
UCLA
UCLA Previously Published Works

Title
Rocking Response of Anchored Blocks Under Pulse-Type Motions

Permalink
https://escholarship.org/uc/item/1b90x399

Journal
Journal of Engineering Mechanics, 127(5)

Authors
Makris, Nicos
Zhang, Jian

Publication Date
2001
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1b90x399
https://escholarship.org
http://www.cdlib.org/


484 / JOUR
ROCKING RESPONSE OF ANCHORED BLOCKS UNDER

PULSE-TYPE MOTIONS

By Nicos Makris,1 Member, ASCE, and Jian Zhang2

ABSTRACT: This paper examines the transient rocking response of anchored blocks subjected to physically
realizable horizontal pulse-type motion. Restrainers with elastic-brittle and elastic-plastic behavior are considered.
Under one-sine pulse, anchored blocks can overturn with two distinct modes of overturning: (1) by exhibiting
one impact; and (2) without exhibiting any impact. It is found that restrainers are more efficient in preventing
overturning of small slender blocks subjected to low frequency pulses. This study uncovers that, although for
most of the frequency range anchored blocks survive higher accelerations than free-standing blocks, there is a
finite frequency range where the opposite happens. This paper examines this counterintuitive behavior and
explains the destructive effect that increased strength and increased ductility of restrainers have on the rocking
stability of rigid structures when excited by certain ground motions.
INTRODUCTION

The most common approach to prevent violent rocking of
tall, slender rigid structures is the use of restrainers (hold-
downs). Rocking restrainers can range from high-strength
bolts and cables to wire-cable isolators, rubber bands, and
other hysteretic elements including damping devices. Although
the rocking response of free-standing blocks has been the sub-
ject of several investigators [see references Zhang and Makris
(2001)], the rocking response of anchored blocks has received
limited attention. Dimentberg et al. (1993), following a prob-
abilistic approach, concluded that, under a white-noise exci-
tation, anchored blocks with elastic restrainers are much more
stable than free-standing blocks. Herein the rocking stability
of anchored blocks is revisited following a deterministic ap-
proach and it is shown that there is a finite frequency range
where the conclusion of Dimentberg et al. (1993) does not
hold.

In this study the rocking response of an anchored block
subjected to pulse-type motions is investigated in depth. It is
found that restrainers are more efficient in preventing over-
turning of small slender blocks. Larger blocks overturn only
without experiencing any impact, and in this case, the effect
of restrainers is marginal even when their strength is as large
as the weight of the rocking mass. The study uncovers that,
although for most of the frequency range anchored blocks sur-
vive higher accelerations than free-standing blocks, there is a
frequency range where the opposite happens. This counterin-
tuitive behavior is the result of the way that inertia and gravity
forces combine. It is shown that, under a one-sine (Type-A)
pulse with frequency vp, a free-standing block with frequency
parameter p has two modes of overturning: one with impact
(mode 1) and one without impact (mode 2). The transition
from mode 1 to mode 2 is sudden, and once vp/p is sufficiently
large, a substantial increase in the acceleration amplitude of
the one-sine pulse is needed to achieve overturning. When a
block is anchored, the transition from mode 1 to mode 2 hap-
pens at slightly larger values of vp/p and this results in a finite
frequency range in which a free-standing block survives ac-
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FIG. 1. Schematic of Anchored Block in Rocking Motion

celeration levels that are capable of overturning the same block
when it is anchored. Fig. 1 shows a schematic of the problem
at hand in which the restoring element on each side of the
block represents the combined stiffness of all the restrainers
that are present at the edge of the block that uplifts. The re-
strainers considered in this paper have an elastic preyielding
behavior and exhibit finite strength. Two idealizations for the
mechanical behavior of the restrainers are considered. The first
simple idealization is an elastic-brittle behavior. It assumes
linear elastic behavior until the ultimate strength Fu is reached,
and once the strength of the restrainers is exceeded, it fractures
and the block continues to rock without enjoying any restoring
force. It is assumed that the stiffness of the restrainer maintains
a constant value K until the restrainer fractures, and subse-
quently, its stiffness and strength are zero. The second, more
realistic idealization assumes an elastic-plastic behavior. The
restrainer behaves linearly until the ultimate strength Fu is
reached, and subsequently deforms plastically until the fracture
displacement uf is reached. Beyond that point, the restrainer
fractures and the block continues to rock without enjoying any
restoring or dissipative force. The case of the elastic-brittle
behavior, although a subcase of the more general elastic-plastic
behavior, is of particular interest, because at the limit of tall,
slender blocks, one can formulate a linear solution that is used
to validate some of the counterintuitive results presented in
this paper.

ELASTIC-BRITTLE BEHAVIOR

Nonlinear Formulation

Fig. 2 (center) illustrates the moment-rotation relation that
results from the presence of restrainers with elastic-brittle be-



FIG. 2. Moment-Rotation Curves: (Top) Free-Standing Block; (Center)
Elastic-Brittle Anchorage; (Bottom) Anchored Block with Elastic-Brittle
Restrainers

havior, whereas Fig. 2 (top) illustrates the moment-rotation
relation of a free-standing block. Under these two restoring
mechanisms and assuming horizontal excitation alone, the
equations that govern the rocking motion of an anchored block
with mass m are

2¨I u(t) 1 mgR sin[2a 2 u(t)] 1 4Kb sin u(t)0

= 2mü (t)R cos[2a 2 u(t)], u < 0g (1)

2¨I u(t) 1 mgR sin[a 2 u(t)] 1 4Kb sin u(t)0

= 2mü (t)R cos[a 2 u(t)], u > 0g (2)

For a rectangular block, I0 = (4/3)mR 2, (1) and (2) can be
expressed in the compact form

23K sin a2ü(t) = 2p sin(a sgn[u(t)] 2 u(t)) 1 sin u(t)H 2mp

üg
1 cos[a sgn u(t) 2 u(t)]Jg (3)

in which p = 3g/(4R).Ï
Eq. (3) is valid as long as the restrainers hold. Once they

fail, it reduces to
üg2ü(t) = 2p sin(a sgn[u(t)] 2 u(t)) 1 cos(a sgn u(t) 2 u(t))H Jg
(4)

which is the equation of motion of the free-standing block
under horizontal excitation only [see Eq. (12) in Zhang and
Makris (2001)].

Fig. 2 (bottom) shows the moment-rotation relation during
the rocking motion of an anchored block. For rotation angles,
uu(t)u # uy, energy is lost only during impact. Once uy is ex-
ceeded, the restrainer from the uplifted side fractures and ad-
ditional energy is dissipated equal to the area of the small
triangle that is superimposed on the moment-rotation graph of
the free-standing block. This energy is dissipated once, be-
cause in subsequent postfracture oscillations, the moment-ro-
tation relation reduces to that of the free-standing block.

The transition from (3) to (4) is conducted by following a
fracture function f (u). The finite ultimate strength of the re-
strainer Fu, in conjunction with the linear prefracture behavior,
defines the angle of rotation uy that the restrainers yield and
also, in this case, fracture

F = Ku = 2Kbu (5)u y y

from which

Fu
u = (6)y 2Kb

The fracture function f (u) is defined

f (u) = 1 when uu(t)u # u (7)y

f (u) = 0 when uu(t)u $ u (8)y

With the help of the fracture function, after replacing K/m with
(Fu/uy)(g/W ), the prefracture and postfracture equation of mo-
tion of the rigid block can be expressed in a compact form

23F g sin au2ü(t) = 2p sin[a sgn u 2 u(t)] 1 sin u(t)f (u)H 2Wu py

üg
1 cos[a sgn u 2 u(t)]Jg (9)

With this formulation, the rocking response of anchored
blocks is described by four parameters: slenderness a, fre-
quency parameter p (that includes the size effect), strength
parameter s = Fu/W; and influence factor q = uy p2/g. Table 1
summarizes the physical and mechanical parameters of se-
lected electrical equipment utilized by Pacific Gas and Elec-
tric Co.

The solution of (9) is computed numerically by means of
the state-space formulation introduced in Zhang and Makris
(2001), where the state vector of the system is given by (48).
The time-derivative vector f (t) is the one given by Eq. (49) in
TABLE 1. Geometrical, Physical, and Structural Parameters of Electrical Equipment

Equipment weight
(kips)

b
(in.)

h
(in.)

K
(kips/in.)

Fu

(kips) s = Fu/W
a

(degree)
p

(rad/s) q = (uy p2)/g uy

40 36 84 175 4 0.100 23.20 1.7803 1.8 3 1024 5.56 3 1024

40 20 59 300 16 0.400 18.43 2.157 6.4 3 1024 1.33 3 1023

550 69 100 1,500 79 0.144 34.61 1.5441 3.2 3 1024 3.82 3 1024

193 38 89 1,000 53 0.275 23.12 1.7301 4.1 3 1024 6.97 3 1024

150 44 68 1,000 53 0.353 32.91 1.8911 4.9 3 1024 6.02 3 1024

230 38 90 1,500 79 0.343 22.89 1.7219 4.0 3 1024 6.93 3 1024

175 38 74 1,500 79 0.451 27.18 1.8660 4.7 3 1024 6.93 3 1024

60 35 90 500 26 0.433 21.25 1.7320 4.0 3 1024 7.43 3 1024

44 34 68 500 26 0.591 26.57 1.9519 5.7 3 1024 7.65 3 1024
JOURNAL OF ENGINEERING MECHANICS / MAY 2001 / 485



FIG. 3. Comparison of Overturning Acceleration Spectra due to One-
Sine Pulse of Anchored Block (a = 0.349 rad = 207, p = 2 rad/s, h =
0.825, q = 5.2 3 1024, and m = 1) Computed with Nonlinear Formulation

Zhang and Makris (2001), in which its second component is
replaced with the right-hand side of (9) of this paper.

This analysis concentrates on the overturning potential of a
one-sine pulse shown in Fig. 4 (left) in Zhang and Makris
(2001). Its ground acceleration is expressed

ü (t) = a sin(v t 1 c), 2c/v # t # (2p 2 c)/v (10a)g p p p p

ü (t) = 0, otherwise (10b)g

where c = sin21(ag/ap) = phase angle when rocking initiates.
Fig. 3 plots overturning acceleration spectra of a rigid block

[a = 0.349 rad (207), p = 2.0 rad/s, and h = = 0.825]rmaxÏ
under a one-sine pulse. The results are computed with the non-
linear formulation given by (9) for the case where Fu/W = 0
(free standing), Fu/W = 0.4, and Fu/W = 1.0. It is observed
that anchored blocks have two modes of overturning following
the same behavior that free-standing blocks exhibit. Overturn-
ing with mode 1 involves one impact, whereas overturning
with mode 2 does not involve any impact. For small values
of vp/p (say vp/p < 4), anchored blocks survive higher accel-
erations; however, for values of 4 < vp/p < 6, anchored blocks
topple under a lower acceleration than the acceleration needed
to overturn the same block when it is free standing. This coun-
terintuitive behavior happens in the neighborhood of the tran-
sition of mode 1 and mode 2. An anchored block enters this
transition at a slightly larger value of vp/p. Furthermore, when
a free-standing block has just entered mode 2 of overturning,
the anchored block still overturns, because of mode 1 (over-
turning with impact), under a smaller acceleration amplitude.
As vp/p increases, the anchored block will also overturn be-
cause of mode 2, and now a higher acceleration is needed to
topple it in comparison to the acceleration needed to topple
the free-standing block. However, the additional acceleration
amplitude that an anchored block can withstand, even with
Fu/W = 1.0, is negligible compared to the acceleration ampli-
tude needed to overturn the free-standing block. Fig. 3 indi-
cates that anchorages are effective at the low range of vp/p
(low frequency pulses or small blocks or both).

Fig. 4 plots the ratio of the minimum acceleration needed
to overturn an anchored block to the minimum accelerationANap0

needed to overturn a free-standing block for various valuesFSap0

of the strength parameter s = Fu/W. The results shown in Fig.
4 indicate that, under one-sine pulses with vp/p > 4, blocks
should not be anchored because the effect of restrainers is
either destructive or virtually insignificant.

The limited capacity of the restrainers to prevent the top-
486 / JOURNAL OF ENGINEERING MECHANICS / MAY 2001
FIG. 4. Normalized Minimum Overturning Acceleration Levels
Needed to Overturn Anchored Block (Elastic-Brittle Behavior, m = 1) to
Acceleration Levels Needed to Overturn Same Block When It Is Free
Standing

pling of a larger block is also illustrated by comparing the
potential energy of the block at the verge of overturning with
the strain energy dissipated by the restrainers.

Assuming an elastic-brittle behavior, Fig. 2 (center) indi-
cates that the strain energy dissipated by the restrainers before
they fracture is

1
SE = F u (11)u y2

At the verge of overturning (u = a), the kinetic energy of the
block is zero because the one-sine pulse has expired and its
potential energy is

PE = mgR(1 2 cos a) (12)

The substitution of cos a in (12) with its series expansion 1
2 (a2/2) 1 ??? gives

2a
PE ' mgR (13)

2

and the ratio of the dissipated strain energy to the total energy
of the block at the verge of overturning is

SE F u 1 F uu f u y
' = (14)2 2PE mgRa a W R

where uy = Fu/K = yield displacement. As an example, for a
block with a = 0.349 rad (207), p = 2.0 rad/s, R = 1.839 m,
uy = 1.25 3 1023 m, and Fu = W, the strain energy lost from
the failure of each restrainer is approximately 0.6% of the
energy that is needed to topple the free-standing block. Eq.
(14) reveals some interesting geometrical and scale effects: (1)
the 1/a2 term indicates that restrainers are much more effective
in preventing topping of the more slender of two blocks of the
same size (same R); and (2) the 1/R term indicates that re-
strainers are more effective in preventing topping of the
smaller of two geometrically similar blocks that have the same
Fu/W.

Linear Formulation

Eqs. (1) and (2) and their compact form given by (9) are
valid for arbitrary values of the block angle a. For slender
blocks, the angle a = tan21(b/h) is relatively small and (1) and
(2) can be linearized. This linearization allows for the deri-
vation of closed-form solutions when the excitation is ex-



pressed in a functional form. Herein, the solution of the line-
arized equations is derived for a sinusoidal ground motion for
both positive and negative rotations to validate the fidelity of
the numerical solution presented above. Within the limits of
the linear approximation and for a ground acceleration

ü (t) = a sin(v t 1 c) (15)g p p

Eqs. (1) and (2) become

ap2 2 2 2ü(t) 1 l p u(t) = 2p sin(v t 1 c) 1 ap , u < 0 (16)p
g

ap2 2 2 2ü(t) 1 l p u(t) = 2p sin(v t 1 c) 2 ap , u > 0 (17)p
g

where c = sin21(ag/ap) = phase when rocking initiates and
l2 = 3(Fu/W )(g/uy p2)sin2a 2 1 = 3(s/q)sin2a 2 1. For typical
anchorages of electrical equipment l2 > 0. Once the restrainers
fail, l2 = 21. Accordingly, the solution of (16) and (17) is
presented for the four segments 2uy # u(t) # 0, u(t) < 2uy

# 0, 0 < u(t) < uy, and 0 < uy < u(t)

a 1 ap
u(t) = A sin(lpt) 1 A cos(lpt) 1 2 sin(v t 1 c ),1 2 p 12 2l v gp2l 2 2p

2 u # u(t) # 0y (18)

1 ap
u(t) = A sinh(pt) 1 A cosh(pt) 2 a 1 sin(v t 1 c ),3 4 p 22v gp1 1 2p

u(t) < 2u # 0y (19)

a 1 ap
u(t) = A sin(lpt) 1 A cos(lpt) 2 2 sin(v t 1 c ),5 6 p 32 2l v gp2l 2 2p

0 < u(t) < uy (20)

1 ap
u(t) = A sinh(pt) 1 A cosh(pt) 1 a 1 sin(v t 1 c ),7 8 p 42v gp1 1 2p

0 < u < u(t)y (21)

where

u̇ 1 v /p a0 p p
A = 1 cos c (22)1 12 2 2lp l l 2 v /p gp

a 1 ap
A = 2 1 sin c (23)2 12 2 2 2l l 2 v /p gp

2u̇ v /p ay p p
A = 2 cos c (24)3 22 2p 1 1 v /p gp

1 ap
A = 2u 1 a 2 sin c (25)4 y 22 21 1 v /p gp

u̇ 1 v /p a0 p p
A = 1 cos c (26)5 32 2 2lp l l 2 v /p gp

a 1 ap
A = 1 sin c (27)6 32 2 2 2l l 2 v /p gp

1u̇ v /p ay p p
A = 2 cos c (28)7 42 2p 1 1 v /p gp

1 ap
A = u 2 a 2 sin c (29)8 y 42 21 1 v /p gp
FIG. 5. Comparison of Overturning Acceleration Spectra due to One-
Sine Pulse of Anchored Block (a = 0.349 rad = 207, p = 2 rad/s, h =
0.825, q = 5.2 3 1024, and m = 1) Computed with Linear Formulation

In (22) and (23) c1 = c = sin21(ag/ap) = phase when rocking
initiates. In (24) and (25) c2 = 1 c, where is the time2 2v t tp y y

that 2uy is reached. In (26) and (27), c3 = vpti 1 c, where ti

is the time when u = 0 and the block experiences its first
impact. In (28) and (29), c4 = 1 c, where is the time1 1v t tp y y

that uy is reached. Stepping through time, the values of ti,
2t ,y

and are detected by monitoring the value of the rotation1t y

angle u. The solution obtained with the linear formulation is
used to validate the fidelity of the numerical solution of (9)
that is achieved with a state-space formulation.

Fig. 5 plots the minimum overturning acceleration spectra
of a rigid block (a = 0.349 rad = 207, p = 2 rad/s, and h =
0.825) with elastic-brittle restrainers under one-sine pulse,
computed with the linear formula. A behavior similar to that
computed with the nonlinear formulation is observed. For
small values of vp/p (approximately vp/p < 4), anchored
blocks survive higher accelerations; however, for values of
vp/p > 4, anchored blocks topple under a lower acceleration
than what is needed to overturn the same block when it is free
standing. The results are computed with the analytical solution
presented herein and the numerical integration that is achieved
with a state-space formulation. The agreement of the two so-
lutions is excellent.

The elastic-brittle behavior in conjunction with the linear
formulation allows for an analytical solution that was used to
validate the fidelity of the numerical integration. It was found
that even at the limit of the linear approximation, there is a
range of vp/p where a free-standing block can survive a
stronger acceleration than when it is anchored. Fig. 6 compares
the overturning spectra of an anchored block (a = 0.349 rad
= 207, p = 2 rad/s, and h = 0.825) with Fu/W = 0.4 (top) and
Fu/W = 0.6 (bottom) computed with the linear and nonlinear
formulation. When the frequency of the one-sine pulse is rel-
atively low, both formulations yield comparable results. As the
excitation frequency increases, the linear formulation yields
minimum overturning acceleration amplitudes drastically
larger than those obtained with the nonlinear formulation. This
result is because, under the nonlinear formulation, the over-
turning ‘‘bay’’ generated by mode 1 of overturning penetrates
further into the safe area under the overturning spectrum due
to mode 2. As the excitation frequency further increases, the
linear and nonlinear formulations again yield comparable re-
sults. This finding indicates that, when 4 < vp/p < 6, the linear
JOURNAL OF ENGINEERING MECHANICS / MAY 2001 / 487



FIG. 6. Comparison of Overturning Acceleration Spectra due to One-
Sine Pulse of Anchored Block (a = 0.349 rad = 207, p = 2 rad/s, h =
0.825, q = 5.2 3 1024, and m = 1) Computed with Linear and Nonlinear
Formulation for Fu/W = 0.4 (Top) and Fu/W = 0.6 (Bottom)

formulation should be avoided because it gives erroneous re-
sults even for slender blocks.

ELASTIC-PLASTIC BEHAVIOR

Fig. 7 illustrates the force-displacement relation of restrain-
ers with ductile behavior. In general, the restrainers can exhibit
a postyielding stiffness and maintain their strength until they
reach a fracture displacement uf . A measure of their ductile
behavior is the ductility coefficient m = uf /uy. A suitable model
to approximate such nonlinear hysteretic behavior is given by

P(t) = εKu(t) 1 (1 2 ε)Ku Z(t) (30)y

where u(t) = extension of the restrainer; K = preyielding stiff-
ness; ε = ratio of the postyielding to preyielding stiffness; uy

= yield displacement; and Z(t) = hysteretic dimensionless
quantity that is governed by

n21 n˙ ˙u Z(t) 1 guu̇(t)uZ(t)uZ(t)u 1 bZ(t)uZ(t)u 2 u̇(t) = 0 (31)y

In the above equation b, g, and n = dimensionless quantities
that control the shape of the hysteretic loop. The hysteretic
model, expressed by (30) and (31), was originally proposed
by Bouc (1971) for n = 1, subsequently extended by Wen
(1975, 1976), and used in random vibration studies of inelastic
systems.

In this study, the special case of elastoplastic behavior is
considered by setting the postyielding stiffness equal to zero
(ε = 0). However, the developed formulation can easily be
extended to account for situations with ε ≠ 0.

Fig. 8 (center) illustrates the moment-rotation relation that
results from the presence of restrainers with elastoplastic be-
havior, whereas Fig. 8 (top) illustrates again the moment-ro-
tation relation of a free-standing block. Under these two re-
488 / JOURNAL OF ENGINEERING MECHANICS / MAY 2001
FIG. 8. Moment-Rotation Curves: (Top) Free-Standing Block; (Center)
Elastic-Plastic Anchorage; (Bottom) Anchored Block with Elastic-Plastic
Restrainers

FIG. 7. Force-Displacement Curve of Element with Bilinear Behavior

storing mechanisms, the equations that govern the rocking
motion of an anchored block with mass m and moment of
inertia I0 (about pivot point O or O9) is

¨I u(t) 1 mü R cos(2a 2 u) = 2mgR sin(2a 2 u)0 g

u
2 P(t)2b cos , u < 0S D2 (32)

¨I u(t) 1 mü R cos(a 2 u) = 2mgR sin(a 2 u)0 g

u
2 P(t)2b cos , u > 0S D2 (33)

where P(t) = force originating from the restrainers, which for
the general case is given by (30), and the special elastoplastic
case (ε = 0) reduces to

P(t) = Ku Z(t) (34)y

With reference to Fig. 8, uy = 2buy and (34) gives

P(t) = 2Kbu Z(t) (35)y



Substitution of (35) into (32) and (33) gives

u2¨I u(t) 1 mgR sin(2a 2 u) 1 4Kb u Z(t)cos0 y S D2

= 2mü (t)R cos(2a 2 u), u < 0g (36)

u2¨I u(t) 1 mgR sin(a 2 u) 1 4Kb u Z(t)cos0 y S D2

= 2mü (t)R cos(a 2 u), u > 0g (37)

Using that for a rectangular block, I0 = (4/3)mR 2, (36) and
(37) can be expressed in the compact form

ü (t)g2ü(t) = 2p sin[a sgn u(t) 2 u(t)] 1 cos[a sgn u(t) 2 u(t)]H g

23s sin a u
1 u Z(t)cosy S DJq 2 (38)

where p = s = Fu/W; q = uyp2/g; and Z(t) = solution3g/(4R);Ï
of (31), which in terms of rotations takes the form

n21 n˙ ˙ ˙˙u Z(t) 1 guu(t)uZ(t)uZ(t)u 1 bu(t)uZ(t)u 2 u(t) = 0 (39)y

Eq. (38) is valid as long as the restrainers hold. Once their
fracture displacement, uf = 2b sin uf , is reached, they do not
provide any resistance and (38) reduces to the equation of
motion of the free-standing block given by (4).

Fig. 8 (bottom) shows the moment-rotation relation during
the rocking motion of an anchored block where its restrainers
exhibit elastoplastic behavior. For rotation angles uu(t)u # uy,
energy is lost only during the reversal of motion due to impact.
Once uy is exceeded, the restrainers along the uplifted side
yield. In the case where the motion reverses before the rotation
reaches uf , additional energy is dissipated equal to the area of
the flag-shaped shaded regions. This dissipation mechanism
will be repeated as long as the maximum rotation does not
reach the fracture rotation uf . If uf is exceeded, the restrainers
fracture and the moment curvature curve reduces to that of the
free-standing block.

The transition from (38) to (4) is conducted with the fracture
function f (u) defined

f (u) = 1 when uu(t)u # u (40)f

f (u) = 0 when uu(t)u $ u (41)f

where uf = muy; and uy is given by (6). With the help of the
fracture function, the prefracture and postfracture equation of
rocking motion can be expressed

ü (t)g2ü(t) = 2p sin[a sgn u 2 u(t)] 1 cos[a sgn u 2 u(t)]H g

23s sin a u(t)
1 u Z(t)cos f (u)y S D Jq 2 (42)

The integration of (42) requires the simultaneous integration
of (39). In this case the state vector of the system is

u(t)

˙{y(t)} = u(t) (43)H J
Z(t)

and the time derivative vector f (t) is
u̇(t)

2ü 3s sin a u(t)g22p sin[a sgn u(t) 2 u(t)] 1 cos[a sgn u(t) 2 u(t)] 1 u Z(t)cos f (u)yS S D Df (t) = (44)g q 2

1 n21 n˙ ˙ ˙[u(t) 2 guu(t)uZ(t)uZ(t)u 2 bu(t)uZ(t)u ]
uy
FIG. 9. Overturning Acceleration Spectra due to One-Sine Pulse of
Anchored Block (a = 0.349 rad = 207, p = 2 rad/s, h = 0.825, q = 5.2
3 1024, and m = 5) Computed with Nonlinear Formulation

Fig. 9 plots the normalized minimum acceleration ampli-
tude, ap0 /ag, of a one-sine pulse needed to overturn an an-
chored block (a = 0.349 rad = 207, p = 2 rad/s, and h = 0.825).
The results are computed with the nonlinear formulation for
an influence factor q = 5.2 3 1024, ductility m = 5, and various
values of the restrainer strength Fu/W.

At the zero limit of vp/p, a block with finite size is subjected
to a very long duration pulse. When this pulse is near its peak,
the block is subjected to a nearly constant acceleration ap0.
When the restrainers yield elastic-plastic behavior (Fig. 8), the
balance of moment when the restrainers reach their ultimate
strength is

uy
ma R cos(a 2 u ) = mg sin(a 2 u ) 1 F 2b cos (45)p0 y y u S D2

in which uy is given by (6). After dividing both sides of (45)
with mR cos(a 2 uy), one obtains

sin(a 2 u ) F cos(u /2)y u y
a = g 1 2 g tan a (46)p0 cos(a 2 u ) W cos(a 2 u )y y

Eq. (46) is the equivalent West’s formula (Milne 1885) for an
anchored block with elastoplastic restrainers that exhibit ulti-
mate strength Fu. The parameters Fu, K, and b, related to elec-
trical equipment, yield a value of uy much smaller than a,
whereas cos(uy/2) ' 1. Under these conditions (46) simplifies
to

F 1u
a = g tan a 1 2 g tan a (47)p0

W cos a

and for slender blocks, tan a ' a 1 a2/3 and cos a ' 1 2
a2/2; therefore, (47) further simplifies to

a F 1 5 Fp0 u u2' 1 1 2 1 a 1 (48)F S DGag W 3 3 W

when terms are retained up to a2.
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FIG. 10. Normalized Minimum Overturning Acceleration Levels
Needed to Overturn Anchored Block (Elastic-Plastic Behavior, m = 5) to
Acceleration Level Needed to Overturn Same Block When It Is Free
Standing

At the zero-frequency limit, the numerical solution for ap0

approaches the static limit computed with (47) or with its slen-
der-block approximation given by (48). As the ratio vp/p in-
creases, the acceleration needed to overturn an anchored block
with ductility m = 5 maintains a nearly constant value and then
increases drastically. The larger the strength ratio, s = Fu/W,
the larger is the frequency range that the minimum overturning
acceleration is constant. This finding leads to the counterin-
tuitive situation, where within the range 4 < vp/p < 7.5, the
stronger the restrainers, the smaller the acceleration needed to
overturn the block; whereas, free-standing blocks are the most
stable. When vp/p is sufficiently large so that an anchored
block overturns with mode 2, an anchored block can sustain
a slightly larger acceleration than free-standing blocks.

Fig. 10 plots the ratio between the minimum overturning
acceleration of an anchored block to the minimum over-ANap0

turning acceleration of a free-standing block. In the fre-FSap0

quency range, 4 < vp/p < 7.5, the ratio < 1; therefore,AN FSa /ap0 p0

the effect of anchorage is destructive. For an electrical equip-
ment with frequency parameter p ' 2 rad/s, this range cor-
responds to frequencies 1.27 Hz < fp < 2.28 Hz; or in terms
of predominant pulse periods, 0.4 s < Tp < 0.8 s. For this
period range, which is of central interest to earthquake engi-
neering, a free-standing block can withstand a larger acceler-
ation amplitude than an anchored block.

Fig. 11 compares the overturning acceleration spectra of an
anchored block (a = 0.349 rad = 207, p = 2 rad/s, and h =
0.825) that has restrainers with the same strength but different
ductility. Again there is a frequency range where the block
equipped with the less ductile restrainers will survive stronger
accelerations than the block with more ductile restrainers.

The limited capacity of the restrainers with finite ductility
to prevent the toppling of large blocks can be illustrated again
by comparing the potential energy of the block at the verge
of overturning with the strain energy dissipated by the ductile
restrainers. Assuming an elastoplastic behavior (ε = 0), Fig. 8
(center) indicates that the strain energy dissipated by the re-
strainers before they fracture is

SE ' F u (49)u f

At the verge of overturning (u = a), the kinetic energy of the
block is zero because the one-sine pulse has expired and its
potential energy is given by (13). Therefore, the ratio of the
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FIG. 11. Comparison of Overturning Acceleration Spectra Computed
with Nonlinear Formulation for Anchored Block (a = 0.349 rad = 207, p
= 2 rad/s, h = 0.825, q = 5.2 3 1024) with Two Levels of Ductility: m
= 1 and 5 (Top: Fu/W = 0.4; Bottom: Fu/W = 1.0)

dissipated strain energy to the total energy of the block at the
verge of overturning is

SE 2F u 2 F uu f u y
' = m (50)2 2PE mgRa a W R

where uy = Fu/K = yield displacement.
For a value of Fu/W = 1.0 and ductility m = 5, the ratio SE/

PE for the 0.5 3 1.5 m block (a = 0.3217, uy = 1.30 3 1023

m, and R = 1.581 m) is equal to 8%, which is still a small
fraction.

Eq. (50) reveals the same geometrical and scale effects: (1)
the 1/a2 term indicates that restrainers are much more effective
in preventing toppling of the more slender of two blocks of
the same size (same R); and (2) the 1/R term indicates that
restrainers are more effective in preventing topping of the
smaller of two geometrically similar blocks that have the same
Fu/W.

Eq. (50) is the result of an ultimate strength approach that
is independent of the dynamic effect. Consequently the ratio
(PE 1 SE)/PE, which is the ratio of the total energy that the
anchored block has adopted at the verge of overturning to the
corresponding energy that the free-standing block has adopted,
does not relate directly to the ratio between the minimum over-
turning acceleration of the anchored block and theANap0

minimum overturning acceleration of the free-standingFSap0

block.

ROCKING RESPONSE OF ANCHORED BLOCKS
UNDER EARTHQUAKE EXCITATIONS

The foregoing analysis revealed that under a one-sine (Type-
A) pulse there are two modes of overturning. The presence of
restrainers is more effective for low-frequency pulses or small



FIG. 12. Fault-Normal Components of Acceleration, Velocity, and Displacement Time Histories Recorded at Rinaldi Station during January 17, 1994,

Northridge, Calif., Earthquake (Left); Cycloidal Type-A Pulse (Center); Cycloidal Type-B Pulse (Right)
blocks. As the size of the block or the frequency of the pulse
increases, the presence of restrainers is destructive because an-
chored blocks overturn under acceleration amplitudes smaller
than those needed to overturn free-standing blocks. For large
values of vp/p, blocks overturn only along mode 2 (no impact)
and the effect of the restrainers is marginal.

In this section the seismic response of anchored blocks sub-
jected to selected strong ground motions is presented. Fig. 12
(left) portrays the fault-normal component of the acceleration,
velocity, and displacement histories of the January 17, 1994,
Northridge, Calif., earthquake recorded at the Rinaldi station.
This motion resulted in a forward ground displacement that
recovered partially. The velocity history has a large positive
pulse and a smaller negative pulse that is responsible for the
partial recovery of the ground displacement. Had the negative
velocity pulse generated the same area as the positive velocity
pulse, the ground displacement would have fully recovered.
Accordingly, the fault-normal component of the Rinaldi station
record is in between a forward and a forward-and-back pulse.
Fig. 12 (center) plots the acceleration, velocity, and displace-
ment histories of a Type-A cycloidal pulse. The forward
ground displacement is expressed by (Jacobsen and Ayre 1958;
Makris 1997)

v vp p
u (t) = t 2 sin(v t), 0 # t # T (51)g p p2 2vp

whereas the ground velocity and ground acceleration are ex-
pressed by the time derivatives of (51). In constructing Fig.
12 (center), one assumes a pulse duration Tp = 0.8 s and a
velocity amplitude vp = 1.75 m/s, which are approximations
of the duration and velocity amplitude of the first main pulse
shown in the record. This comparison indicates that the simple
one-sine pulse, which was used in this study to uncover the
many complexities of the rocking response of a rigid block,
can approximate the kinematic characteristics of some re-
corded ground motions. Fig. 12 (right) plots the acceleration,
velocity, and displacement histories of a Type-B cycloidal
pulse. The forward-and-back ground displacement is expressed
by (Makris 1997; Makris and Roussos 1998)

v vp p
u (t) = 2 cos(v t), 0 # t # T (52)g p p

v vp p

In constructing Fig. 12 (right), one assumed a pulse duration
Tp = 1.3 s and a velocity amplitude vp = 1.3 m/s.

The analysis proceeds by computing the rocking response
of a larger block (1.0 3 3.0 m), which has a frequency pa-
rameter p = 1.525 rad/s and slenderness a = 18.437. Under the
assumption that the Rinaldi station record can be approximated
with a one-sine pulse with Tp = 0.8 s, the corresponding fre-
quency ratio is vp/p = 5.15. For this value of the frequency
ratio, Fig. 9 (which has been generated for a smaller, less slen-
der block; a = 207, p = 2 rad/s, and h = 0.825) indicates that
a free-standing block might survive a stronger acceleration
level than an anchored block. Indeed Fig. 13 indicates that the
1.0 3 3.0 m free-standing block overturns at a 127% level of
the Rinaldi record, whereas the same block anchored with re-
strainers having strength Fu = 0.4W and ductility m = 5 over-
turns under only a 119% level of the Rinaldi acceleration rec-
ord, as shown in Fig. 14. This puzzling result partly motivated
the study reported herein, which addressed the rocking prob-
lem of anchored blocks in a systematic and lucid manner.
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FIG. 13. Rotation and Angular Velocity Time Histories of Free-Standing Block (b = 1.0 m, h = 3.0 m) Subjected to Fault-Normal Rinaldi Station
Motion [Left: No Overturning (126% Acceleration Level); Right: Overturning (127% Acceleration Level)]

FIG. 14. Rotation and Angular Velocity Time Histories of Larger Anchored Block (b = 1.0 m, h = 3.0 m, Fu/W = 0.4, and m = 5) Subjected to Fault-
Normal Rinaldi Station Motion [Left: No Overturning (118% Acceleration Level); Right: Overturning (119% Acceleration Level)—Free-Standing Block
Can Survive Stronger Acceleration Level Than Anchored Block (Fig. 13)]
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CONCLUSIONS

This paper investigates the transient rocking response of an-
chored electrical equipment and other tall structures that can
be approximated as rigid blocks. Restrainers and elastic-brittle
and elastic-plastic behavior are considered. It is found that
restrainers are more efficient in preventing overturning of
small slender blocks subjected to a low-frequency ground ex-
citation. Under a one-sine pulse, anchored blocks can overturn
with two distinct modes of overturning: (1) by exhibiting one
impact; and (2) without exhibiting any impact. Along the fre-
quency spectrum, just prior to the transition from mode 1 to
mode 2, the presence of restrainers has a destructive effect.
The stronger the restrainer, the smaller is the acceleration am-
plitude needed to overturn an anchored block, whereas a free-
standing block can withstand the higher acceleration ampli-
tude. This counterintuitive response extends when the
restrainers exhibit finite ductility, because the study shows that
there is a frequency range where blocks with the most ductile
restrainers will withstand the smaller acceleration level. Larger
blocks can overturn only without experiencing any impact
(mode 2), and in this case, the effect of restrainers is marginal
even when their strength equals the weight of the rocking
block. The limited effect of restrainers in preventing toppling
is also found under earthquake excitations. The study shows
that, under the Rinaldi station record, restrainers with strength
Fu/W = 0.4 and ductility m = 5 have a destructive effect in
preventing toppling of a 1.0 3 3.0 m block, because when the
block is free standing it survives the level of motion that over-
turns it when it is anchored.
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