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Access Control to Two Multiserver Loss Queues in Series

Cheng-Yuan Ku and Scott Jordan

Abstract—We consider admission policies to two multiserver loss queues
in series with two types of traffic. Both are generated according to
independent Poisson processes with constant arrival rates. The first type
requires service at the first queue and with a positive probability enters
the second queue; the second type requires service at only the second
queue. The service time distribution is exponential at either station. We
show that under appropriate conditions the optimal admission policy that
maximizes the expected total discounted reward over an infinite horizon
is given by a switching curve. We characterize the form and shape of this
curve and its variation with system parameters.

Index Terms—Dynamic programming, loss network, optimal control.

I. INTRODUCTION

Queueing networks are often used to model manufacturing systems
and telecommunication systems and have been successful in analysis
of resource allocation in these systems. Three trends, however, are
challenging the effectiveness of traditional network models. First,
both manufacturing and telecommunication systems are evolving
toward flexible systems in which many heterogeneous products
or services are produced. Second, the trend is toward minimiz-
ing work in progress and ensuring low delay. Third, control of
such networks is increasingly accomplished by limiting the work
entering the network, rather than using flow control within the
network. Current mathematical models and their corresponding al-
gorithms are inadequate in addressing resource allocation, pricing,
and control of these systems. In this paper, we study a basic
building block for a multiple service, multiple resource network.
Such networks encompass a wide class of nonstorable production
systems and broadband integrated service telecommunication sys-
tems.

In manufacturing, the first trend is toward flexible production
systems. Mass customization demands that systems be able to pro-
duce a variety of products instead of a single product. Efficiency
encourages that the production capacity be shared in an integrated
fashion, rather than partitioned between separate production lines.
Problems of allocation of capacity to accomplish desired throughputs
of various products are common. The second trend, toward systems
minimizing work in progress, has also become an area of intense
interest. The benefits are seen as both minimizing inventory and
decreasing the time to produce a product, especially in systems that
must produce customized goods. Increasingly, we view production
as nonstorable, and networks are designed with just-in-time or
other push-or-pull mechanisms to accomplish these goals. The third
trend in manufacturing is a direct result of the first two. Control
of these nonstorable flexible manufacturing systems is increasingly
implemented by limitations on product entering the network. Access
control is viewed as more effective than flow control when minimal
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work in progress and minimal delay in producing a customized
product are the goals.

In telecommunication systems, these three trends are also evident.
The first trend, toward integrated service networks, is made possible
by the increase in intelligence of switches and the separation of
control from transmission. The merging of telephone and computer
networks will continue to push the demand for telecommunication
systems that can multiplex heterogeneous services and guarantee
a variety of definitions of performance. The second trend, toward
more tightly constrained use of buffers in the network, is caused
by the requirements of synchronous services, such as real-time
video or audio, for bounded loss within a guaranteed delay. When
the burstiness of even a few services in the network becomes
significant, buffering must be tightly controlled or these delay and loss
requirements will not be met. Increasingly, guaranteed performance
for a wide variety of services is the critical issue. The third trend
is again a function of the first two. The increase in speed results
in a corresponding increase in the number of packets in transit,
and traditional flow control techniques no longer work well. Control
of broadband telecommunication systems is tending toward access
control, with the goal of limiting packets entering the network
according to characterizations of burstiness and desired quality of
service.

These three trends in both manufacturing and telecommunication
systems pose severe challenges to traditional modeling and analy-
sis techniques. Existing queueing theory does not cope well with
nonstorable integrated service networks. Queueing models typically
use delay as the measure of performance. In contrast, these new
networks are likely to be engineered to guarantee low delay, and
the measure of performance has become throughput (or block-
ing probability) of each service type. The optimization criteria
is maximization of revenue, perhaps with constraints on minimal
quality of service. Traditional queueing theory has provided us
with useful information about resource allocation in homogeneous
service networks, but fails us when multiple services compete for
multiple resources and when blocking is the principal concern. In
previous work, we have studied multiple service, multiple resource
loss networks with simultaneous resource usage in Jordan [6]. In
this paper, we study the simplest multiple service, multiple resource
loss network with sequential resource usage. We hope this simple
model will give us insight into sequential resource allocation policies
that may be of use in larger multiple service, multiple resource loss
networks.

II. RELATED RESEARCH

Throughout the years, many papers have addressed optimal control
to a single queue. Apparently, it began with Naor [12] who studied
critical-number policies in steady state in a M/M/1 queue. This
approach has been extended to a M/D/1 queue Adler [1], a M/M/c
queue with state-dependent benefit Knudsen [8], two heterogeneous
servers with a common queue Lin [11], a general birth–death con-
gestion model Knudsen [9], GI/M/c queue Simonovits [13], and
a general input–output system Johansen [5]. A few papers have
addressed optimal control to multiple queues. Davis [3] studied
admission control for two exponential servers in parallel with separate
queues and renewal arrivals. The optimal policy was shown to be
monotonic and always assigns an accepted arrival to the shortest
queue. Ghoneim [4] considered admission control on each of two
exponential servers in series. Under a metric consisting of random
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Fig. 1. Tandem multiserver queues.

rewards for entering customers and holding costs for customers at
each node, the optimal policy was shown to be given by a pair
of two-dimensional monotonic switching curves. A good survey of
research on this topic until 1993 can be found in Stidham [14]. These
multiple queue studies, however, have generally assumed infinite
queues, with holding costs as the performance metric. There has been
relatively little work done on admission control in loss networks,
where the performance metric is a loss rate. Recently, Blanc [2]
analyzed optimal control of admission to a multiserver queue with
two arrival streams.

In this paper, we focus on multiserver loss queues in series. By
concentrating on loss rather than delay or holding costs, on multiple
customer types, and on access control, we hope to better understand
control of evolving telecommunication and manufacturing systems.
Our primary technique, stochastic dynamic programming, is similar
to many of those used in previous characterizations of access control
in delay networks. Additional complexity is presented by boundary
states due to finite buffers, by the shape of the switching curve, and
by the variability of total service rate due to the use of multiple
servers. The key to the analysis lies in the combination of properties
used in the value iteration. It is of note that the structural properties
of the optimal access control shown here can be extended to parallel
first stage queues [10].

III. T ANDEM MULTISERVER LOSS QUEUES

Suppose there are two customer types in the system. Customer
type 1 requires use of a resourceA. When he is finished withA,
with a positive probability he requires use of a resourceB. Customer
type 2 only requires use of a resourceB. If there are finite many
A’s andB’s, how should these resources be managed to maximize
revenue? We model this system as a tandem multiserver loss network
as pictured in Fig. 1.

We adopt the following notation:�1 as Poisson arrival rate of
type-1 customers going to station A,�A as exponential service rate
of servers at stationA,RA1 as revenue for service to a type-1 customer
at stationA, P as probability that customers leave the system after
receiving service at stationA, �2 as Poisson arrival rate of type-2
customers going into stationB; �B as exponential service rate of
servers at stationB; RB1 as revenue for service to a type-1 customer
at stationB, andRB2 as revenue for service to a type-2 customer
at stationB.

A principal factor in the admission control system is the relative
value of customers at stationB. We wish to investigate the situation
where type-1 customers are more valuable, in order to analyze the
effect of knowledge of the existing number of type-1 customers at
station A on the admission control decision at stationB. Therefore,
we assumeRB1 > R

B
2 ; 1 > P � 0; and positive revenue is collected

Fig. 2. The state space.

when a customer enters for service. This system can be modeled
as a two-dimensional continuous-time Markov chain, with state(i; j)

defined as the number of customers at stationsA andB, respectively.
The admission control policy becomes a decision to accept or deny
the arrivals, as a function of the state, the customer type, and the
station at which the customer is arriving. Uniformization (see, e.g.,
Kumar [7]) results in an equivalent discrete-time Markov chain by
allowing fictitious transitions from a state to itself. Choose aQ 2 R

s.t. Q > �1 + �2 + m�A + n�B and let p1 = �

Q
; p2 = �

Q
;

qA =
�

Q
; and qB =

�

Q
. The equivalent discrete-time system has

corresponding parametersp1; p2; qA; qB and the appropriate discount
factor � < 1.

For our system, if there is a customer at stationA, we know there
may be one respective request at stationB in the near future. So, the
number of customers at stationA can be regarded as an amount
of reservation for typeB resources. How should this knowledge
be incorporated into the admission decision for type-2 customers
at stationB? We address this problem using a stochastic dynamic
programming framework. The two-dimensional state space can be
divided into four regions according to boundaries as in Fig. 2.

We consider the objective of maximizing discounted revenue over
an infinite horizon. We defineV (i; j) as expected discounted revenue
starting in state(i; j), and 0 < � < 1 is the discount factor.
An admission policy is given by a mappinga : f0; 1; � � � ;mg �

f0; 1; � � � ; ng ! f0; 1g3, wherea = (a1; a2; a3) represents whether
each type of customer at each station should be admitted when the
system is in state(i; j). a1 = 1 iff we admit customer type 1 at station
A; a2 = 1 iff we admit customer type 2 at stationB; anda3 = 1 iff
we admit customer type 1 at stationB. The optimal admission policy
is chosen in each state to maximize the future expected discounted
revenue, as given by the following set of equations, stated by region.
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1) For 0 � i � m � 1; 0 � j � n � 1

V (i; j) = max
a ;a ;a

� a1p1 V (i+ 1; j) +R
A
1

+ a2p2 V (i; j + 1) +R
B
2

+ a3(1�P)iqA V (i� 1; j + 1) +R
B
1

+ (1� a3)(1�P)iqAV (i� 1; j)

+PiqAV (i� 1; j) + jqBV (i; j � 1)

+ (1� a1p1 � a2p2 � iqA � jqB)V (i; j) :

2) For 0 � i � m � 1; j = n

V (i; j) = max
a

� a1p1 V (i+ 1; j) +R
A
1

+ iqAV (i� 1; j) + jqBV (i; j � 1)

+ (1� a1p1 � iqA � jqB)V (i; j) :

3) For i = m; 0 � j � n � 1

V (i; j) = max
a ;a

� a2p2 V (i; j + 1) +R
B
2

+ a3(1�P)iqA V (i� 1; j + 1) +R
B
1

+ (1� a3)(1�P)iqAV (i� 1; j)

+PiqAV (i� 1; j) + jqBV (i; j � 1)

+ (1� a2p2 � iqA � jqB)V (i; j) :

4) For i = m; j = n

V (i; j) = � iqAV (i� 1; j) + jqBV (i; j � 1)

+ (1� iqA � jqB)V (i; j) :

We present notation that will be useful in analyzing the optimal
policy. We use the value iteration approach. Choose an arbitrary
initial value function,V0, then define the steph value function,
Vh, by choosing actions that maximize future expected discounted
revenue, assuming that transitions more than one time step in the
future generate a total discounted revenue according to the steph�1

value function.
Definition 3.1: Let V0(i; j) be an arbitrary bounded function, and

for h 2 N and h 6= 0, define

Vh(i; j) = max
a

�

k l

P(i;j)!(k;l)(a)

� [R((i; j); (k; l)) + Vh�1(k; l)] (1)

where P(i;j)!(k;l)(a) is the one-step transition probability and
R((i; j); (k; l)) is the revenue associated with a change of state
from (i; j) to (k; l), if any. It is known that the optimal value
function is defined byV (i; j) = limh!1 Vh(i; j).

Definition 3.2: Let �(i; j) � V (i; j)� V (i; j + 1)

�h(i; j) � Vh(i; j)� Vh(i; j + 1) for h; i; j 2 N;

0 � i � m and0 � j � n� 1:

Definition 3.3: Let r(i; j) � V (i; j)� V (i + 1; j)

rh(i; j) � Vh(i; j)� Vh(i+ 1; j) for h; i; j 2 N;

0 � i � m� 1 and0 � j � n:

Then, we can rewrite the optimality equations 1)–4) using the notation
above. For example, if we rewrite 1), we obtain

V (i; j) = max
a ;a ;a

� a1p1 R
A
1 �r(i; j) + a2p2 R

B
2 ��(i; j)

+ a3(1�P)iqA R
B
1 ��(i� 1; j) + iqAV (i� 1; j)

+ jqBV (i; j � 1) + (1� iqA � jqB)V (i; j) :

The optimal admission policy admits a customer if the immediate
revenue generated by that customer exceeds the expected loss in
future discounted revenue caused by future blocking due to this
customer. However, from the rewriting of optimality equations, the
optimal policy, in state(i; j), is obvious: accepts a customer of type
1 at stationA iff r(i; j) � RA

1 , accepts a customer of type 2 at
stationB iff �(i; j) � RB

2 ; and accepts a customer of type 1 at
stationB iff �(i � 1; j) � RB

1 .
Definition 3.4: An admission control policy for type-2 customers

is called a threshold policy if there exists a switching curvejs(i) so
that customers are admitted iffj < js(i). For such policies, define:

A) js(i) = min(j j �(i; j) > RB
2 ) and jsh(i) = min(j j

�h(i; j) > RB
2 ). Let js(i) = n and jsh(i) = n, if �(i; j) �

RB
2 for 0 � j � n;

B) is(j) = max(i j �(i; j) � RB
2 ) and ish(j) = max(i j

�h(i; j) � RB
2 ). Let is(j) = �1 and ish(j) = �1, if

�(i; j) > RB
2 for 0 � i � m.

Likewise, the optimal threshold is defined byjs(i) =

limh!1 jsh(i).

IV. OPTIMAL ACCESS CONTROL

The form of the optimal admission control policy is stated in this
section in a series of theorems. Theorems 4.2 and 4.3 state that,
under appropriate conditions, only type-2 traffic need be controlled.
Theorems 4.4 and 4.5 state that optimal admission policy of type-2
customers follows a monotonically decreasing switching curve. The
following lemma details the structure of the value function under
optimal policy, using value iteration. It will be used repeatedly to
prove that the optimal policy, given by the corresponding limit, has
similar desirable properties to those described here.

Lemma 4.1: If:

a) �h(i; j) is monotonically increasing onj for fixed i (i.e.,
Vh(i; j) is concave onj);

b) �h(i; j) is monotonically increasing oni for fixed j (i.e.,
Vh(i; j) is submodular);

c) �h(i; j) < RB
1 for 0 � i � m and0 � j � n � 1;

d) rh(i; j) < RA
1 for 0 � i � m� 1 and0 � j � n;

then:

A) �h+1(i; j) is monotonically increasing onj for fixed i (i.e.,
Vh+1(i; j) is concave onj);

B) �h+1(i; j) is monotonically increasing oni for fixed j (i.e.,
Vh+1(i; j) is submodular);

C) �h+1(i; j) < RB
1 for 0 � i � m and0 � j � n � 1;

D) rh+1(i; j) < RA
1 for 0 � i � m� 1 and0 � j � n.

Proof: The proof proceeds by expanding Definition 3.1 in each
region of the state space. First, similar terms are grouped. Second,
remaining terms, often due to boundaries, are bounded by others.
Finally, the hypotheses are invoked on each group to prove the
conclusions.

A): By hypotheses c) and d),�h(i; j) < RB
1 andrh(i; j) < RA

1

for all (i; j), we knowa1 = 1 anda3 = 1 achieve the maximization
in (1). The control parametera2 is set according to the subregion of
the state space. In order to prove that�h+1(i; j) is monotonically
increasing onj for fixed i, we consider two states(i; j1) and(i; j2)
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with j1 < j2. We show that�h+1(i; j2) � �h+1(i; j1) > 0. We
initially consider the case0 � i < m; 0 � j1 < j2 < jsh(i)� 1 �

n � 1.
Using Definition 3.2,�h+1(i; j2)��h+1(i; j1) � [Vh+1(i; j2)�

Vh+1(i; j2 + 1)]�[Vh+1(i; j1) � Vh+1(i; j1 + 1)].
Using (1) and grouping terms, we get

�h+1(i; j2)��h+1(i; j1)

= �fp1[[Vh(i+ 1; j2)� Vh(i+ 1; j2 + 1)]

� [Vh(i+ 1; j1)� Vh(i+ 1; j1 + 1)]]

+ p2[[Vh(i; j2 + 1)� Vh(i; j2 + 2)]

� [Vh(i; j1 + 1)� Vh(i; j1 + 2)]]

+ (1�P)iqA[[Vh(i � 1; j2 + 1)

� Vh(i� 1; j2 + 2)]� [Vh(i� 1; j1 + 1)

� Vh(i� 1; j1 + 2)]] +PiqA[[Vh(i� 1; j2)

� Vh(i� 1; j2 + 1)]� [Vh(i� 1; j1)

� Vh(i� 1; j1 + 1)]] + j2qB [Vh(i; j2 � 1)

� Vh(i; j2)]� j1qB[Vh(i; j1 � 1)

� Vh(i; j1)] + (1� p1 � p2 � iqA � (j2 + 1)qB)

� [Vh(i; j2)� Vh(i; j2 + 1)]

� (1� p1 � p2 � iqA � (j1 + 1)qB)

� [Vh(i; j1)� Vh(i; j1 + 1)]g:

Now expand one term

�(1� p1 � p2 � iqA � (j1 + 1)qB)[Vh(i; j1)� Vh(i; j1 + 1)]

= �(1� p1 � p2 � iqA � (j2 + 1)qB)[Vh(i; j1)

� Vh(i; j1 + 1)]� (j2qB � j1qB)[Vh(i; j1)� Vh(i; j1 + 1)]:

Using hypothesis a) andj2 > j1, we can bound part of this term:
Vh(i; j1)� Vh(i; j1 + 1) � Vh(i; j2 � 1)� Vh(i; j2).

By grouping terms, and using Definition 3.2, we get

�h+1(i; j2)��h+1(i; j1)

� �fp1[�h(i+ 1; j2)��h(i+ 1; j1)] + p2[�h(i; j2 + 1)

��h(i; j1 + 1)] + (1�P)iqA[�h(i� 1; j2 + 1)

��h(i� 1; j1 + 1)] +PiqA[�h(i� 1; j2)

��h(i� 1; j1)] + j1qB[�h(i; j2 � 1)

��h(i; j1 � 1)] + (1� p1 � p2 � iqA � (j2 + 1)qB)

� [�h(i; j2)��h(i; j1)]g:

Finally, hypothesis a) guarantees that each term in brackets is greater
than zero, and hence�h+1(i; j2)��h+1(i; j1) > 0.

Consideration of other sections of the state space results in similar
proofs. In some sections, knowledge of the location of the threshold is
required to bound some terms, e.g.,�h(i; j) > RB

2 if j > jsh(i)�1;

�h(i; j) � RB

2 if j = jsh(i)�1; and�h(i; j) < RB

2 if j < jsh(i)�1.
Near boundaries, hypothesis c) is used to bound other terms. Details
are omitted. For B), this proof also requires hypothesis b), but is
otherwise substantially similar to A) and is hence omitted. For C),
by hypotheses c) and d),�h(i; j) < RB

1 andrh(i; j) < RA

1 for all
(i; j), we knowa1 = 1 anda3 = 1 achieve the maximization in (1).
From A) and B), we know�h+1(m;n� 1) is the largest difference.
So, it suffices to prove that�h+1(m;n � 1) < RB

1 .

Using Definition 3.2,�h+1(m;n � 1) � Vh+1(m; n � 1) �

Vh+1(m;n). Using (1) and grouping terms, we get

�h+1(m;n� 1)

= max
a

� a2p2 Vh(m;n) +R
B

2

+ (1�P)mqA Vh(m� 1; n) +R
B

1

+PmqAVh(m� 1; n� 1) + (n� 1)qBVh(m;n� 2)

+ (1� a2p2 �mqA � (n� 1)qB)Vh(m;n� 1)

� �fmqAVh(m� 1; n) + nqBVh(m;n� 1)

+ (1�mqA � nqB)Vh(m;n)g:

By grouping terms, we have

�h+1(m;n� 1)

= max
a

� a2p2 Vh(m;n) +R
B

2

� p2Vh(m;n) + (1�P)mqA Vh(m� 1; n) +R
B

1

� (1�P)mqAVh(m� 1; n) +PmqAVh(m� 1; n� 1)

�PmqAVh(m� 1; n) + (n� 1)qBVh(m;n� 2)

� (n� 1)qBVh(m;n� 1) + (1� a2p2 �mqA � nqB)

� Vh(m;n� 1)� (1� p2 �mqA � nqB)Vh(m;n) :

Using hypotheses a) and b) and� < 1

�h+1(m;n� 1) < max
a

a2p2 Vh(m;n) +R
B

2

� p2Vh(m;n) + (1�P)mqAR
B

1

+PmqA[Vh(m;n� 1)� Vh(m;n)]

+ nqB [Vh(m;n� 1)� Vh(m;n)]

+ (1� a2p2 �mqA � nqB)Vh(m;n� 1)

� (1� p2 �mqA � nqB)Vh(m;n) :

Case 1: fora2 = 1 this gives

�h+1(m;n� 1) < p2R
B

2 + (1�P)mqAR
B

1

+ (1� p2 � (1�P)mqA)�h(m;n� 1)

< p2R
B

1 + (1�P)mqAR
B

1

+ (1� p2 � (1�P)mqA)R
B

1

) �h+1(m;n� 1) < R
B

1 :

Case 2: fora2 = 0 this gives

�h+1(m;n� 1) < (1�P)mqAR
B

1

+ (1� (1�P)mqA)�h(m;n� 1)

< (1�P)mqAR
B

1

+ (1� (1�P)mqA)R
B

1

) �h+1(m;n� 1) < R
B

1 :

From the cases above, we can conclude that�h+1(m;n�1) < RB

1 ,
and the result follows.

For D), this proof is substantially similar to C) and is hence omitted.
Theorem 4.2:r(i; j) � RA

1 for 0 � i � m� 1 and0 � j � n.
Consequently, it is optimal to always admit type-1 customers at
stationA, i.e., a1 = 1 in all states.
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Proof: Proof is by induction. It is always possible to choose
an initial value function,V0, such that it satisfies the hypotheses
of Lemma 4.1. Suppose these hypotheses hold for the steph value
function,Vh. Then, the lemma states that they hold for the steph+1

value functionVh+1. The optimal value function is defined by the
limit in Definition 3.1, and therefore statement D) in Lemma 4.1
implies thatr(i; j) � RA1 .

Theorem 4.3:�(i; j) � RB1 for 0 � i � m and0 � j � n � 1.
Consequently, it is optimal to always admit type-1 customers at
stationB, i.e., a3 = 1 in all states.

Proof: The proof is by induction as in Theorem 4.2, except that
it follows from statement C) in Lemma 4.1.

From Theorems 4.2 and 4.3, we understand that the optimal policy
always admits type-1 customers when space permits. As we will see,
the optimal policy on type-2 customers is a threshold type: type-
2 customers are only accepted while the system state is below some
threshold. The next two theorems characterize the form of the optimal
control upon type-2 customers.

Theorem 4.4:�(i; j) is monotonically increasing onj for fixed
i. Consequently, the optimal policy is threshold-type.

Proof: The proof is by induction as in Theorem 4.2, except it
follows from statement A) in Lemma 4.1.

Recall that the optimal policy accepts a type-2 customer if and only
if �(i; j) � RB2 . For a fixed number of customers,i, at stageA, the
threshold lies at the smallestj such that�(i; j) > RB2 . Since�(i; j)

is monotonically increasing onj for fixed i, if the policy blocks a
type-2 customer whenj = js(i), it also blocks whenj > js(i).

Theorem 4.5:�(i; j) is monotonically increasing oni for fixed
j. Consequently,js(i) is a nonincreasing function oni.

Proof: The proof is by induction as in Theorem 4.2, except it
follows from statement B) in Lemma 4.1.

These previous propositions characterize optimal admission control
to the pair of queues, when type-1 customers are more valuable than
type 2. Type-1 customers are always admitted. Type-2 customers are
admitted only if the number of free servers at stationB exceeds some
threshold. We viewn�js(i), the minimum number of free servers at
stationB, given i customers at stationA, as the reservation atB for
upstream traffic. This reservation is monotonically increasing ini.

V. VARIATION OF SYSTEM PARAMETERS

In the previous section, we characterized the optimal admission
policy on type-2 customers in tandem multiserver loss queues. We
found that for fixed parameters(�1; �2; �;P; �A; �B ; RA1 ; R

B
2 ;

RB1 ; m; n) the optimal policy is given by a thresholdjs(i). In this
section, we investigate the variation of this threshold with variations
in system parameters.

Theorem 5.1: The admission control threshold on type-2 cus-
tomers,js(i), is, for 0 � i � m andRB1 > RB2 :

A) monotonically decreasing in�1; �; �2; RB1 ; andm;
B) monotonically increasing in�B; P; andRB2 ;
C) insensitive toRA1 ;
D) n � js(i) is monotonically decreasing inn, on i � is(0).

Proof for Decreasing in�1: Choose1 > ��1 > �1 > 0.
With �1 and all other system parameters given, use value iteration
upon appropriate initial rewards to obtainV (i; j; �1) for all possible
i’s and j’s. Now, replace�1 by ��1 and keep all other system
parameters unchanged. ChoosingV (i; j; �1) for 0 � i � m

and 0 � j � n as initial rewards, use value iteration again to
calculateV (i; j; ��1). Sincelimh!1�h(i; j; ��1) = �(i; j; ��1) and
�0(i; j; ��1) = �(i; j; �1), to obtain�(i; j; ��1) > �(i; j; �1), it is
sufficient to show that�h+1(i; j; ��1) > �h(i; j; ��1) for all h 2 N;

h 6= 0; and�1(i; j; ��1) � �0(i; j; ��1). Consequently, it will follow
that js(i; ��1) � js(i; �1) for all 0 � i � m.

By Lemma 4.1 and Theorems 4.2, 4.3, 4.4, and 4.5, we know
a1 = 1 and a3 = 1 achieve the maximization in (1). The control
parametera2 is set according to the subregion of the state space. Let
Q > ��1+�2+m�A+n�B and�p1 =

��

Q
, then��1 > �1 ) �p1 > p1.

The base step is to show that fori 6= m; �1(i; j; ��1) > �0(i; j; ��1);

and for i = m; �1(i; j; ��1) = �0(i; j; ��1). We consider here the
case0 � i � m � 1 and 0 � j < js0(i; ��1) � 1 = js(i; �1) � 1.
Other cases withi 6= m are similar.

Using Definition 3.2, (1), and�0(i; j; ��1) = �(i; j; �1)

�1(i; j; ��1)

= �f�p1�(i+ 1; j; �1) + p2�(i; j + 1; �1)

+ (1�P)iqA�(i� 1; j + 1; �1) +PiqA�(i� 1; j; �1)

+ jqB�(i; j � 1; �1) + (1� �p1 � p2 � iqA

� (j + 1)qB)�(i; j; �1)g:

Grouping terms, using Definition 3.2 and (1)

�1(i; j; ��1) = �(i; j; �1) + �(�p1 � p1)

� [�(i+ 1; j; �1)��(i; j; �1)]:

From Theorem 4.5, we know�(i + 1; j; �1) � �(i; j; �1) > 0.
Since�(�p1�p1) is positive, then we get�1(i; j; ��1) > �(i; j; �1) =

�0(i; j; ��1). For i = m, it is straightforward to show that
�1(i; j; ��1) = �0(i; j; ��1) = �(i; j; �1).

The induction step supposes that fori 6= m; �h(i; j; ��1) >

�h�1(i; j; ��1); and for i = m; �h(i; j; ��1) � �h�1(i; j; ��1) and
shows that�h+1(i; j; ��1) > �h(i; j; ��1) for all (i; j). We consider
here the case0 � i � m � 1 and 0 � j = jsh(i;

��1) � 1 <

jsh�1(i;
��1) � 1. Other cases are similar.

Using Definition 3.2 and (1):

�h+1(i; j; ��1)

= � �p1�h(i+ 1; j; ��1) + p2R
B
2

+ (1�P)iqA�h(i� 1; j + 1; ��1)

+PiqA�h(i� 1; j; ��1) + jqB�h(i; j � 1; ��1)

+ (1� �p1 � p2 � iqA � (j + 1)qB)�h(i; j; ��1) :

Imposing the hypothesis that fori 6= m; �h(i; j; ��1) >

�h�1(i; j; ��1) and for i = m; �h(i; j; ��1) � �h�1(i; j; ��1) and
usingRB2 � �h�1(i; j + 1; ��1), we obtain

�h+1(i; j; ��1)

> � �p1�h�1(i+ 1; j; ��1) + p2�h�1(i; j + 1; ��1)

+ (1�P)iqA�h�1(i� 1; j + 1; ��1)

+PiqA�h�1(i� 1; j; ��1) + jqB�h�1(i; j � 1; ��1)

+ (1� �p1 � p2 � iqA � (j + 1)qB)�h�1(i; j; ��1)

= �h(i; j; ��1):

Consequently�(i; j; ��1) > �(i; j; �1) and js(i) is monotonically
decreasing in�1.

Proof for Decreasing in�; �2; andRB1 ; Increasing in�B andP;
and Insensitive toRA1 : These proofs are substantially similar to those
above and are hence omitted.

Proof for Increasing inRB2 : Consider a system with identical pro-
portional rewards�RB1 = kRB1 ; �RB2 = kRB2 . Choose initial values
such that

�0(i; j; �R
B
2 ; �R

B
1 )

�0(i; j; RB2 ; R
B
1 )

= k
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Fig. 3. Varying�B .

and satisfy the hypotheses of Lemma 4.1. It is easy to show that

�h(i; j; �R
B

2 ; �R
B

1 )

�h(i; j; R
B

2
; RB

1
)
= k; 8h 2 N:

Therefore

�(i; j; �RB2 ; �R
B

1 )

�RB
2

=
�(i; j; RB2 ; R

B

1 )

RB
2

and thusjs(i; �RB2 ; �R
B

1 ) = js(i;RB2 ; R
B

1 ). Then consider another
system with

=

R
B

1 = R
B

1 �

=

R
B

2 > R
B

2 > 0:

Choose

k =

=

R
B

2

RB
2

> 1

so that
=

R
B

2 = �R
B

2 and �RB1 = kRB1 > RB1 =
=

R
B

1 . By
above,js(i; �RB2 ; �R

B

1 ) = js(i;RB2 ; R
B

1 ). However, by A), optimal

policy is monotonically decreasing inRB1 , so js(i;
=

R
B

2 ;
=

R
B

1 ) �

j
s
(i; �R

B

2 ; �R
B

1 ). Therefore, js(i;
=

R
B

2 ; R
B

1 ) = j
s
(i;

=

R
B

2 ;
=

R
B

1 ) �

j
s
(i;R

B

2 ; R
B

1 ).
Proof for Decreasing inm: Choose1 > �m > m > 0. The

proof is similar to the proof for�1 in A), except for the initial
valuesV0(i; j; �m) = V (i; j;m) for 0 � i � m andV0(i; j; �m) =

V (m; j;m) for m < i � �m.
Proof for D): Choose1 > �n > n > 0. Definedn = �n � n.

We use initial valuesV0(i; j; �n) = V (i; j � dn; n) for dn � j � �n

and V0(i; j; �n) = V (i; 0; n) + (dn � j)�(i;0; n) for 0 � j < dn
so that�0(i; j; �n) = �(i; j � dn; n) for dn � j � �n � 1 and
�0(i; j; �n) = �(i; 0; n) for 0 � j < dn. The proof is then similar to
the proof for�1 in A) to show that�(i; j; �n) < �(i; j � dn; n) for
0 � i � m anddn � j � �n�1. Hencejs(i; �n)�(�n�n) � js(i; n)

on js(i; n) > 0 and the result directly follows.
Now, we further investigate the variation of the optimal admission

threshold on type-2 customers with changes in system parameters,
through a couple of examples. The optimal value function is found
by successive approximation, and from that the optimal policy is
inferred. For both experiments, we show the threshold switching
curve,js(i), for the optimal policy. The nominal system parameters
are:m = 6; n = 5; � = 0:9999; Q = 100000; �1 = 1; �2 = 0:8;

�A = 10; �B = 5; RA1 = 100; RB1 = 300; RB2 = 50; and
P = 0. Example 1 (Fig. 3) demonstrates the variation of�B . We
find that the number of spaces reserved at stationB for type-1 traffic,

Fig. 4. VaryingRB
2

.

given a fixed number of customers atA, decreases steadily as the
service rate at stationB increases. Faster service atB decreases
the likelihood that a type-2 customer, if admitted, will block a
type–1 customer. Consequently, it is more favorable to admit type-2
customers. Example 2 (Fig. 4) demonstrates the variation ofRB2 . We
can observe that the reservation atB for type-1 customers decreases
steadily as the revenue generated by type 2 approaches that of type-1
customers at stationB. As we expected, if these two revenues are
equal, then type-2 customers are always admitted.

VI. CONCLUSION

We have analyzed access control policies in the tandem multiserver
loss queues. The optimal policy was found to be a monotonically
decreasing threshold. Furthermore, monotonic variation of the thresh-
old was proven for most system parameters. We hope this simple
model will give us insight into sequential resource allocation in
larger multiple service, multiple resource loss networks, which are
increasingly common in telecommunication systems. It is of note that
the structural properties proven here can be extended to an arbitrary
number of parallel first stage queues [10]. It would be of value to
extend these results to more general multiserver loss networks or to
study methods to use these results to model the congested segments
of such networks.
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Convergence Rate for RLS-Based Direct
Self-Tuning Minimum-Variance Regulation

of ARMAX Minimum Phase Plants

A. Niederliński

Abstract—An upper bound for the error convergence rate of recursive
least squares (RLS)-based direct self-tuning minimum-variance (DSTMV)
regulation of minimum phase multiple time-delay AutoRegressive Moving
Average with eXogenous input (ARMAX) plant is derived. The RLS algo-
rithm used is k-interlaced, with k being the plant time-delay. The bound is
derived for known fixed b0 by extending a recently proposed methodology.
The bound provides a joint explanation of DSTMV regulation stability
and parameter estimate convergence. The paper demonstrates that self-
tuning is based on convergence properties of RLS as well as on the
excitation quality of plant white noise, which generates (via controller
feedback) the plant input.

Index Terms—Minimum-variance regulation, recursive least squares,
self-tuning.

I. INTRODUCTION

The oldest self-tuning controller is undoubtedly the direct (im-
plicit) self-tuning minimum-variance (DSTMV) controller, based on
recursive least squares (RLS) estimation. Its main feature is that
RLS determinesdirectly the controller parameters, whichimplicitly
establish a plant model. This is in contrast with indirect (explicit)
self-tuning, whereexplicitly estimated plant parameters are used to
indirectly determine the controller parameters.

The idea of DSTMV regulation was formulated by Peterka [12]
and developed bẙAström and Wittenmark [1], who also presented
the first results of its asymptotic properties. DSTMV as applied to
a k-delayed AutoRegressive Moving Average with eXogenous input
(ARMAX) minimum phase plant is based on the idea of restructuring
the plant model so that thek-step predicted plant output is a linear
function of all controller parameters; they may therefore be estimated
using RLS. It follows that: 1) self-tuning may be donevia simple and
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well-understood RLS, even for ARMAX plants, for which theindirect
approach requires nonlinear estimation algorithms and 2) controller
parameters being estimated, there is no need to design the control
law by solving a Diophantine equation at each step of the self-tuning
recursions.

The price paid for these advantages seems to be minor: 1) for
direct self-tuning a few more parameters need to be estimated
than the number of parameters in the usual input–output model
and 2) any change of control law (e.g., control input weighting)
must be accommodated by repeating the estimation for a differently
restructured plant model, whereas an estimated input–output model
may be used to design a broad range of control laws.

Although simple, the DSTMV idea is notorious for resisting
attempts at theoretical justifications. It is relatively straightforward to
demonstrate that thek-step predicted plant output converges toward
the minimum variance (MV) prediction error given by a moving
average (MA) time-series of orderk � 1, provided the plant is
controlled by a controller converging to the target MV controller.
However, to demonstrate that the CE DSTMV controller is in fact
converging to the target MV controller seems to be a problem
considered by many as not yet solved, even for AutoRegressive with
eXogenous input (ARX) plants; see, e.g., [6] and [14].

The oldest approach to self-tuning convergence analysis is the
ODE-approachproposed by Ljung; see [7]. Its essence is to analyze
local convergence points of an averaged nonstochasticOrdinary
Differential Equation, which approximates the stochastic discrete-
time system in a compressed time scale. The (implicit) stability
assumption of this approach forfeits a complete explanation of the
self-tuning mechanism.

Another approach is based on martingale theory. Its first broad
exposition was presented by Goodwin and Sin (see [3]) and later
developed by Chen and Guo (see, e.g., [2]). The main advantages of
this approach are its fundamental nature, the power of already existing
martingale theory, and the fact that both stability and convergence
are analyzed simultaneously.

The lack of satisfactory theoretical results was perhaps partially re-
sponsible for the decline of interest in RLS-based DSTMV regulation
for ARMAX plants, in favor of the more obvious (but numerically
more demanding) approach relying upon modified extended RLS (see,
e.g., [3]) or extended RLS (see, e.g., [2]). This is to be regretted
because DSTMV regulation with RLS parameter estimation is a
robust technique (see, e.g., [8]), easily accommodating all types of
MV and pole-zero placement control laws for minimum phase as well
as for nonminimum phase plants.

The aim of the paper is to present a result guaranteeing stability
and parameter convergence for RLS-based DSTMV regulation of
minimum phase ARMAX plants with multiple time-delay. The main
result is an almost sure (a.s.) upper bound on the convergence rate
of the estimation error. It is shown that the mechanism of getting
stability and parameter convergence is based on RLS convergence
properties as well as on excitation properties of plant white noise,
which generates (via a generally nonstationary pole-zero filter feed-
back) the plant excitation in the process of self-tuning. The result
supports an old conjecture attributing self-tuning mainly to some
properties of RLS; see, e.g., [3].

II. DSTMV REGULATION—A SUMMARY

The wordplant means in the sequel an open-loop asymptotically
stable entity, which responds to the input time seriesfu(t)g with
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