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Throughput in Processor-Sharing Queues

Na Chen and Scott Jordan

Abstract—Processor-sharing queues are often used to model file trans-
mission in networks. While sojourn time is a common performance
metric in the queueing literature, average transmission rate is the more
commonly discussed metric in the networking literature. Whereas much
is known about sojourn times, there is little known about the average
service rate experienced by jobs in processor-sharing queues. We first
define the average rate as observed by users and by the queue. In an
M/M/1 processor-sharing queue, we give closed-form expressions for these
average rates, and prove a strict ordering amongst them. We prove that
the queue service rate (in bps) is an increasing function of the minimum
required average transmission rate, and give a closed-form expression for
the marginal cost associated with such a performance requirement. We
then consider the effect of using connection access control by modeling an
M/M/1/K processor-sharing queue. We give closed-form expressions for
average transmission rates, and discuss the relationship between the queue
service rate (in bps), the queue limit, the average rate, and the blocking
probability.

Index Terms—Average rate, marginal cost, processor-sharing (PS)
queues.

I. INTRODUCTION

We are motivated here by the idea of providing performance guaran-
tees for elastic data applications. In particular, we consider minimum
bounds on the mean transmission rate or throughput. Intuition suggests
that the cost of providing such a guarantee should be increasing with
the level of the guarantee, but this intuition has not yet been grounded
with a theoretical basis. In this paper, we consider such guarantees in
the context of processor-sharing queues.

Processor-sharing (PS) queues have been widely used in the net-
working literature to model multiple file transmissions dynamically
sharing a fixed amount of bandwidth [1]-[3]. Each user or job rep-
resents transmission of a file, and the queue service rate (in bps) rep-
resents the bandwidth of the system. A user starts transmission when
it arrives and departs when the file transmission has completed. The
number of active users is stochastic, and so is the transmission rate per
user under the PS discipline.

The processor-sharing service discipline is an appropriate model
when the time scale of interest is call-level and all files share bandwidth
equally [4], [5]. The call-level time scale applies when the relevant
performance metrics are measured over the typical length of a file
transmission; if the relevant metrics are measured on a packet-level
time scale, then the scheduler is usually modeled as one that swaps
between jobs. The equal bandwidth assumption is often made when
there exists a mechanism, e.g., the transmission control protocol
(TCP), that attempts to equalize bandwidth between multiple streams
over multiple round trip times.

There is rich literature concerning processor-sharing queues. The
most common call-level performance metric for such queues is sojourn
time. When modeling file transmission, sojourn time corresponds to
the time required to completely transmit the file, which is certainly
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of interest. For M/M/1-PS queues, Coffman [6] derived the Laplace
transform of the waiting time distribution of a tagged user, conditioned
on the required service time and the number in the system upon
the tagged arrival. By removing the conditioning and inverting this
Laplace transform, Morrison [7] obtained an integral representation
for the complementary distribution of the sojourn time, which was
refined by Guillemin [8] via spectral theory to obtain the distribution
of the sojourn time of a user conditioned on the number of users in
the system at its arrival. For M/M/1/K-PS queues, Morrison obtained
an asymptotic approximation to the equilibrium distribution of the
waiting time [9]. In heavy-traffic, Morrison [10] also found the dis-
tribution of the response time conditioned on the service time, and
Knessl [11] constructed an asymptotic approximation to the sojourn
time distribution.

However, the most common performance metric for data applica-
tions in the Internet is throughput, not sojourn time. Indeed, many In-
ternet service providers advertise a speed of some type when selling
residential broadband service, and there are many online speed tests
that measure throughput on a broadband connection. Throughput is ca-
sually perceived as the rate at which a computer or network sends or
receives data. However, a more precise definition of throughput is with
respect to a time window, as the number of bits transmitted divided by
the length of the time window. The time window is traditionally chosen
to correspond to the time scale on which users judge performance, typi-
cally ranging from tenths of a second for highly interactive applications
such as gaming, to seconds for moderately interactive applications such
as web browsing, to minutes for noninteractive applications such as file
downloads.

While there are many available results on sojourn time in
process-sharing queues, there is little literature on the throughput
in such queues. Definitions of average rate as observed by users (here
called the average rate over jobs) and of average rate as observed by
the queue (here called the average rate over time) were introduced in
[5]. Other common metrics include slowdown (cf. [12]), mean slow-
down (cf. [13]), and flow throughput (cf. [1] and [2]). A closed-form
expression for the average rate over time has been derived, and in a
G/D/1-PS queue it has been proven that the average rate over time
dominates the average rate over jobs [5].

In Section II, we present the definitions of average rates, which has
also been introduced by [5]. Then we start in Section III by deriving a
closed-form expression for the average rate over jobs, and by proving
that in an M/M/1-PS queue the average rate over time dominates the
average rate over jobs. In Section IV, we then consider the cost asso-
ciated with providing performance guarantees on the mean rate, by ex-
amining the marginal queue service rate with respect to the minimum
required average rate over time. We prove that the cost is monotonically
increasing with both the average rate over jobs and the average rate
over time, consistent with intuition. In addition, we prove convexity of
the marginal costs associated with average rate over time, and derive
asymptotic behavior of costs for the average rates over both jobs and
time.

In Section V, we then turn to the effect of connection access control
upon average rates, which we do not believe has been addressed in the
literature. By considering an M/M/1/K-PS queue, we present similar
definitions for average rates over both jobs and time. The relationships
between queue service rate, the queue limit, the average rate over time,
and the blocking probability are investigated, and we demonstrate the
nature of binding constraints on mean rate and on blocking probability.

II. PERFORMANCE MEASURES

In this section, we present definitions of average rate as observed
by users and by the queue in a G/G/1 processor-sharing queue. It is
assumed that the queue is ergodic.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 2, FEBRUARY 2007

From the queue’s perspective, the bandwidth is split among all jobs
present in the system and, therefore, the instantaneous rate per job
changes whenever a job arrives or departs. Let R (bps) denote the band-
width, n(u) the number of jobs in the queue at time w. Then, the in-
stantaneous transmission rate received by each job at time u is given
by (R/n(u))In(u)>0}, Where Iy is the indicator function.

An average rate as observed by the queue can be defined by aver-
aging the instantaneous rate over time conditioned on at least one job
in the system. We call this quantity the average rate over time, m" ,
given by

o nty Tinsoydu {R
m = lim = =F| =
Jo Tengwy>oydu N
E[-] denotes the expectation of the quantity within square brackets. IV
is a random variable, denoting the number of jobs in the system.

A second definition of average rate as observed by the queue could
be created by weighting the instantaneous rate by the number of jobs
receiving that rate. We define the weighted average rate over time, m""
as

N> 0} (1)

t—o0

fOL n(u)%f{n(ubo}du B
_fot n(u)[{n(u)>0}d“’

R(l — 0 )
E[N]

Wo_ .
m~ = lim

t—oo

(@)

where 7y denotes the probability that the queue is empty. If the job size
and the sojourn time are denoted by L and T, respectively, then it can
be shown that using Little’s law m"" is equal to E[L]/E[T], which
has also been called the flow throughput [2].

From the user’s perspective, the average transmission rate (or
throughput) r; for job ¢ is defined as its file size divided by the time
required to transmit the file. An average rate as observed by users can
be defined by averaging this quantity over the users. We define the
average rate over jobs, m” | as the expected throughput per job, given
by

' =l 2N ple gL
m’ = lim ,ZI;—El[IZ]—E|:T:|. 3)

The average rate over time m” and weighted average rate over time
m" rely on the stationary distribution of the queue, which is usually
easy to compute. In contrast, the average rate over jobs i’ depends
on the distribution of sojourn time conditional on job size, which is
complicated in most cases. The relationship among these average rates
is also of interest.

Theorem 1: In a G/G/1-PS queue, mT > m" .

Proof: Divide m” in (1) by m"" in (2) and apply Jensen’s in-
equality:

m? _ E[%UV > 0]E[N] S 1
- 1—71'0

mWw

The theorem follows. |

Our intuition is that m” > m"" follows from the convexity of 1/,
which results in E[1/N] > 1/E[N]. It has also been shown that m” >
m™ in an M/G/1-PS queue and m™ > m” in a G/D/1-PS queue [5].
For other distributions of job size, the relationship between m” and
m” is still unknown. We will next address this issue in an M/M/1-PS
queue.
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III. AVERAGE RATES IN AN M/M/1-PS QUEUE

In this section, we give closed-form expression for each of these
definitions for average rate in an M/M/1-PS queue, and prove that the
average rate over jobs m’ dominates the average rate over time m” .

Consider an M/M/1-PS queue in which jobs arrive as a Poisson
process with rate A (jobs/s) and file sizes are i.i.d. Exponentially
distributed random variables with mean [ (bits). The service rate of
the queue (in jobs/s) is denoted by ¢ = R/, and then the offered load
is denoted by p = \/p. We assume that the queue is ergodic, namely
p < 1.1t follows that the stationary distribution of the number of jobs
in the queue is givenby 7, = Pr(N =n) = (1—p)p",n =0,1,...1
[14].

We now start to derive closed-form expressions for the average rates
defined previously.

Theorem 2: In an M/M/1-PS queue, the average rate over time is
given by

r_B-p, 1 (4)

m 1 P

the weighted average rate over time is given by

m" = R(1-p). (5)

Proof: m" in (1) is equal to 3-°%_ (Rm /(n(1 — mo))). Substi-
tuting 7,, and expressing the sum as logarithm yields (4). It is readily
shown that E[N] = p/(1 — p) and, thus, substituting E[N] and 7o in
(2) yields (5). |

Due to the insensitivity property of PS queues, these two expressions
also hold for an M/G/1-PS queue.

The derivation of a closed-form expression for the average rate over
jobs is more involved, since it depends on the ratio of a user’s service
requirement to the user’s sojourn time, and therefore relies on the dis-
tribution of sojourn time conditional on job size.

Theorem 3: In an M/M/1-PS queue, the average rate over time is
given by:

m’ = R(1-p) / ve ¥ </ e1(p,u,v) du) dv (6)
JO JO

where

—r

(1 _ [)7“2)(3_17”
(1= pr)? = p(1 = r)2e”

and 7 is the smaller root of the equation pr® — (1 +u + p)r + 1 = 0.
Proof: Denote the file size and sojourn time of job i by L, and T
correspondingly, so that its throughput is given by 7; = L;/T;. Due to
the arrivals from a Poisson process, an arrival will find the number of
users in the system (excluding itself) to reflect the stationary distribu-
tion {m, }. However, over a user’s sojourn time, the expected average
rate depends not only upon the stationary distribution, but also upon
transients. The problem is that a user’s sojourn time also depends on
future arrivals and departures, due to the processor-sharing service dis-
cipline.
The key is to condition on user’s job size, or equivalently upon its
service time requirement, which is equal to the job size divided by the

Cl(ﬂs’“’a'v) = (—pr2)
—_— U
™

IProcessor-sharing queues have the well-known insensitivity property, i.e.,
the queue stationary distribution is independent of the distribution of the ser-
vice requirement. Therefore, an M/G/1-PS queue has the same stationary distri-
bution.
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total rate. Denote the throughput of the job with size R7 (and, hence,
service time requirement 7) by

Y (7) = Ei[ri|L; = R7] = RTE; {%

i

L, = RT] .

It follows from (3) that m” = E.[Y (7)].

An expression for F;[1/T;|L; = R7] can be found by integrating
the conditional Laplace transform of sojourn time conditioned on a
job’s service time, E;[e~*Ti|L; = Rr], given in [6]. Thus, the av-
erage rate for jobs with service time 7 is given by

Y(r)= Rr/ Ei[e™*"i|L; = R7]ds
0
= Rt / co(X,p, 5, 7)ds
0

where

gy = (L= o)L= prt)e 2T
e (A py5,7) = T )2 — p(1 = 2o (—or

and 7 is the smaller root of the equation A\r? — (A 4y + s)r + 1 = 0.
Furthermore, since L; is Exponentially distributed with mean [, the
average rate as seen by users is

mJ:/ ﬁ67¥ / c2(A, p,8,7)ds | d(RT)
o ! 0
i/ i </ (fz(/\,u,s,T)ds> dr.
I Jo 0

An equivalent expression has been independently found by [15]; how-
ever, we wish to obtain an expression only in terms of the bandwidth
R and the offered load p.

In order to write m” solely in terms of R and p, we use s = (1 —
r)(1 = prip/r given in [6]. Define v = s/p = (1 —r)(1 = pr)/r
and v = p7. Substituting R/ F by p and using a variable substitution
from {s, 7} to {u, v}, we obtain (6). ]

We now turn to a comparison of m” and m”, as discussed before.
Our principal result is given in the following theorem.

Theorem 4: In an M/M/1-PS queue, m” > m” forall 0 < p < 1.

Proof: We rewrite rn” as represented in (7) and compare it with
m” represented in (6). We start by expressing the term In(1/(1 — p))
as a double integral with respect to u and v

1 1 i
In =In——
1=rJo

= [ e G = el
0

:/ pve” "’ (/ %du) dv.
0 o l—pe v

Then m” in (4) can be written in a similar form as m” in (6):

m? = R(1—p) /OO ve © </°° ca(p,u,v) du) dv ™)
0 0

where ca(p,u,v) = e ""/(1— pe™"). Comparing (7) with (6),
it follows that a sufficient condition for m” > m? to hold is
ca(p,u,v) > c1(p,u,v), for all {u,v} > 0and 0 < p < 1.

e dv
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Substitute u by (1 —r)(1 — pr)/r into this expression and simplifying
yields the equivalent sufficient condition

L, (=pr?) :
(1—pr)ie LN p(1—r)?

(=p7m),

H(L—pr?) e 7

_ p6(17p1‘)v

Finally, using the Maclaurin series of ¢” and simplifying, it follows that
mT > m7 if

i v (1= pr®)(1 = pr)

nlyn

2
H,(p,7) >0

n=3

where Ho. (p,r) = (1 — pr®)* F = (1 — pr)* 2(1 = pr™).

We will show that the sum is positive by showing that each term is
positive, using mathematical induction. The base case is Hz(p,7) =
pr(1 =) Since 0 < p < Land 0 < r < 1 (which is fairly simple
to prove), it follows that H3(p,r) > 0. For the induction case, assume
that Hy,(p,7) > 0 for some k > 3, that is, (1 — pr®)*=" > (1 —
)21 = prk)

Hyp(p,r)
> (1= pr)" (1= pr")(1 = pr®)
— (1= pr)* (1= et
= pr(l — p/')k72(1 —7r)(l— 'rkfl).

Since » < 1, it follows that H,41(p,7) > 0. Consequently,
H,(p,7) > 0,forn > 3, and hence mT >m’. ]

Our intuition is that m” < m? is due to the effect of long jobs. To
understand this, consider the two extremes in terms of job length—a
job with an infinitesimal file size and a job with an infinite file size.
Due to Poisson arrivals, a new job will see upon arrival, a distribu-
tion of jobs in the system (excluding itself) that is the same as the sta-
tionary distribution of the system. A job with an infinitesimal file size
will experience no fluctuation in rate during its sojourn time; a simple
calculation shows that this job on average experiences a rate equal to
m” . A job with an infinite file size, however, would experience over
its sojourn time a different stationary distribution; a simple calculation
shows that this job experiences an average rate equal to m"” , which
is strictly lower than m” when 0 < p < 1. Jobs with intermediate
lengths also experience an average rate strictly lower than mT when
0 < p < 1. As a consequence, m”’ , which averages jobs of different
lengths, is strictly lower than m” when 0 < p < 1.

The three average rates (normalized by R) are plotted versus the load
p in Fig. 1. We observe that the difference between m” and m” is
relatively small, and that the difference between m” or m” and m"V
is concave with respect to p.

IV. PERFORMANCE GUARANTEES IN AN M/M/1-PS QUEUE

In this section, we consider performance guarantees on the average
rate over time and on the average rate over jobs, expressed as m” > m
and m” > m respectively with m denoting the minimum required
average rate. We prove that the cost of bandwidth is monotonically
increasing with m in both cases, consistent with intuition. In addition,
we prove convexity of the marginal costs associated with average rate
over time, and derive asymptotic behavior of costs for the average rates
over both time and jobs.

We start by considering the performance guarantee of the form
mT > m. For purposes of discussion, we assume that the user arrival
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Fig. 1. Average rates in an M/M/1-PS queue.

rate A and the mean file size / are fixed, but that the bandwidth R is
chosen to satisfy the performance bound. We expect that satisfaction of
m” > m thus requires that R exceed a related lower bound, denoted
by Rr{)in .
Our first result is a closed-form expression for the marginal band-
width RT ;. with respect to the minimum required average rate m.
Theorem 5: In an M/M/1-PS queue, with pax = A/ RL..

aR;lr;in _ 2 - Pmax 1 -t
s < g — - 1) . )

Proof: The derivative of m”" with respect to R, following from

Prax

“:

omT  2—p
- = In
oR P

-1>1—-p>0. )
1-p
The first inequality comes from In(1/(1—p)) > p. Hence m7
increases monotonically with R. To satisfy the performance guar-
antee m? > m, the bandwidth B > R, ., where RL,, is
determined by the fixed point equation mT(R) = m. Thus,
ORL;/om = 1/(6777/T/8R)|{H:H£in’mT:m}. The theorem fol-
lows. |

This relationship can be used to guide dimensioning algorithms, as
it relates the minimum required bandwidth R, to the arrival rate (in
bits) Al and the minimum required average rate m. Furthermore, if a
pricing policy is used that bases the price on the marginal cost, then the
price would be determined by (8).

A stronger characterization of RT. versus m is described in the
following theorem.

Theorem 6: RL.. isamonotonically increasing and convex function
ofm,and RT, —m monotonically decreases with m from A to Al/2.

Proof: From (9), (dm/ORL;,) > 0. Thus, RL;, monotonically

increases from Al to oo as m increases from 0 to oco. Consider the
second derivative

— pvnax (pn‘lax - 2) - 2(1 - pvnax) 111(1 - f]ma‘()
erninpu]ax(l - p1nax)~

9*m
0 (Rpn)”
The denominator is positive for 0 < pmax < 1. Denote the numerator
by f(pmax); it is negative for 0 < pmax < 1 since f(0) = 0 and
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versus m in an M/M/1-PS queue.

F(pmax) = 9pm“—|—21n( 1—pmax) < 0.Hence, the second derivative
is negative and thus RT.. is a convex function of m.

To prove the variation of Ri;, —m with m, expand In(1 — puayx ) by
its Maclaurin series, substituting in m 7 (Rrﬂn) = m, and simplifying
yields

pmax

Al
(n+1) n+2)>

When pmax decreases monotonically from 1 to 0, RL. —m decreases
monotonically from Al to Al/2. As m increases from 0 to co, we have
already noted that RT.. increases monotonically from Al to co. It fol-
lows that RL.. — m decreases monotonically from M\ to Al/2 as m
increases. |

If the cost of providing a performance guarantee of the form m” >
m is proportional to R, , then it follows from this theorem that the
price would be increasing and convex in m.

RT.. versus m is shown in Fig. 2, along with its asymptote Rl =
m + Al/2. The asymptote can be thought of as a limit of the required
rate as the load approaches zero. In the limit, during a busy cycle there
is one job in the system with probability 1 — p and two jobs with proba-
bility p, neglecting O(p?) terms. It follows that the corresponding limit
is given by T = (1 — p))R+ pR/2 = R — /2.

We now consider the performance guarantee on the average rate over
jobs, i.e., of the form m” > m. We would expect that satisfaction of
m? > m thus also requires that the bandwidth R exceed a related
lower bound, denoted by R7... A similar characterization is given by
the following theorem.

Theorem 7: R.;, isa monotonically increasing function of m, and
Rl..—m monotonically decreases with m from Al to 7Al/12.

Proof: Under a fixed system load, an increase in the bandwidth R
would lead to a corresponding decrease in all jobs’ sojourn times, a cor-
responding increase in all jobs’ throughputs, and thus a corresponding
increase in the average rate over jobs m” . It trivially follows that m”
monotonically increases with the bandwidth R, and thus that R/, in-
creases monotonically with m.

It remains to prove the asymptote. As m approaches 0, Ry.;, ap-
proaches Al (required for ergodicity). As m approaches oc, i.e., as

oo
T o — E
RII]iIl —m = Y +
n=1
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R, approaches co and the load p approaches 0, from (6) the cor-
responding limit of m /R, is given by

R:Zin = /0 ve (‘/0 </171il% c1 (/J,’ltyv)) du) dv
= / ve ! (/ e " du) dv=1.
0 0

It follows that, as p approaches 0, Rmm linearly increases with m at
slope 1. We now calculate the limit of R, —mas p approaches 0

lim (Rrjnin — m)

p—0

= Al lim l(1— (1=1p)
p—0 p

X / ve "’ </ cl(p,u,'v)du> d’v>
0 0
=\ <1—/ ve "’
0
0 PHO al)

It can be shown that

10)

. Oci(p,u,v)
lim ———~
p—0 P

_ 1 n uv —2 ue (DY M (1)
N (u4+1)2 " w41 (w+12 )

Substituting (11) in (10) and integrating yields lim, .o (R;i]in —m) =
(7/12)Al. The lower asymptote in the theorem follows. ]

R versus m is also shown in Fig. 2, along with its asymptote
Rl = m+ T /12. Observe that the bandwidth required by the
guarantee on the average rate over jobs is higher than that required by
same level guarantee on the average rate over time, consistent with their
order stated in Theorem 4.

V. AVERAGE RATES AND PERFORMANCE GUARANTEES IN AN
M/M/1/K-PS QUEUE

In an M/M/1-PS queue, the system provides a higher level of per-
formance guarantees by increasing the bandwidth. However, in many
practical situations, the available bandwidth is physically limited and
can not be increased, or increasing bandwidth may not be the most
efficient manner to satisfy the performance requirement. In this case,
connection access control (CAC) is commonly used to maintain accept-
able performance for admitted jobs, at the cost of blocking some jobs.
This approach can be modeled by an M/M/1/K-PS queue, where I is
the queue limit, i.e., the maximum number of jobs that can transmit
simultaneously. CAC gives the network designer additional flexibility,
by allowing for a tradeoff between the bandwidth and the queue limit.

In this section, we first present closed-form expressions of average
rates and blocking probability in an M/M/1/K-PS queue. We then con-
sider the ability of the system to provide a guarantee on average rate
over time by appropriately choosing the bandwidth R or the queue limit
I. We finally demonstrate the nature of binding constraints on the av-
erage rate over time and on the blocking probability.

The stationary distribution for the number of users in an
M/M/1/K-PS queue is given by 7, = Pr(N = n) = (1 —
)" /(L= pE Y n =0,1,..., K [14].



304

091N\

- mJ/R H

07f N\ N

0.6 : N ) .
05 : N ~ b
0.4 : N S 4

[(c] SERRRRRERE R : R el

02}k . . .

Fig. 3. Average rates in an M/M/1/5-PS queue.

Theorem 8: In an M/M/1/K-PS queue, the average rate over time is
given by

K

r_Rl-p) "t
m' =T % ; - 12)
the weighted average rate over time is given by
; 1—p)(1—p~
W R( P)( p) (13)

T 1= (K+1)p" + Kphiti-

Proof- mT in (1) is equal to Zle(an/(n(l —70)))-
Substituting 7, yields (12). It is readily shown that E[N] =
p(1 = (K + 1)p™ + Kp"T) /(1 = p"T1)(1 — p)), and thus sub-
stituting E[N] and 7 in (2) yields (13). ]

Unfortunately, it appears difficult to obtain a closed-form expression
for m” . Fig. 3 shows average rates (normalized by R) versus p in the
case ' = 5, where m” and m" are calculated from the above for-
mulas while m” is obtained by simulation. Compared to Fig. 1, the
order among them is same, that is, m? >m? >m" for p > 0.(We
conjecture, but are unable to prove without the expression of m”, that
this order holds for all K'.) Moreover, the difference between m? and
m” is also relatively small compared to the difference between either
of them and m" . As the load approaches oo, all normalized average
rates approach a common lower bound equal to the minimum instanta-
neous rate, 1/K.

The blocking probability is given by P? = ax =
(1= p)p™ /(1 = p™F1). It is readily shown that P? decreases as R
increases or as I{ increases.

We start to consider the performance bound on the average rate over
time, which is in the form m? > m.

One approach to provide this guarantee is to increase the bandwidth
R with I being fixed since the average rate over time is an increasing
function of R. Fig. 4 shows the minimum required bandwidth RL;.
(normalized by Al) versus m for different values of I{'. Note that an
M/M/1/K-PS queue is always ergodic, and hence RT. . canbe less than
Al. When m approaches 0, i.e., no guarantee is needed, RT.  also ap-
proaches 0; as m increases, Rgﬁn increases monotonically, as it did in
the M/M/1-PS queue. For all K > 2, RT.. asymptotically approaches
the line RL;, = m + Al/2 which is the same as the asymptote in the
M/M/1-PS queue. (I = 1 is a special case, in which RT. = m.) This
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occurs because as the load approaches 0, the stationary distribution of
the M/M/1/K-PS queue converges to that of the M/M/1-PS queue.

An alternative manner to provide the guarantee m” > m is to leave
the bandwidth R fixed and to decrease K until the guarantee is satisfied.
This approach can be justified using the following theorem.

Theorem 9: m™ monotonically decreases with K for a fixed R.

Proof: Subtract m* (K + 1) from m” (K)

mT(K) —m" (K +1)
R(1—p)*p"
(1= p)1 = 5]

K n—1 K
P 1-p
% <Zl n (K+1)(1—p)>

_ __Ra-p?p"
(1= pE)(1 = pi+1)

K—1 e K—1 e
The theorem follows. [ ]

It follows that there exists an upper bound KT, such that K <
KT will resultin satisfaction of m” > m.Fig. 5 shows I I Versus
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m for different values of the system load p. When m = R, K’ = 1 for
all load p.

We finally consider the joint selection of the bandwidth R and the
queue limit K to jointly satisfy performance requirements on the av-
erage rate over time m” > m and on the blocking probability PZ <
py. We are still interested in the relationship between the minimum re-
quired bandwidth RL;, and the minimum required average rate m as
well as the maximum required blocking probability p;. Our main result
here is given as follows: if m/(AI) > (1 — py)/ps, then Rl = m
while K = 1; otherwise, RL;, and K can be obtained by solving the
equation set: m? = m and PZ = p,.

Fig. 6 shows the contour lines of mT (solid curves) and of P”
(dashed curves) on the surface specified by 2 (normalized by Al) and
IK; the attained value of m7T or PP is denoted on each curve. As dis-
cussed previously, m” increases with R and decreases with K, and
thus A is increasing with I? on each contour line of m’; similarly, pPB
decreases with both I and I{ and, thus, ' is decreasing with R on
each contour line of P?.

There exists two possible cases of intersection for a solid curve and
a dashed curve, which correspond to two cases for the feasible region
of (R, K) given a pair of performance requirements (m, p;). Fig. 7
illustrates these two types of feasible regions as shaded areas. In the first
case, the set of {(R, K)[inT > m} isasubset of {(R, K)|P? < p,}.

It is easily shown that this case occurs when m/(\l) > (1 — ps)/ps,
and the minimum bandwidth RL;, = m with K = 1. The second case
is that the set of {(R, K)|m” > m} partially overlaps with the set of
{(R,K)|P®? < ps}. The minimum bandwidth lies at the intersection
of mT = m and PP = p,;, namely where both constraints are binding.

Note that it is impossible that the set of { (R, K')|m* > m} includes
the set of {(R, K)|P? < ps}. As K approaches oo, the minimum
bandwidth required by P? < p;, approaches 0, whereas the minimum
bandwidth required by m®" > m is always greater than 0.

VI. CONCLUSION

We have focused on the average transmission rate as a performance
metric in processor-sharing queues. Whereas much is known about so-
journ times in PS queues, little is known about average rates. We intro-
duced three definitions of average rate as observed by users and by the
queue. In an M/M/1-PS queue, we proved that the average rate over
time dominates the average rate over jobs. By giving expressions for
the marginal bandwidth with respect to average rates, we characterized
the difficulty of guaranteeing minimum average rates. We considered
the effect of connection access control, and characterized when perfor-
mance bounds on average rate and/or blocking probability are binding.

We believe such results are useful in dimensioning processor-sharing
queues when performance is measured by average rate or throughput.
In particular, we expect that such results can be used within networking
to design scheduling and connection access control policies for data
services.
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