19 , K. Ullaland 20 , B. Ulukutlu 95 , A. Uras ¹²⁶, M. Urioni ^{54,131}, G.L. Usai ²², M. Vala³⁷, N. Valle ²¹, L.V.R. van Doremalen⁵⁸, M. van A. Uta's ¹, M. Utata¹, M. Vala², M. Vala², N. Vala², L. V.K. Vala Dotenhaten¹, M. Vala¹ Leeuwen ⁸⁴, C.A. van Veen ⁹⁴, R.J.G. van Weelden ⁸⁴, P. Vande Vyvre ³², D. Varga ¹³⁶, Z. Varga ¹³⁶, M. Vasileiou ⁷⁸, A. Vasiliev ¹⁴⁰, O. Vázquez Doce ⁴⁸, V. Vechernin ¹⁴⁰, E. Vercellin ²⁴, S. Vergara Limón⁴⁴, L. Vermunt ⁹⁷, R. Vértesi ¹³⁶, M. Verweij ⁵⁸, L. Vickovic³³, Z. Vilakazi¹²¹, O. Villalobos Baillie ¹⁰⁰, A. Villani ²³, G. Vino ⁴⁹, A. Vinogradov ¹⁴⁰, T. Virgili ²⁸, M.M.O. Virta ¹¹⁵, V. Vislavicius⁷⁵, A. Vodopyanov ()¹⁴¹, B. Volkel ()³², M.A. Völkl ()⁹⁴, K. Voloshin¹⁴⁰, S.A. Voloshin ()¹³⁴, G. Volpe ³¹, B. von Haller ³², I. Vorobyev ⁹⁵, N. Vozniuk ¹⁴⁰, J. Vrláková ³⁷, J. Wan³⁹, C. Wang ³⁹, D. Wang³⁹, Y. Wang⁹³⁹, A. Wegrzynek³², F.T. Weiglhofer³⁸, S.C. Wenzel³², J.P. Wessels⁹¹³⁵, D. Wang⁵⁹, Y. Wang^{6,59}, A. Wegrzynek^{6,52}, F.I. Weighhofer³⁶, S.C. Wenzel^{6,52}, J.P. Wessels^{6,155}, S.L. Weyhmiller^{6,137}, J. Wiechula^{6,63}, J. Wikne^{6,19}, G. Wilk^{6,79}, J. Wilkinson^{6,97}, G.A. Willems^{6,135}, B. Windelband⁹⁴, M. Winn^{6,128}, J.R. Wright^{6,108}, W. Wu³⁹, Y. Wu^{6,118}, R. Xu^{6,6}, A. Yadav^{6,42}, A.K. Yadav^{6,132}, S. Yalcin^{6,71}, Y. Yamaguchi⁹², S. Yang²⁰, S. Yano^{6,92}, Z. Yin^{6,6}, I.-K. Yoo^{6,16}, J.H. Yoon^{6,57}, H. Yu¹¹, S. Yuan²⁰, A. Yuncu^{6,94}, V. Zaccolo^{6,23}, C. Zampolli^{6,32}, F. Zanone^{6,94}, N. Zardoshti^{6,32}, A. Zarochentsev^{6,140}, P. Závada^{6,61}, N. Zaviyalov¹⁴⁰, M. Zhalov^{6,140}, B. Zhang^{6,6},

L. Zhang ^(a) ³⁹, S. Zhang ^(a) ³⁹, X. Zhang ^(a) ⁶, Y. Zhang ¹¹⁸, Z. Zhang ^(a) ⁶, M. Zhao ^(a) ¹⁰, V. Zherebchevskii ^(a) ¹⁴⁰, Y. Zhi¹⁰, D. Zhou ^(a) ⁶, Y. Zhou ^(a) ⁸³, J. Zhu ^(a) ^{97,6}, Y. Zhu⁶, S.C. Zugravel ^(a) ⁵⁵, N. Zurlo ^(a) ^{131,54}

Affiliation Notes

I Deceased

^{II} Also at: Max-Planck-Institut für Physik, Munich, Germany

^{III} Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy

^{IV} Also at: Department of Applied Physics, Aligarh Muslim University, Aligarh, India

^V Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

^{VI} Also at: An institution covered by a cooperation agreement with CERN

Collaboration Institutes

¹ A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia

- ² AGH University of Science and Technology, Cracow, Poland
- ³ Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine

⁴ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India

⁵ California Polytechnic State University, San Luis Obispo, California, United States

⁶ Central China Normal University, Wuhan, China

⁷ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba

⁸ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico

⁹ Chicago State University, Chicago, Illinois, United States

¹⁰ China Institute of Atomic Energy, Beijing, China

¹¹ Chungbuk National University, Cheongju, Republic of Korea

¹² Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovak Republic

¹³ COMSATS University Islamabad, Islamabad, Pakistan

¹⁴ Creighton University, Omaha, Nebraska, United States

¹⁵ Department of Physics, Aligarh Muslim University, Aligarh, India

¹⁶ Department of Physics, Pusan National University, Pusan, Republic of Korea

¹⁷ Department of Physics, Sejong University, Seoul, Republic of Korea

¹⁸ Department of Physics, University of California, Berkeley, California, United States

¹⁹ Department of Physics, University of Oslo, Oslo, Norway

²⁰ Department of Physics and Technology, University of Bergen, Bergen, Norway

²¹ Dipartimento di Fisica, Università di Pavia, Pavia, Italy

²² Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy

²³ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy

²⁴ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy

²⁵ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy

²⁶ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy

²⁷ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy

²⁸ Dipartimento di Fisica 'E.R. Caianiello' dell'Università and Gruppo Collegato INFN, Salerno, Italy

²⁹ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy

³⁰ Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy

³¹ Dipartimento Interateneo di Fisica 'M. Merlin' and Sezione INFN, Bari, Italy

³² European Organization for Nuclear Research (CERN), Geneva, Switzerland

³³ Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia

³⁴ Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway

³⁵ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic

³⁶ Faculty of Physics, Sofia University, Sofia, Bulgaria

- ³⁷ Faculty of Science, P.J. Šafárik University, Košice, Slovak Republic
- ³⁸ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany

³⁹ Fudan University, Shanghai, China

- ⁴⁰ Gangneung-Wonju National University, Gangneung, Republic of Korea
- ⁴¹ Gauhati University, Department of Physics, Guwahati, India

⁴² Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn,

Germany

- ⁴³ Helsinki Institute of Physics (HIP), Helsinki, Finland
- ⁴⁴ High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
- ⁴⁵ Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
- ⁴⁶ Indian Institute of Technology Bombay (IIT), Mumbai, India
- ⁴⁷ Indian Institute of Technology Indore, Indore, India
- ⁴⁸ INFN, Laboratori Nazionali di Frascati, Frascati, Italy
- ⁴⁹ INFN, Sezione di Bari, Bari, Italy
- ⁵⁰ INFN, Sezione di Bologna, Bologna, Italy
- ⁵¹ INFN, Sezione di Cagliari, Cagliari, Italy
- ⁵² INFN, Sezione di Catania, Catania, Italy
- ⁵³ INFN, Sezione di Padova, Padova, Italy
- ⁵⁴ INFN, Sezione di Pavia, Pavia, Italy
- ⁵⁵ INFN, Sezione di Torino, Turin, Italy
- ⁵⁶ INFN, Sezione di Trieste, Trieste, Italy
- ⁵⁷ Inha University, Incheon, Republic of Korea
- ⁵⁸ Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
- ⁵⁹ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic
- ⁶⁰ Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
- ⁶¹ Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
- ⁶² Institute of Space Science (ISS), Bucharest, Romania
- ⁶³ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
- ⁶⁴ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁵ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- ⁶⁶ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
- ⁶⁷ iThemba LABS, National Research Foundation, Somerset West, South Africa
- ⁶⁸ Jeonbuk National University, Jeonju, Republic of Korea
- ⁶⁹ Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und

Mathematik, Frankfurt, Germany

- ⁷⁰ Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
- ⁷¹ KTO Karatay University, Konya, Turkey
- ⁷² Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France

⁷³ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France

- ⁷⁴ Lawrence Berkeley National Laboratory, Berkeley, California, United States
- ⁷⁵ Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
- ⁷⁶ Nagasaki Institute of Applied Science, Nagasaki, Japan
- ⁷⁷ Nara Women's University (NWU), Nara, Japan
- ⁷⁸ National and Kapodistrian University of Athens, School of Science, Department of Physics , Athens, Greece
- ⁷⁹ National Centre for Nuclear Research, Warsaw, Poland
- ⁸⁰ National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
- ⁸¹ National Nuclear Research Center, Baku, Azerbaijan
- ⁸² National Research and Innovation Agency BRIN, Jakarta, Indonesia
- ⁸³ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- ⁸⁴ Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
- ⁸⁵ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
- ⁸⁶ Nuclear Physics Institute of the Czech Academy of Sciences, Husinec-Řež, Czech Republic
- ⁸⁷ Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
- ⁸⁸ Ohio State University, Columbus, Ohio, United States
- ⁸⁹ Physics department, Faculty of science, University of Zagreb, Zagreb, Croatia
- ⁹⁰ Physics Department, Panjab University, Chandigarh, India
- ⁹¹ Physics Department, University of Jammu, Jammu, India

⁹² Physics Program and International Institute for Sustainability with Knotted Chiral Meta Matter (SKCM2), Hiroshima University, Hiroshima, Japan ⁹³ Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany ⁹⁴ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany ⁹⁵ Physik Department, Technische Universität München, Munich, Germany ⁹⁶ Politecnico di Bari and Sezione INFN, Bari, Italy ⁹⁷ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany ⁹⁸ Saga University, Saga, Japan ⁹⁹ Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India ¹⁰⁰ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom ¹⁰¹ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru ¹⁰² Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria ¹⁰³ SUBATECH, IMT Atlantique, Nantes Université, CNRS-IN2P3, Nantes, France ¹⁰⁴ Sungkyunkwan University, Suwon City, Republic of Korea ¹⁰⁵ Suranaree University of Technology, Nakhon Ratchasima, Thailand ¹⁰⁶ Technical University of Košice, Košice, Slovak Republic ¹⁰⁷ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland ¹⁰⁸ The University of Texas at Austin, Austin, Texas, United States ¹⁰⁹ Universidad Autónoma de Sinaloa, Culiacán, Mexico

¹¹⁰ Universidade de São Paulo (USP), São Paulo, Brazil

¹¹¹ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

¹¹² Universidade Federal do ABC, Santo Andre, Brazil

¹¹³ University of Cape Town, Cape Town, South Africa

¹¹⁴ University of Houston, Houston, Texas, United States

¹¹⁵ University of Jyväskylä, Jyväskylä, Finland

¹¹⁶ University of Kansas, Lawrence, Kansas, United States

¹¹⁷ University of Liverpool, Liverpool, United Kingdom

¹¹⁸ University of Science and Technology of China, Hefei, China

¹¹⁹ University of South-Eastern Norway, Kongsberg, Norway

¹²⁰ University of Tennessee, Knoxville, Tennessee, United States

¹²¹ University of the Witwatersrand, Johannesburg, South Africa

¹²² University of Tokyo, Tokyo, Japan

¹²³ University of Tsukuba, Tsukuba, Japan

¹²⁴ University Politehnica of Bucharest, Bucharest, Romania

¹²⁵ Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France

¹²⁶ Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon, Lyon, France

¹²⁷ Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France

¹²⁸ Université Paris-Saclay Centre d'Etudes de Saclay (CEA), IRFU, Départment de Physique Nucléaire (DPhN), Saclay, France

¹²⁹ Università degli Studi di Foggia, Foggia, Italy

¹³⁰ Università del Piemonte Orientale, Vercelli, Italy

¹³¹ Università di Brescia, Brescia, Italy

¹³² Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India

¹³³ Warsaw University of Technology, Warsaw, Poland

¹³⁴ Wayne State University, Detroit, Michigan, United States

¹³⁵ Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany

¹³⁶ Wigner Research Centre for Physics, Budapest, Hungary

¹³⁷ Yale University, New Haven, Connecticut, United States

¹³⁸ Yonsei University, Seoul, Republic of Korea

¹³⁹ Zentrum für Technologie und Transfer (ZTT), Worms, Germany

¹⁴⁰ Affiliated with an institute covered by a cooperation agreement with CERN

¹⁴¹ Affiliated with an international laboratory covered by a cooperation agreement with CERN.