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Abstract
Assessing the changing dynamic between the demand that is placed upon a community by cumulative 
exposure to hazards and the capacity of the community to mitigate or respond to that risk represents a 
central problem in estimating the community’s resilience to disaster. This paper presents an initial effort 
to simulate the dynamic between increasing demand and decreasing capacity in an actual disaster 
response system to determine the point at which the system fails, or the fragility of the system.

Public organizations with legal responsibilities for the protection of human life and property, as well as 
private organizations responsible for managing utilities, communications, and transportation systems in
metropolitan regions, are unable to monitor the interdependent effects of these critical infrastructure 
systems in real time. Further, they are not able to share information effectively about an emerging threat, 
nor can they communicate easily among different response organizations at different jurisdictions in a 
regional event. Modeling the fragility of sociotechnical response systems is critical to enabling 
metropolitan regions to manage their exposure to risk more efficiently and effectively.  

To construct a theoretical model of this process, we observe the changing relationship between the 
demand for assistance and the capacity of the community to provide assistance.We include in our model 
measures of the magnitude of the disaster, the number of jurisdictions, and a simple type of cooperation to 
observe how these factors influence the efficiency of disaster operations. Information spreads quickly
through inter-organizational or human networks. Stress in organizational performance arises when the 
amount of information surpasses human capacity to absorb and comprehend it, leading to failure in action. 
In complex disaster environments, failure in one component of an interdependent system triggers failure 
in other components, decreasing performance throughout the system and threatening potential collapse.

Based on theassessment of disaster operations as a dynamic process among interdependent organizations, 
we sought to build a computational model of the relationship between demand and capacity in an 
evolving disaster response system. We developed a simulation platform using Cellular Automata(Epstein
et al., 1996; Wolfram, 1994) to describe the pattern of interaction between demand and capacity. To 
formalize the interaction between organizations and information flow, we used evolving network theory 
which has been studied in the field of mathematics(Erdos et al., 1960), computer science, and physics
(Barabasi et al., 1999; Newman, 2003).  

We show that different phases of disaster response require different types of information and management 
skills. The efficiency of disaster response is affected by the initial magnitude of the disaster, the type and 
amount of resources available, the number of jurisdictions engaged, and the type of response strategies
used. The results from the simulationconfirm that efficiency has a negative correlation to initial disaster 



2

magnitude and a positive correlation to initial capacity. The number of jurisdictions involved in response 
operations is an independent variable influencing efficiency in disaster response, but the strength and 
direction of this influence requires further study. Also, sharing resources without specific information to 
improve coordination appears not to enhance efficiency in disaster response. Finally, we focus not on the 
amount of information that is available to practicing managers, but on strategies for access to core 
information that enhance the efficiency of information flow throughout the network of responding 
organizations. Network theory is used to identify the core information.

Contact:
Louise K. Comfort, Graduate School of Public & International Affairs; University of Pittsburgh; 
Pittsburgh, PA 15260. Tel: 412-648-7606; E-mail: lkc@pitt.edu

Keywords:  Disaster management, Networks, Fragility, Core information, Multi-organizational response

Policy Problem

The shock of severe disaster in a major city creates a cascade of disruption among interdependent 
operating systems that shatters the existing functional capacity of the wider metropolitan region(Comfort, 
1999; Quarantelli, 1998). Failure in one operational system triggers failure in other interdependent 
systems of electrical power, communications, transportation, water, gas, and sewage distribution.   Under 
severe threat, the operational capacity of a complex region staggers under spreading dysfunction, 
compounding failure and creating new dangers for population. For example, communications failure 
across conventional phone lines, cell phone systems, and overloaded radio channels following the 2001 
World Trade Center (WTC) attacks in New York critically damaged the capacity of emergency response 
organizations in action and illustrated the vulnerability of interconnected metropolitan regions exposed to 
high risk (Seifert, 2002). Lack of resources, lack of coordination, and poor communication are recurring 
problems for organizational performance in disaster operations. However, these conditions are endemic to 
severely damaged disaster environments. Improving organizational performance in disaster environments 
means finding methods that overcome the potential risk posed by the initial conditions. 

The amount of available resources alonedoes not explain organizational performance in disaster response 
operations. For example, availability of resources was not a limiting factor following the World Trade 
Center disaster of September 11, 2001. The Federal Emergency Management Agency (FEMA) granted 
$9.0 billion to disaster operations from President’s Disaster Relief fund (FEMA 2003), the largest amount 
granted in disaster relief since FEMA was founded in 1979. Similarly, U.S. charities and public 
organizations received a flood of donations unlike any they had experienced before. While it is difficult to 
tally precisely the total amount of funds received, 34 of the larger charities identified by the General 
Accounting Office (GAO) collectedan estimated $2.4 billionafter September 11, 2001 (GAO, 2002). A
content analysis of news reports and official agency sources identified an evolving disaster response 
systemof 456 public, private and non-profit organizations that engaged in response operations during the 
first three weeks (Comfort, 2002). Other sources identified over 1400 nonprofit organizations involved in 
recovery activities over a six-month period (Kapucu 2003). Yet, despite an abundance of material 
resources and voluntary personnel, many organizations and individuals needing assistance had difficulty 
in finding adequate support or services.

In disaster response and recovery operations, the ratio of demand for assistance to capacity to provide 
resources varies over time. In theinitial stages of disaster, immediate demands involve actions to protect 
li ves and provide assistance toinjured persons. First response organizations such as fire departments, 
emergency medical services, and police departments seek to meet urgent demands of disaster victims
under tight time constraints. During the recovery period,issues of unemployment, sustainable business 
operations, housing, and medical care for victims and their families emerge that require long-term 
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consideration.Households and community organizations need appropriate resources to meet different 
needs in the distinct phases of disaster management: mitigation, preparedness, response, and recovery.

Theoretically, constructing a formal model to describe the dynamic relationship of demand to capacityin 
disaster operations is not easy. Different environments generate different types of demands that lead to 
the formation of different types of response patternsbased upon different levels of capacity in the system. 
These variable conditions increase the complexity of model. Complexity theory, based on discrete 
dynamics,reveals the power of self-organization embedded in complex systems. The interactions among 
agents who participate in response operations form a disaster response system that reveals a spontaneous 
order. In this paper, we test the applicability of a discrete dynamic modeling method, Cellular Automata 
(CA), in a simulated disaster environment.

Disaster Response and Fragility 

1) Model
When a major disaster occurs, it threatens the potential collapse of the interconnected sociotechnical 
system that provides technical, social, economic, and cultural services to a specific region or community. 
The disaster threatens not only the destruction of technical infrastructure such as power lines, roads, and
communication lines, but also the social, organizational, and economic structures that support the daily 
operations of the community. The sociotechnical infrastructure in most communities is not a well-
connected system, but rather a fragile, interdependentsystem that is sensitive to shocks and disruptions. 
In such systems, disruption triggers unexpected consequences and cascading failure. The actual 
environment of disaster is extraordinarily complex. In this preliminary research, we make four basic 
assumptions regarding the disaster environment and the relationships among agents participating in the 
disaster response system. These assumptions allow us to reduce the complexity of the disaster 
environment and explore a simple model between demand and capacity in a dynamic environment.

First, we develop our model for a discrete geographical space and legal jurisdiction. In an actual disaster,
geographic and jurisdictional boundaries are not necessarily congruent. In our model, we introduce 
geographical and jurisdictional regions within a two-dimensional space, which could be expanded.
Second, the interaction among agents engaged in disaster response operations and the patterns of 
communication among their internal components and between the agents and other external systems 
create the dynamics of the response process. We assume that the demand flow of disaster response actions 
depends on the initial magnitude of disaster, the degree of “cascade effect” or interdependence among 
potential or actual damaged parts, and the capacity flow among the participating agents based on their 
initial conditions of resources, knowledge, skills, and equipment. The initial magnitude of disaster is 
measured by factors such as physical magnitude, geographic location, and preparedness for disaster.  
Assessing the initial magnitude of disaster is necessarily a preliminary effort in uncertain conditions, and 
the magnitude is likely to be revised repeatedly as more accurate information becomes available. In the 
case of the WTC disaster, the number of dead was estimatedat more than ten thousand on the first day,
but dropped to less than three thousand as more specific information became available (Comfort 2003).

Estimating the cascade effect in any given disaster becomes a critical factor in assessing the demand for 
housing, sanitation, economic activities, telecommunication, psychological counseling, or other services. 
In routine operations, the components of the sociotechnical system are highly interconnected. If people 
need medical treatment, they may call 911 to ask for help and be transported to a hospital in an 
ambulance using the shortest route over city streets. However, if even a small part of this interdependent 
process malfunctions, it can cause serious implications. If the telephone lines are damaged, 
communication fails. If many people simultaneously switch their communication means from land 
telephone lines to wireless or cellular, cell phones will not work because the unexpected increase in the 
number of connections would overload the system. Assessing the interdependence among organizations 
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and systems in disaster operations makes the analysis of actual events very complex. In this simulation, 
we limit the number of interactions among the agents to two steps. 

Third, the degree of coordination developed among agents also affects disaster operations. Disaster may 
shatter the existing socio-technical system, and rebuilding activities that reconnect components of the 
social and economic systems to the relevant technical systems through coordination are often more 
important than acquiring resources for the separate systems. 

Finally, the type and quality of the initial disaster relief actions also affect the scope of demand over the 
period of recovery.Response to demand depends on the initial capacity of response agents, the inflow of 
additional resources from outside areas, and the burn-out rate of personnel engaged in disaster operations, 
or the rate at which individuals drop out of service voluntarily. By definition, disaster is an unexpected 
event that exceeds the normal capacity of a community to respond to adverse events. Each of these 
indicators can be measured and included in a dynamic computational model.  

Within the above framework, individuals seek ways to assist victims and lessen damages. Their behavior 
depends heavily on the degree of information available, the degree of planning and preparedness in place 
prior to the event, the specific time, location, and magnitude of the incident, and the existing 
organizational resources or constraints. In theory, if responders have perfect information, they find 
victims and assist them immediately. However, in practice, rescue agents don’t know exactly who needs 
what kinds of help in which locations. Thus, we initiate the simulation in a state of high uncertainty and 
observe the pattern of changes in the interaction among the agents by increasing the amounts of 
information and rationality available to the agents.

To test the model, we developed a simulation platform using Cellular Automata (CA) to describe the 
relation between demand for assistance and a community’s capacity to provide disaster services. CA is 
not only easy to model, using discrete spatial dynamics, but it is also expandable, allowing the developer 
to include various types of behavior. It produces a complex pattern of interactions among multiple agents 
and allows researchers to observe the emergence of patterns. Christopher Langton’s model of artificial 
life, John Conway’s game of life, Axelrod’s cooperation model and other models of complex systems use 
this method (Flake, 1998; Gaylord et al., 1998; Axelrod, 1996, Langton, 1994).

To construct the model, we simplified the problem situation of a disaster environment as follows:

First, we built a discrete two-dimensional, N by N, space which is divided by jurisdiction. The initial 
magnitude of the simulated disaster is annotated as C, and the number of damaged sites is Nd . We assign 
the initial demand to Nd randomly within the disaster space. The amount of resources available to meet 

demands from the damaged site is annotated as ij
tD  which means the site ij requires the amount of D 

resource at time t.

Second, a cascade effect is introduced to increase the demand for disaster services, and the response 
actions, or capacity of the agents, reduces the demand size. The relationship is formalized as:

),)(1(1
ij

t
ij

t
ij

t SDrD −+=+ wherer is growth rate of demand coming from cascade effect, and ij
tS  is 

the resource of supply agents who are on site ij at time t.

Demand does not increase infinitely. For instance, the cost of rescuing injured victims does not exceed 
the cost of human life. Thus, we give a constraint to maximum demand level.
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Third, each agent occupies one cell and moves around the space looking for damaged sites. When agents 
find the damaged sites, they allocate their capacity to restore the site. Based on these assumptions, the 

capacity of the agent on the site ij at time t, ij
tS , is defined as follows:

),)(1(1
ij

t
ij

t
ij

t DSRS −+=+  where R is the growth rate of capacity coming from outside help.

Fourth, we follow the behavior rules for information search and movement defined by traditional CA 
methods.  We use the method for designating movement among near neighbors in the system attributed to 
Von Neumann and used by others in the simulation of complex systems (Epstein et al., 1996; Gaylord et 
al., 1998; Wolfram, 1994). The search method is heuristic and assumes high uncertainty. No command 
and control mechanism is used to control agents. 

Finally, we introduce a weak type of voluntary coordination. We assume that the jurisdiction with the 
highest surplus capacity dispatches its agent to the jurisdiction that has the greatest need, or demand for 
services (Rawls 1999). This process continues until either there are no surplus resources available or the 
demand is filled.

2) Findings
The graphs below present a simplified version of capacity, interpreting capacity as available resources.  In 
practice, capacity includes a dimension of organizational learning, but for this initial model, we simplify 
the term capacity to mean available resources. The initial magnitude of disaster is given 1000 units, which 
implies that the disaster requires 1000 units of resources to relieve the damage at time t=1. These 
demands are randomly allocated to 40% of the region. The agents only have a capacity of 30% of the 
initial demand at time t=1. If agents determine the need and location of demand for damaged sites, they 
allocate their capacity for those sites and expend their resources but replenish their capacity at the rate 
R=0.02 at the beginning of each time period. The demand level decreases due to the agents’  rescue 
activities, but also increases due to the cascade effect, estimated at the rate of r=0.01. The burn-out rate of 
agents is given a value of 5. Thus, agents who expend all resources at t=i will not activate again until 
t=i+51. Using this definition, the basic patterns of demand and capacity are shown below.

     Figure 1. Demand and capacity changes across time
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1 Sensitivity of parameter affects the level of demand and capacity but it does not significantly change the pattern. 
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Figure 1 shows how the demand and capacity level is changed by the agents’  response activities after 
disaster.The graph could be divided into three periods: Phase I, Phase II and Phase III. Phase I is the
period from the starting point of disaster to the point where demand starts to decrease.  In the initial 
period, capacity gradually decreases as demand increases.  This phenomenon occurs as agents expend 
their limited available resources to meet increasing demand from the event. For example, during response 
operations following September 11, Health Care Financing Administration administrators decided to send 
non-critical patients to nursing homes to alleviate crowding in area hospitals. If they allocated their
resources for non-critical patients, they could not help other people who had more serious medical needs. 
In actual events, response organizations may dispatch more resources than the victims actually need. If 
participating agencies do notconserve their resources and use all of them in the beginning stage, there is a 
time lag to return their resources to the normal level. In Phase I, first response operations are mobilized 
by organizations with legal responsibilities for protecting lives, property, and continuity of operations --
police, fire, and emergency medical services-- while informal groups of by-standers, family and friends 
are often the immediate actors in the stricken area. This model considers only the actions of recognized 
response organizations in Phase I, and assumes that these organizations are operating under the Incident 
Command System (Comfort 1999).

Within our model, after a specific point, t=118, capacity exceeds demand. Phase II is the period from the 
end of Phase I to the threshold point of change in the response system. At this stage, new resources enter 
the disaster area from the outside and other organizations join to help victims. The entrance of new 
organizations increases the difficulty of coordination in managing disaster response tasks as the 
operational relationships among first response organizations and new organizations need to be defined.
As response operations evolve, these interactions need to be redefined for each succeeding situation. New 
types of demand that are not anticipated in planned response proceduresare likely to emerge and 
respondents need to redefine the situation and assess their activities within their changed environment. 
Collective learning and action are essential to facilitate coordinated action.

Phase III represents the actions of disaster recovery and return to normal operations, but has not had much 
attention in studies of disaster management. Contrary to common assumptions, resource scarcity is not the 
biggest problem; rather, appropriate allocation of resources is more important in Phase III. Figure 2 shows 
the amount of funds raised and actually distributed by large charities following September 11, 2001. 

Figure 2.  Amount of funds raised and actually distributed by 34 large charities

Source: GAO (2002), "SEPTEMBER 11-Interim Report on the Response of Charities," The U.S. General 
Accounting Office. p.13.
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Distribution of resources is a problem of coordination. Organizations may have resources, but they may 
not be distributed efficiently to people who need help. In some cases in the WTC operations, resources 
were distributed in a duplicative way; in other cases, victims and their families had difficulty in finding 
sources of assistance or applying for aid.  Coordination in interorganizational activities is essential in 
Phase III 

The spatial size of disaster (N) influences the demand and capacity flow. We increasethe size of 
dimension, N, and observe that the termination time of demand decrease.  Termination time is defined as 
the time when the demand level decreases to 10% of initial demand, and it is used in this model as a 
measure of the efficiency of response activities.

Figure 3. The effect of spatial size on duration of disaster response activities 
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The above figure shows that as the size of disaster area increases, the time needed to meet the demand 
also increases. If we divide the same spatial disaster area into multiple jurisdictions, it increases the 
efficiency of response activities. If relief teams affiliated with different jurisdictions have different 
command and control procedures, they may respond only to demands within their respective jurisdictions.  
We assume that each agent’s activities are confined to his or her own region. We control the initial 
conditions such as scope of demand and capacity, area of disaster space, urgency of need, and divided the 
N by N disaster space according to the number of jurisdictions. Under a simulated disastercontext, we 
calculate the termination time by increasing the number of jurisdictions participating in response 
operations.
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Figure 4. The effect of Number of jurisdiction s
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ANOVA analysis shows that the number of jurisdictions influences the termination time(F=2.57, p-
value=0.009). Although the evidence is not strong, it implies a negative correlation between the number 
of jurisdictions and termination time. 

Finally, an initial inquiry into the function of coordination was simulated by introducing a weak form of 
cooperation into the model.We sought to model spontaneous cooperation by introducing the following 
assumptions. Each jurisdiction has a different level of resources according to the size of its demand at 
each time phase of disaster operations. Some jurisdictions have surplus resources, while others lack 
resources in comparison to the size of their demands. The jurisdiction that has the highest amount of 
surplus resources will voluntarily dispatch agents to share its resources with the jurisdiction that has the 
lowest capacity in comparison to its demand. The amount of the shared resources does not exceed the 
amount of surplus. 

The assumption we build into our model is that the dispatched agents do not directly reach the victims. 
They come from different jurisdictions and lack informationregarding the specific needs and location of 
the victims. Therefore, they search for victims using von Neumann’s search process of identifying critical 
targets through near neighbors. Using these assumptions, the simulation results show that this form of
spontaneous cooperation has little effect onthe efficiency of disaster response. In further iterations of the 
model, we will explore factors of core information and timeliness as possible conditions that influence 
coordination and efficiency in disaster response.

Controlling for the number of jurisdictions involved in disaster response activities, the model produced 
the following results.

Table 1. Statistical analysis result of sharing resource without coordination

Number of Jurisdictions t-statistic p-value
2 1.60 0.14
3 1.71 0.11
4 0.47 0.65

5 1.93 0.09

The simple strategy of sharing resources without coordination for allocating the resources appropriately 
appears to have little effect on the efficiency of disaster response activities. This phenomenon can be 
attributed to the method by which the demand is distributed – we distribute demand by sampling from a 
uniform probability distribution. This results in the situation where all the jurisdictions have a similar 
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level of demand, hence there is no clear division between jurisdictions that have spare resources and those 
that have high demand. Conversely, if demand were distributed in clusters (a situation that would 
correspond more accurately to actual incidents), the influence of even simple voluntary cooperation may 
be observed.    

The Role of Information

The general assumption in disaster management is that lack of information is the basic factor in limiting 
the efficiency of response among organizations. However, the critical factor appears to be the centrality of 
information to core disaster response activities, rather than simply the amount of information available to 
the participating agents. Network theory lends insight to this concept. Both empirical and theoretical 
research shows that information flow is more efficient than initially recognized. The concept of small 
world networks (Watts, 1999)assumes that the distance between any two nodesin large networks such as
the World Wide Web or research collaboration networkscan be traveled through a small average number 
of communication links compared to their network size. For instance, the World Wide Web network of 
325,729 vertexes or nodes has an average distance of 11.2 links (Albert et al., 1999).  The co-authorship 
network of MEDLINE, with approximately 1,520,251 vertexes has an average distance of 4.91 nodes 
(Newman, 2000). The findings indicate that our world is small enough to reach any other anonymous 
person via a small number of other persons who are engaged in related activities (Milgram, 1967; Watts
et al., 1998). Random graph theories also provide evidence of efficient information flow. The random 
network of Erdős and Rényi (1960), usually called the ER network, is the pioneering model. Given a 
fixed number of edges, N, and probability, p, that each pair of edges is connected, the network, on 
average, will have pN(N-1)/2 edges.

The degree distribution follows binomial distribution, ( ) kNkN
k ppkP −−− −= 11 )1()(  .  If the N is large 

enough, the degree distribution will follow the Poisson distribution, !/)( kkekP
kk−= .

Figure 5. The degree of distribution of ER graph
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We also calculate an average degree of distribution of vertices for the network. The average degreeis 

pNNpk ≈−= )1( , which implies the expected number of vertices with degree k is   
*)( NXE k = ( ) kNkN

k pp −−− − 11 )1( .

Also, we may calculate the point at which the network forms a clique.  Percolation theory asserts that it is 
possible to identify the emergence of a giant connected component in dynamic networks (Peitgen, Jurgens 
and Saupe, 1992). The theory indicates that when a critical point, Pc, is reached, a giant cluster emerges 

within the entire network. The percolation threshold in a random graph is Npc /1≅ , that is, 1≅ck .  
The findings of the ER network are modified by the “small world”  network(Watts et al., 1998), andthe 
“scale-free”  network (Barabasi et al., 1999; Dorogovtsev et al., 2002; Newman, 2001). The degree 
distribution of complex networks follows an exponential distribution or power-law distribution, which is 
heavily right skewed and has a long right tail in contrast tothe Poisson distribution.  Moreover, the 
clustering coefficient is greater than the ER model (Watts, 2003). The characteristics of small average 
distance, a high clustering coefficient, and formation of a gigantic connected component enable flexible 
information exchange. For example, on September 11, 2.3 million people visited FEMA’s homepage
(Seifert, 2002).  FirstGov, Federal Bureau of Investigation, Department of Defense, and other agencies 
also provided information through a “small world” network. An analysis of the e-mail exchange for one 
FEMA official in a key structural position for organizing relief activities following the 9/11 terrorist 
attacks shows that the average distance for the exchange of core information in his communications 
network of 158 organizations is 2.04 nodes. This means that if an organization sends a message, it can 
reach any of the other 157 organizations in his network in an average of through 2.04 nodes. (Ko, 
Zagorecki, and Comfort 2003). This finding indicates that information is accumulated and delivered 
through a small world network, except under conditions of the physical destruction of the
communications system.

Theamount of information exchanged through telephone, wireless phone, satellite phone, a mobile e-mail 
and paging device, TV, radio, newspaper and Internet is enormous, and finding effective means of 
exchanging core information among organizations with central responsibilities in disaster management is 
essential to improving regional capacity for disaster risk reduction.  As scale-free networks show, the 
random failure of a network owing to disaster would be damaging only if it destroyed a significant 
number of high degree nodes (Albert et al., 2000). The identification of small world networks among 
organizations in a given geographic region exposed to disaster risk would represent a critical advance to 
improving capacity for interorganization decision support in disaster management.

If complex networks transmit massive amounts of information, how is it possible to identify the core 
information? Core information is both structure and context dependent. The structural approach is to 
check the connectivity.  Jurisdictions do not exchange information at the samerate and amount. The 
absence of certain key organizations will disconnect the whole network into partitioned subgraphs. One 
method is to check which node is a cutpoint, which means that deleting a specific node will  increase the 
number of components in the graph. If we identify the cutpoints, we can analyze the activities and 
information exchange patterns of the actors. Comfort (2003) adopted this approach and analyzed the 
information exchange patterns of FEMA with other organizations. A second method is to check the 
bridges. The analogy has been used for both social networks and transportation networks. If certain edges 
of the network are destroyed, the network will divide into disconnected components. Thus, identifying
which edges are bridges and which are incident nodes to the bridges will identify types of core 
information. When we use network analysis to identify the core information, we need to use multiple 
measures. For instance, Comfort(2003) identified six cutpoints: FEMA, Salvation Amy, Columbia 
University, Presbyterian Disaster Assistance Newsgroup, YMCA, Department of Housing and Urban 
Development. The bridge identified by the Lamda setincludes: the linkage among FEMA, ARC, Church 
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World Service, TxNPSC Coordination Team, Better Business Bureau, and NY. Also, when we use the K-
core analysis, the identified core organizations are: FEMA, American Red Cross, Church World Service, 
Salvation Army, Catholic Charities US, New York State Emergency Management Agency, American 
Psychiatric Association Committee on Disaster, New York Community Trust, Feed The Children. As we 
are able to identify key actors, we can examine the contents of the core information. Here, caution must 
be taken to assess whether differences in results originated from sampling methods. Thus, this means of
identifying the core information should be complemented by in-depth qualitative interviews and inter-
subjective interpretation of the data.

The final issue in the model is the function of coordination. Our simulation shows that sharing resources
using a simple form of cooperation based on a Rawlsian concept of justice as an indicator of coordination
has little influence on the efficiency of disaster response operations. However, the conceptualization and 
formalization of coordination is still under study and observation in practice.We use simulation with 
empirical studies as a means to explore the possible combinations of information and strategies in practice 
(Flake, 1998; Rivkin, 2000).

Conclusions and Further Discussion

Based on our CA design, we developed a preliminary model of the dynamics of disaster response 
operations. We argue that different phases of disaster response require different types of information, 
equipment, and management skills. The efficiency of disaster response is influenced by the magnitude of 
disaster, type and amount of resources available, number of jurisdictions involved, and complexity of the 
response strategies.  The results show that efficiency in disaster response has a negative relation to initial 
disaster magnitude and a positive relation to initial supply capacity. This is not surprising, and confirms 
the intuitive judgment of any practicing emergency manager. The interesting finding is the positive 
relation between the number of jurisdictions involved and the efficiencyof disaster response operations. 
This finding is counterintuitive to the general observation from practice that efficiency drops as the 
number of jurisdictions involved in response operations increases. The intervening factor appears to be 
identifying the critical nodes through which core information is exchanged; that is, verifying the small 
number of links that are used to communicate critical information under urgent conditions. The degree of 
change and the direction of influence in this process need to be studied further in a more fully developed 
simulation of this pattern.

Finally, we introduced a weak strategy of self organizing cooperation as an indicator of coordination. In 
this strategy, the jurisdiction with the largest surplus of resources assists the jurisdiction with the greatest 
need at each time step. The results show that this simplified strategy of resource sharing does not increase 
efficiency in comparison to a strategy of non-cooperation. Other factors such as proximity, timeliness, 
and prior experience among agents may be more important in increasing efficiency than a Rawlsian 
theory of justice (Rawls, 1999) in resource sharing.

These findings support the concept of small world networks in whichlarge networks of many vertices 
emerge that are interconnected by a relatively small number of communication links. This structural 
property enhances information flow. However, the coordination of core information among the connected 
nodes is critical. Thus, in the construction of a more advanced simulation model, it will be essential to 
determine what is the core information and to whom it is transmitted rather than simply assessing the 
amount of information that flows through the response system.

This research represents an initialphase in the construction of a computational model for a rapidly 
evolving disaster response system. Further studies will build on findings suggested in this paper. We will 
explore this model using different types and magnitudes of disaster, resources, internal and external 
communication patterns, and number of jurisdictions.  We will also explore diverse types of coordination, 
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based patterns observed in practice.Key variables of information exchange, communication, and 
timeliness in coordination processes will be analyzed to explore the dynamics of evolving networks. 
Acknowledging its limitations, computational simulation nonetheless is an invaluable tool for analyzing 
the complex activities of disaster response. This simulation method can fill an important gap between 
qualitative and empirical studies of rapidly evolving response systems. 
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