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Language input and semantic categories: a relation
between cognition and early word learning*

ARIELLE BOROVSKY AND JEFF ELMAN

University of California, San Diego

(Received 9 November 2004. Revised 4 February 2006)

ABSTRACT

Variations in the amount and nature of early language to which

children are exposed have been linked to their subsequent ability (e.g.

Huttenlocher, Haight, Bryk, Seltzer & Lyons, 1991; Hart & Risley,

1995). In three computational simulations, we explore how differences

in linguistic experience can explain differences in word learning ability

due to changes in the development of semantic category structure.

More specifically, we manipulate the amount of language input,

sentential complexity, and the frequency distribution of words within

categories. In each of these simulations, improvements in category

structure, are tightly correlated with subsequent improvements in word

learning ability even when the nature of the input remains the same

over time. These simulations suggest that variation in early language

environments may result in differences in lexical proficiency by altering

underlying cognitive abilities like categorization.

INTRODUCTION

The ability to group objects into categories based on some similarity

of function, form or meaning is arguably one of our most important

cognitive behaviours. While it may be a common-sense notion that we form

categories based on our own direct experience of them, we also develop

categories for things we may have never directly experienced like Roman

emperors, subatomic particles, and vacuum-tube computers. A reasonable

assumption is that language plays a key role in making this possible. But a

similar issue arises in the case of language: we ultimately are able to learn
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words for things outside our direct experience. This poses a chicken-and-

egg problem. Intriguingly, during early stages of language learning there is

little evidence of category knowledge, and the rate of vocabulary acquisition

is slow. At the point when children undergo a ‘vocabulary spurt ’ – in which

the pace of word learning increases rapidly – they also begin to display the

ability to sort sets of objects into multiple categories (Gopnik & Meltzoff,

1987, 1993). This suggests that these two phenomena, i.e. the ability to learn

new words and knowledge of categories, may be related in a synergistic

fashion. In this paper, we use computational simulations to explore how

language input influences development of category knowledge, and how

category knowledge in turn influences subsequent lexical acquisition.

We begin with a brief review of the claims that have appeared in the

literature regarding the nature of the relationship between category

knowledge and lexical development. We then turn to a review of what is

known about the effects of language input on vocabulary acquisition. Finally,

we focus on a specific hypothesis – that even in the absence of experiential

information, vocabulary acquisition can shape category knowledge, which

once in place, then facilitates the rate of learning new words – and study the

conditions under which these two phenomena interact.

The relationship between lexical development and category knowledge

in children

How might the ability to categorize objects and the ability to learn

new words be related? Several logical possibilities exist, ranging along

a spectrum of being tightly interrelated to not related at all. The former

position is suggested by Fodor (1975), who argues that linguistic and

cognitive abilities are completely modular or domain specific and develop

independently of each other. According to this account, semantic structure

is not acquired due to language input. Rather, conceptual structure is

innate, and words are learned that correspond to this innate ‘mentalese. ’

Chomsky (1981) and Pinker (1991) have advanced similar – though not

identical – positions.

But because there appears to be a confluence of rapid gains in

cognitive and linguistic functioning around the middle of the second year,

others have proposed that linguistic and other cognitive abilities such

as categorization, develop in a more tightly coupled manner. Within this

camp, theories tend to differ on degree of this relationship, ranging from the

strongly Whorfian (Whorf, 1956) hypothesis that thought is impossible

without the use of language, to more interactive versions where language

and cognition are completely integrated and rely on each other during

development. We take this to be the position of, for example, Gopnik &

Meltzoff (1993).
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The possibility that word-learning might specifically drive conceptual

organization has been proposed by Bowerman and colleagues (Bowerman,

1996; Choi & Bowerman, 1991). Bowerman cites evidence from cross-

linguistic studies that children will readily learn the spatial categorization

scheme present in their language. For example, Korean focuses on the fit

between objects, while English tends to emphasize the kind of containment

or method of support. However, Choi & Bowerman (1991) find that

children learning each language have no problem describing these spatial

relations in terms appropriate to their language. So, Korean children will

describe a peg in a hole, as tight or loose fitting, while English-speaking

children will say whether the peg is ‘ in’ or ‘on’ the hole.

Mandler (1996) has countered this claim by proposing that younger

children might be able to carve-up space in ways that are not solely

linguistically determined. She suggests that there are a number of different

ways that the world can be categorized – all of which are initially available,

but that language constrains these possibilities into a regularized convention

that differs from language to language. Consistent with this claim is the

finding that children at 0;9, 0;11 and 1;2 are all able to distinguish between

tight/loose and in/out distinctions, regardless of linguistic environment

(Choi, McDonough, Mandler & Bowerman, 1999).

The above debate delineates two possibilities regarding the language-

categorization interaction. The former proposes that language drives the kind

of categorical structure that is formed. The latter maintains that nonlinguistic

categories are already formed from the infant’s physical knowledge of the

world, and that language ‘slots ’ into these prior categories. By extension, one

might assume that category knowledge facilitates vocabulary acquisition.

Lastly, Gopnik & Meltzoff (1993, 1997) have argued that cognitive and

linguistic development is related to each other in a more tightly interactive

way, and that both can influence each other equally. For instance, they

propose that exposure to a particular word will lead to a drive to learn the

underlying concept, but that this new knowledge will then interact with

knowledge already in place, which might then lead to new word learning.

Evidence for this idea is found from crosslinguistic studies in which the

appearance of categorization abilities arise later in Korean speaking children

than in English speaking children (Gopnik, Choi & Baumberger, 1996). In

Korean, verbs are much more prevalent than nouns, but the opposite is true

in English. Since English speaking children are able to sort objects into

categories earlier, this suggests that the language’s emphasis on nouns

drives the organization of (at least nominal) concepts into categories earlier

than in Korean, and that this improved categorization ability is what

facilitates subsequent word learning proficiency.

Logically, whatever the relationship between vocabulary acquisition and

categorization abilities, the role of the actual input presented to a child must
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itself play a critical role in the acquisition process. We turn now to a review

of what is known about the effect that input has on vocabulary acquisition.

The role of input

A growing body of research has found that early language input is key to

predicting levels of lexical proficiency. For example, a number of studies

(Huttenlocher et al., 1991; Hart & Risley, 1995) have found that children

who have had more language input from their parents also know more

words.

Additionally, some of the earliest observations about child directed

speech (CDS) (e.g. Snow & Ferguson, 1977; Newport, 1977) have found

that the language that children hear is simpler in both syntactic structure

and the kinds of words used. For instance, one ambitious study of CDS to

12 children between the ages of 2;0 and 3;0 years old (Cameron-Faulkner,

Lieven & Tomasello, 2003) found that 20% of all the utterances recorded

during this period were sentence fragments, which usually were responses

to a question, and that 32% of the utterances were questions. Complex

sentences only accounted for 6% of all utterances heard by children at this

age. These results were also compared with a similar, but smaller study by

Wells (1981), who reported strikingly similar results.

These findings imply that simplifications in the structural complexity of

CDS could aid word learning by reducing the processing demands placed

on the child when a new word is encountered. However, in order to support

this idea it is necessary to compare the kinds of input heard with the words

actually learned by the child. To this end, Brent & Siskind (2001) examined

the role of single word input in infants between 0;9 and 1;3 on the words

that the child knows at 1;6 – i.e. at the beginning of the vocabulary spurt.

They found that the number of times a child hears a word in isolation is a

more reliable predictor of whether the word is known at 1;6 than the total

number of times the word is heard. By examining the role of isolated words,

the investigators were able to study how the words heard in the simplest

kind of grammatical construction affect the learning of that word. When

taken into account with the other CDS findings described above, this work

indicates that word learning as whole might be easier when the sentence

structures remain simple.

On the other hand, there are also recent findings that more structural

complexity in CDS improves word learning at 2;0 (Hoff & Naigles, 2002).

However, here syntactic complexity was not measured through detailed

constructional analysis, but rather through the mean length of utterance

(MLU) in maternal speech. Hoff & Naigles (2002) concluded that it is

more syntactic complexity, not less, that is important in aiding word

learning.

BOROVSKY & ELMAN

762



In addition to differences in the structure of the input, there is also

evidence that the distribution of words in input may differ amongst children

(Bates, Bretherton & Snyder, 1988; Broen, 1972). Weizman & Snow (2001)

report that the usage of low frequency words varies between families, and

that five year old children who encounter a higher proportion of these

‘sophisticated words’ from their environment also tend to have larger

vocabularies. More recently, Pan, Rowe, Singer & Snow (2005) also find

that variation in type and token frequency in maternal speech to children in

the first three years of life also affects vocabulary growth. Moreover, they

find that having a increased variation in maternal types was more significant

than just overall amount of speech input alone.

We are thus left with a number of unresolved questions. That the input

matters, and that there is some relationship between language development

and category knowledge, seems almost trivially self-evident. But the specific

effect of the input that a child hears upon vocabulary acquisition, and what

the precise relationship between the word learning and category knowledge,

remains unclear. Although the answers to these questions will ultimately

come from empirical investigations, it would seem that there is a useful role

to be played by using computer simulations to explore the process of lexical

acquisition. In this way, it is possible to develop more specific hypotheses

about the effect of different types of input, and the relationship between

lexical acquisition and category knowledge.

Computational studies have been used in the past to model lexical

learning (i.e. Plunkett, Sinha, Moller & Strandsby, 1992; Li, Farkas &

MacWhinney, 2004). These models have been able to replicate phenomena

that have been observed in lexical development of children. Of relevance to

this paper, Li, Farkas & MacWhinney (2004) find that organization of

lexical categories (nouns, verbs, adjectives and closed class words) in self

organizing networks improve as the networks learn more words. This

suggests that modelling can reveal important links between category and

lexical development.

There are a number ways in which computational simulations comp-

lement behavioural research. While it is difficult to devise a task that can

directly measure internal representations in young children, and it would be

unethical to alter language input to such an extent that it might disrupt

normal processes of language acquisition, computational simulations can

overcome these difficulties. This makes it possible to measure category

structure both by artificially manipulating how well category members fit

together, and more importantly, to evaluate the actual representations that

form. That is, rather than inferring category knowledge from task behaviour

(as is done with children), the network’s category knowledge can be assessed

directly through analysis of its internal representations. We use artificially

generated language input in order to have precise control over the properties
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of input, as it difficult to find these kinds of neat and tidy kinds of variation

in corpus data of CDS.

Another benefit of the computational methods employed in this paper is

that it is possible to isolate the role that linguistic input alone may play in

the development of conceptual structure, apart from other non-linguistic

kinds of information that are undoubtedly used in lexical acquisition.

In this way, our networks learn about words by their co-occurrence with

other words. Previous computational simulations have demonstrated

that such information can provide important information about category

structure (Elman, 1990, 1998). In the following simulations, we probe how

categories that are learned in this way may be related to rate of word

learning.

As a start, we propose that associations made from language input may

alter underlying category structure, and that it is this change in category

structure that can be related to proficiency in word learning. Under this

hypothesis, category development is an important factor in word learning,

so it can be expected that factors in language input that affect lexical

learning outcomes should also be reflected in the development of category

structure similarly. This leads to two key predictions:

(1) Variation in language input that affects lexical acquisition also affects

development of category coherence in a similar manner; and

(2) It is the development of categories themselves, and not solely language

input, that facilitates lexical acquisition.

In the remainder of this paper we examine this hypothesis and its

predictions in three computational simulations with connectionist networks.

In the first study we examine the role of the amount of input in developing

category structure and subsequent acquisition of new words. The second

investigates the role of syntactic complexity on this relation. The third

experiment examines how differences in the distribution of word frequency

in affecting this relationship.

The modelling task

The purpose of the following simulations is to explore the ways in which

language experience might affect cognitive development, and how such

development might in turn impact word learning ability. To this end, the

network’s category knowledge is assessed directly through analysis of its

internal representations. Before proceeding to describe the simulations,

we provide a brief explanation of the neural network model that is used

and explain how this type of model allows us to measure development of

category structure.

BOROVSKY & ELMAN
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Simple recurrent models

In this paper, we use the SIMPLE RECURRENT NETWORK architecture (SRN,

Elman, 1990). Simulations were run using the TLEARN software (Plunkett

& Elman, 1997). This type of network is especially useful for processing

elements that are sequential in nature, such as words in a sentence. Figure 1

illustrates the architecture of an example network. In our simulations, the

network receives individual words as input, one at a time. The network’s

task is to predict the next word in the sentence as its output. The output

that is produced is a function of both the current word input to the

network and the prior internal state of the network. stored in the context

layer (Figure 1c). Importantly, this prior internal state is not a literal tape

recording of preceding words, but is rather an abstract representation – that

must be learned – of that sequence. The hidden layer that reflects these

internal states (Figure 1b) is the part of the network that will be analyzed

to provide evidence the network’s knowledge of category structure, as

described below.

Measurement of category structure

The use of language-like input allows for examination of the kinds of

representations that might form when words are related by their occurrence

in similar contexts to other words in the category. This involves active

probing of the network to measure the coherence of representations that the

The boy sees the girl….

A) ***boy***

B) # # # # # # C) # # # # #

D) *sees* *walks* *eats* *jumps*

Fig. 1. Above, words from the sentence ‘the boy sees the girl ’ are presented one word at a
time to the network to the input layer (A). Next, the word is fed into the hidden layer (B),
which also receives information about the immediately previous network states from the
recurrent layer, (C). As training proceeds, the hidden layer will develop numerical internal
representations that can be used to generalize to similar inputs. In the output layer (D) the
network predicts the next possible words after ‘boy’. Generally, the SRNs will learn to
predict a range of words that are possible that correspond to their frequency with which they
are associated. Here, the network is predicting both the actual next word ‘sees’ but also other
possible words like ‘ jumps’ and ‘eats’.
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networks have developed from this kind of input. More specifically,

measurement of category formation is accomplished through calculation of

the network’s internal (hidden unit) representations of words in a particular

category (see Figure 1 for an example network).

Here, words that the network has learned to be similar (more precisely, in

the sense that they share similar linguistic properties), or to belong to a

similar category, will share hidden unit activations that are more similar

than those that are not within a learned category. For example, it is possible

to cluster these representations graphically (Figures 2 and 3) to visually

reveal the similarity of hidden unit values for each word.

Figure 2 outlines how hidden unit representations change over training in

this study. Before the network has adequately learned about category

structure, words are clustered without any noticeable relation to each other.

Yet, at the end of training it is clear that the network has learned not only

the differences between nouns and verbs, but also subcategories between

them (Figure 3). By comparing how close all members of a category are to

each other, it is possible then to measure the ‘global coherence’. Here, we

follow Keibel, Elman, Lieven & Tomasello’s (submitted) use of Average

Before training After training

Fig. 2. Hidden Unit representation of vocabulary items in a young network before extensive
training, after 20,000 sweeps and then at the end of training at 140,000 sweeps.
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Precision (Zavrel, 1996) for calculating global coherence. In this technique,

the vector distance between each pair of words is calculated, and then for

each word, other words are ranked on this distance measure. A coherence

score is then calculated for each word based on how close other members

of its category are ranked. The coherence score is then averaged across all

|---> animal 
 |   |---> eats 
-|   |   |---> bread 
 |   |   |   |---> toy 
 |   |   |   |      |--> man 
 |---|   |   |      |      |-> carrot 

|   |   |      |    |-| |-> cake 
|   |   |      |    | |-| |-> fruit 
|   |   |      |    |   |-|  _|-> juice 
|   |   |      |    |     | | |_|-> cookie 
|---|   |      |  |-|     |-|   |-> meat 
   |   |   |--|  | |       |_|-> pizza 
   |   |   |  |  | |         |_|-> orange 
   |   |   |  |  | |           |-> sandwich 
   |   |   |  |  | |_|-> soda 
   |   |   |  |  |   |-> water 
   |   |   |  |  |   |-> book 
   |   |   |  |  | |-|  _|-> bicycle 
   |---|   |  |--| | | | |_|-> blanket 

 |   |     | | |-|   |-> box 
 |   |     | |   |_|-> brush 
 |   |     | |     |_|-> dish 
 |   |     | |       |_|-> picture 
 |   |     | |         |_|-> cup 
 |   |     | |           |-> pillow 
 |   |     | |    _|-> dog 
 |   |     |-| |-| |-> duck 
 |   |       | | | |-> bird 
 |   |       | | |-| |-> puppy 
 |   |       | |   |-| |-> kitten 
 |   |       | |     |-| |-> lion 
 |   |       | |       |-| |-> elephant 
 |   |       | |         | |    _|-> hen 
 |   |       | |         |-|   | |_|-> mouse 
 |---|       |-|           | |-|   |_|-> bear 
     |         |           | | |     |_|-> lamb 
     |         |           |-| |       |-> pet 
     |         |             | |-> rabbit 
     |         |             |-> tiger 
     |         | |-> baby 
     |         | |   |-> grandfather 
     |         | | |-|  _|-> kid 
     | |-| | |-| |-> teacher 
     |   | |   | |-> person 
     | | |   |-| |-> brother 
     | | | |-| |-> dad 
     | |-|   |-| |-> girl 
     |   | |-| |-> sister 
     |   |   |-|  _|-> boy 
     |     | |-| |_|-> grandmother 
     |     |   |   |-> mother 
     |             |   |-> uncle 
     |           |-> woman 
      

Food

Objects

Animals

Humans

Fig. 3. Close-up of hidden unit cluster of noun items in older network.
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members of a category to determine the overall coherence of the

category. As Keibel et al. (submitted) points out, AVERAGE PRECISION (AP)

is appropriate in situations where the number of members in different

categories is not the same, which is the case in this study. AP values range

on a scale between 0 and 1, with higher values signifying that members of

a category have more similar hidden unit activation values. Essentially,

categories that are well-formed should have higher AP than those that do

not (see Appendix 1 for a detailed explanation of AP).

The use of computational simulations also allows for identical networks

to be exposed to different training environments. In this case, we alter the

exposure to both the quantity of input, but also qualities of its structure and

frequency of words within a category, as outlined in the next three sections.

Effect of quantity

The amount of input has been shown to play a role in lexical acquisition,

and the appearance of categorization abilities seems to be coincident

with improvements in lexical acquisition. If these two are related, then

simulations should show that networks that receive larger amounts of input

also will have higher category coherence. At the same time, these networks

should also be able to learn new words more quickly. This would lend

support to the idea that improved linguistic learning is related to category

development. This hypothesis can be further explored by manipulations of

the input that more directly but subtly affect category development.

Effect of frequency

In order to fully examine how word learning might be influenced by

category coherence, it is necessary to compare input conditions that are very

similar, but in which one leads to higher coherence values than does the

other. A recent proposal by Goldberg, Casenheiser & Sethuraman (2004)

suggests one way this may be possible.

In that work, a corpus study revealed that there are five highly frequent

verbs in CDS that correspond to five common constructional categories.

Furthermore, an accompanying experimental study found that when new

verb constructions are taught with a highly frequent exemplar, novel verbs

with the same meaning construction are learned more easily for both adults

and children (Casenheiser & Goldberg, 2005). This suggests that networks

also might form a particular category such as ANIMAL more readily if

they are exposed to input in which one animal word, such as cat, is more

frequent than other animal words. Conversely, networks that are exposed to

all words in a category with equal frequency should form less coherent

categories (at least initially), and thus, when given a task to learn a new

category member word, should learn less quickly than networks that
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have been induced to form a more coherent category through skewed word

frequency exposure.

To summarize, two predictions are made. First, networks that are

exposed to input where there is one very frequent word per category should

form more coherent categories than those that have no frequency differ-

ences between words in the category. Second, networks that form categories

with lower coherence, as measured by AP values, should learn new words

in the low coherence category more slowly than networks with higher

coherence values for a category.

Effect of syntax

Finally, as discussed earlier, there is some uncertainty in the literature about

whether more or less syntactic complexity in CDS is better for early language

learning. One drawback in studies of speech to toddlers is that data are often

collected sporadically in lab visits, or, in cases where children are recorded

many times and at home (Cameron-Faulkner et al., 2003), the sheer amount of

the data precludes a having large number of participants from a variety of

backgrounds. Additionally, the success of these studies hinges upon that

amount of variation that can actually be observed through recording sessions

since it is not possible to systematically change the kinds of language input a

child may hear on a large scale. On the other hand, it is possible to know in

detail about the entirety of experience a neural network has with language, and

to experimentally vary important properties of this input.

Of course, what counts as grammatical complexity is itself a complex

question and one can imagine many ways in which utterances might be

judged to be more or less complex. In this case, the most straightforward

manipulation that lends itself to examination of how grammatical com-

plexity of input may affect word learning is to present networks with input

that contain only simple, transitive and intransitive sentences or networks

that contain this simple input plus more complex ditransitive and matrix

sentence constructions. If this additional grammatical complexity (as

defined in this very specific manner) does indeed hinder vocabulary growth,

then networks trained with the latter type of input should learn new words

more slowly than networks that have been exposed to only more simple

constructions. Second, this slower word learning should then be associated

with lower AP values.

EXPERIMENT 1: EFFECT OF QUANTITY

METHOD

Input

The input for all simulations that are described in this paper was

constructed using a language generator program (SLG; Rohde, 1999). In
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the Experiments 1 and 2, a vocabulary of 85 words (52 nouns and 33 verbs)

was used and sentences were formed corresponding to two simple syntactic

constructions containing only nouns and verbs: NV and NVN (intransitive

and transitive, respectively).

Nouns were assigned to the following semantic categories : ANIMALS

(15), HUMANS (15), FOOD (12), and OBJECTS (10). Nouns in these

categories are commonly observed in the early vocabularies of toddlers (i.e.

Nelson, 1973), and are included on checklists for vocabulary checklists

at this age (Fenson Dale, Resnick, Bates, Thal & Pethick, 1994). Verbs

belonged to the following categories : CHANGE OF STATE (5),

COMMUNICATION (6), MOTION (6), EATING (5), PERCEPTION

(6), and ACTION (5). These verb categories were chosen because they are

typically included on checklists for vocabulary (Fenson et al., 1994).

In the artificial grammar that was used, nouns and verbs were required to

agree both semantically and syntactically, meaning that a sentence had to be

grammatically correct and ‘make sense’. Each word was coded in a localist

fashion as an 85 element binary-valued vector with each bit representing

a distinct word. Appendix 2 contains appropriate categorical semantic

relations between sentences. Appendix 3 contains examples of sentences

used in the study.

The amount of input was manipulated by altering the numbers of

sentences to which the network is exposed. Training involved input ranging

between 20 and 1000 sentences, depending on condition; there were five

conditions with corpus sizes of 20, 50, 100, 200, 500 and 1000 sentences

respectively. Table 1 contains information about the number and kinds of

types and tokens for each corpus size.

Although the relationships between categories was fairly simple, the

largest input condition (1000 sentences) still presented the network with

only a small subset of all possible sentences possible in this grammar. It is

estimated that in order to see every possible sentential combination the

network would have to see nearly half a million sentences. By training with

only a subset of all possible data, this allowed for the network to be

exposed to both a range of types and tokens, but still not see every possible

combination, such that category membership was not plainly ‘given away’.

Instead the network was forced to generalize from incomplete input in order

to figure out which words belong to which categories.

Training

For each of the input conditions listed above, 10 simple recurrent networks

(SRNs, see Figure 1 for an example) with 50 hidden units were trained on

a next-word prediction task. In this task, the network is presented with

successive words in a sentence, one at a time, and is trained to predict the

BOROVSKY & ELMAN

770



next word. Because the task is non-deterministic, the network’s optimal

strategy should be to learn the implicit classes of words that are appropriate

in each context. Note that these categories are defined solely by privilege

of occurrence (i.e. the input vectors themselves contain no information

regarding category membership).

The learning rate was 0.01, no momentum was used, and training was

carried out to 140,000 sweeps (one sweep corresponds to presentation of one

TABLE 1. Number of word types in each condition

No. of
sentences

Condition

Even Uneven Simple Complex

1000 85 85 85 95
Verbs 33 33 33 43
Animals 15 15 15 15
Humans 15 15 15 15
Food 12 12 12 12
Objects 10 10 10 10

500 85 — — —
Verbs 33 — — —
Animals 15 — — —
Humans 15 — — —
Food 12 — — —
Objects 10 — — —

200 79 — — —
Verbs 32 — — —
Animals 14 — — —
Humans 15 — — —
Food 10 — — —
Objects 8 — — —

100 62 — — —
Verbs 25 — — —
Animals 11 — — —
Humans 12 — — —
Food 7 — — —
Objects 7 — — —

50 44 — — —
Verbs 19 — — —
Animals 11 — — —
Humans 6 — — —
Food 4 — — —
Objects 4 — — —

20 33 — — —
Verbs 15 — — —
Animals 5 — — —
Humans 6 — — —
Food 4 — — —
Objects 3 — — —
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word; pilot studies had determined that was sufficient training to result

in asymptotic performance on the task). Thus, each network saw an equal

number of words, but was exposed to each corpus a differing number of

times, depending on the size of the corpus. This training scheme was meant

to simulate a number of children who are the same age, but have heard

different amounts of language input. Therefore, all networks had the benefit

of being trained for an equal duration. The only difference was the range of

sentences seen.

Analysis

At intervals of 20,000 sweeps, each network was probed to assess its

ability to learn new words and also the category structure of its internal

representations (i.e. hidden unit activations in response to seeing each word)

as measured by AP scores.

New word learning was measured by exposing the network to novel

sentences containing words the network has not previously seen. First, five

sentences containing five instances of one new noun were exposed to the

network for 50 sweeps, with the learning state of the network being

captured every five sweeps. Over 50 sweeps, this translates to the new word

being exposed between 13–14 times. Then, at the five sweep intervals, the

network was tested for its ability to predict the new word in five previously

unseen sentences, and the node activations of the new word was recorded.

This was done for four new nouns – one for each noun category. This was

meant to be analogous to examining the ability of a child to name a new

word in a cued context after hearing the word a certain number of times.

At the same time, the AP value was also determined for individual noun

categories, to be able to compare improvement in AP with word learning

across corpus sizes.

RESULTS AND DISCUSSION

Figure 4 shows the average output unit prediction over training averaged

over five new nouns that were taught to the networks after 140,000 sweeps.

Higher node activation indicates better performance on the prediction task.

Figure 5 shows the AP values of the network over time. From Fig. 4, we see

the trend that larger corpus sizes provided an earlier advantage in new word

learning, with new word being predicted in appropriate contexts earlier in

training than occurs in networks that have been exposed to smaller corpus

sizes. Consistent with our hypothesis, there were significant differences as a

function of size of training corpus F(5, 234)=42.4, p<0.0001. Post hoc tests

using Tukey’s HSD (Table 2) revealed that word learning between 20 and

50 sentences were comparable, but smaller than all other training input
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sizes. Additionally, word learning between 200, 500, and 1000 sentences did

not differ. However, the word learning with the 100 sentence corpus was

larger than 20 and 50 sentences, but smaller than 200, 500 and 1000

sentence corpora.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

20 50 100 200 500 1000

Corpus size

A
ve

ra
ge

 n
od

e 
ac

tiv
at

io
n

Fig. 4. Word learning across size of input. Average node activation is plotted across
corpus size for the prediction of the new word in a novel context.
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Next, AP values at the end of training were compared across size. It

was predicted initially that higher AP values (which reflect greater category

coherence) would also be associated with larger training corpora. Figure 5

shows the change in AP by corpus size over training. There were significant

differences at the endpoint in training of AP value as a function of size of

training corpus, F(5, 54)=404.21, p<0.0001. Post hoc tests using Tukey’s

HSD (Table 3) revealed that AP differences were higher between larger

corpus sizes, except between the 100 and 20 sentence corpus, where there

was no difference. This supports the hypothesis that like word learning,

higher AP values are attained by the network over time with networks that

have the benefit of larger corpora.

In order to better ascertain the relationship between word learning and

category coherence, a simple regression was conducted with the AP values

from the final point in training for each corpus size across the word learning

node activation values. Figure 6 shows that higher AP scores were very

highly correlated with better rates of word learning across corpus size,

R2=0.68, F(1, 58)=123.27, p<0.0001.

TABLE 3. Average precision means and standard deviations

for different training corpus sizes

Corpus size in
sentences Mean (S.D.)

20 0.418a (0.074)
50 0.371b (0.017)
100 0.447a (0.0133)
200 0.636c (0.011)
500 0.796d (0.008)
1000 0.849e (0.009)

Note : Subscripts indicate post hoc comparisons using Tukey’s HSD. Means that do not share
a common subscript are significantly different at p<0.05.

TABLE 2. Word learning means and standard deviations for

different training corpus sizes

Corpus size in
sentences Mean (S.D.)

20 0.307a (0.000070)
50 0.320a (0.000042)
100 0.409b (0.000073)
200 0.470c (0.000084)
500 0.477c (0.000099)
1000 0.498c (0.000100)

Note : Subscripts indicate post hoc comparisons using Tukey’s HSD. Means that do not share
a common subscript are significantly different at p<0.05.
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In sum, these results are consistent with previous findings in the acqui-

sition literature that increased exposure to language results in better lexical

acquisition skills. Here, networks that were exposed to input that was both

more varied, and had more tokens reaped the benefits of being better able to

learn new nouns that they were subsequently exposed to. Additionally, this

simulation also supports the hypothesis that better noun learning is indeed

associated with increased coherence of noun categories. This is consistent

with both the notion that categorization abilities that appear around the

time lexical learning improves could index better category structure, as well

as the idea that it is possible to influence cognitive development (in the

specific sense of inducing category structure) from linguistic input alone.

But can subtler differences in input also affect rate of word learning and

category structure? It has long been known that the vocabulary to which

children are exposed is skewed, in the sense that there are dramatic dif-

ferences in the frequency of different lexical items (Bates, Bretherton &

Snyder, 1988; Broen, 1972). More recent work suggests that not only do

these differences vary across families and children, but that the frequency

with which different members of a category occur may play a role in learning

and generalization. Bybee (1995) has noted such effects in the domain

of morphological generalization, and Goldberg and colleagues present
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Fig. 6. Average node activation across average precision value for each corpus size.
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experimental findings that suggest that the presence of a high frequency

category exemplar during learning can facilitate the learning of categories

(Casenhiser & Goldberg, 2005; Goldberg, Casenhiser & Sethuraman,

2004). In the next study, we test this possibility by keeping the type

frequency (number of different words) constant, but varying the token

frequency of individual words.

EXPERIMENT 2: EFFECT OF FREQUENCY

METHODS

Input

The training input was constructed with the same characteristics from

Experiment 1, with the same number of sentences, semantic and syntactic

relations and vocabulary. The major difference was that the frequency of

the word tokens was altered. There were two conditions: Even frequency

and Uneven frequency. In the Even frequency condition, all members in a

category were equally frequent, while in the Uneven frequency condition,

one member of a category was much more frequent than the other

members, while all other members shared the same low frequency.

Training

Each word frequency condition was presented to 10 SRNs with 50 hidden

units and trained on a next-word prediction task. Learning rate was 0.01, no

momentum was used, and training was carried out to 140,000 sweeps.

Thus, the network saw an equal number of word types and each corpus the

same number of times, but was exposed to different frequencies of the same

words.

Analysis. Analysis proceeded in identical fashion as in Experiment 1,

with AP values and new word learning being measured at regular intervals.

RESULTS AND DISCUSSION

Figure 7 shows the AP values over training for the networks trained in

each condition. There were no differences between AP values before and

at 60,000 sweeps, nor at 140,000 sweeps. However, there were significant

differences in AP values at 80,000 sweeps, F(1, 144)=920.77, p<0.0001, at

100,000 sweeps, F(1, 144)=926.57, p<0.0001, and at 120,000 sweeps,

F(1, 144)=229.93, p<0.0001. These results suggest that there is an ad-

vantage for the network that sees words presented with uneven frequency,

such that it enjoys an early boost that levels off, while the other network

catches up. In other words, the token frequency manipulation did aid in

initial category formation as predicted. (Note that, because of the limited
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size of the vocabulary, there is a ceiling effect in performance such that

all learning regimes converge on the same level of performance. A similar

phenomenon is observed with growth curves from the CDI: learning

appears to level off for all children. But this is because the CDI tests a fixed

(and relatively small) set of words. Eventually, like our networks, all

children learn the words in this limited set. Therefore, such growth curves

are most informative in the middle regions, above the floor and below the

ceiling of performance.)

Next, the network was probed for new word learning at 80,000 and

100,000 sweeps, where the largest difference in AP values was found. The

results of this learning at 80,000, 100,000 and 140,000 sweeps can be seen

in Figure 8. When measuring the rate of new word learning by taking

the average node activations across the 50 sweeps of training, new noun

learning for the uneven condition shows an advantage at 80,000 sweeps,

F(1, 312)=34.07, p<0.0001, but not at 100,000 sweeps, F(1, 312)=0.03, ns.

The result for 80,000 sweeps but not 100,000 falls in line with predictions

that uneven token frequency in each word category should provide some

sort of benefit in word learning that is tied to improvements in categorical

structure. In order to examine word learning when there are no differences

in AP values, Figure 8 also plots how well new nouns are being learned at

the end of training at 140,000 sweeps, where no differences in AP values

were observed. Examining this portion of the graph, the networks trained
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Fig. 7. Average precision values over training and frequency condition.
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with an evenly distributed word frequency have a significant learning

advantage, F(1, 312)=5.51, p<0.01. Although there are no differences in

AP value at this point, we do observe a difference in word learning in the

Even condition. This seems to reverse the trend seen at 80,000 sweeps

in training where the Uneven condition held the advantage in both word

learning rates and AP values. It appears that as differences in AP values get

smaller between the two frequency conditions, word learning in the Even

condition improves.

In order to examine more closely how differences in AP values between

the two conditions relate to differences in word learning rates, normalized

differences of AP scores and word learning between networks with the same

initial random weight setting (this is analogous to using the same human

subject) at 80,000, 100,000 and 140,000 sweeps are plotted in Figure 9.

Simple linear regression reveals a highly significant relationship between

differences in AP and differences in word learning between the even

and uneven condition R2=0.85 F(1, 28)=703.58, p<0.0001. This analysis

suggests that even though we find differences between the two word

frequency conditions in rates of new word learning at 140,000 sweeps when

there are not differences in AP scores, and that we find no differences at

100,000 sweeps, even though there are differences in AP scores, there is still
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Fig. 8. Rate of word learning at 80k, 100k and 140k sweeps in both frequency conditions
as measured by average word node activations over training.
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a very predictable relationship between changes in AP values and new word

learning. This indicates that the overall relationship between the difference

in learning rate and coherence in each condition, even though raw values

might fluctuate. Here, our regression model reveals a very highly significant

and positive relationship between differences in AP and subsequent

differences in new word learning, such that when conditions improve new

word learning ability in a particular network, we can also expect improved

AP scores.

Finally, we turn to a third way in which input conditions might differ

and ask what the effect of grammatical complexity might be on new

word learning. The literature on this point reports mixed findings, perhaps

because different measures of grammatical complexity are used in

different studies. Recognizing that there are many dimensions along which

such complexity might be defined, we begin with a very straightforward

manipulation. We will define complexity in terms of the number of different

arguments that are involved in a construction. The grammatically simple

condition will involve only transitive and intransitive constructions (NVN

and NV); the grammatically complex condition will additionally include

ditransitive and sentential complement constructions (NVNN, NVNV,

NVNVN).
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EXPERIMENT 3: EFFECT OF

GRAMMATICAL COMPLEXITY

METHOD

Input

Two 1000 sentence corpora were constructed, one for the Simple condition

and one for the Complex condition. The Simple corpus was constructed

with the same characteristics as the 1000 sentence corpus in Experiment 1.

The Complex corpus was constructed with 10 additional verbs that

belonged to two new verb categories: PSYCH (5) and TRANSFER (5).

Semantic and syntactic relations between these two verb categories are

included in Appendix 2. Examples of sentences containing verbs in these

categories are also included in Appendix 3. No new nouns were added.

Thus, the makeup of tokens in the complex grammar contained 95 total

words (52 nouns and 43 verbs; the network architecture was adjusted to

reflect the larger input and output vectors).

The new verb categories allowed for additional syntactic complexity

by allowing for three more complex constructions to be added to the already

present NV and NVN constructions. TRANSFER verbs allowed for

ditransitive constructions of the form: NVNN. PSYCH verbs allowed for

NVNV or NVNVN) constructions, with PSYCH verbs only occurring in

the first verb position in these sentences.

Training

Each of the two corpora were presented to 10 SRNs with 50 hidden

units and trained on a next-word prediction task. Learning rate was 0.01,

no momentum was used, and training was carried out to 140,000 sweeps.

Thus, the network saw an equal number of word tokens. Because the

average length of sentences was different between each condition, each

corpus was not seen the same number of times.

Analysis

Analysis proceeded in identical fashion as in Experiments 1 and 2, with AP

values and new word learning being measured at regular intervals.

RESULTS AND DISCUSSION

Figure 10 shows the AP values over training in networks with the

syntactically simple and complex input. The graph shows that the simple

input has significantly higher AP values at 80,000 sweeps, F(1, 18)=195.02,

p<0.0001, 100,000 sweeps, F(1, 18)=674.05, p<0.0001, 120,000 sweeps,

F(1, 18)=628.42, p<0.0001, and 140,000 sweeps, F(1, 18)=637.84,
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p<0.0001. AP is equivalent between each syntactic condition earlier. These

findings suggest that simpler grammatical constructions do indeed aid in

early categorical formation, because simpler syntax in this manipulation

displayed higher AP values after training.

Figure 11 relates these findings to new word learning. This graph shows

how well the networks trained with each kind of input learned new words

after 140,000 sweeps. Here, the networks trained with simpler input

indicate stronger activation to predict new nouns. The rate of new learning

was then assessed by taking the average activation value of the word node

to predict the new noun from the initial value. We find that there is also

a significant difference between new word learning with simple syntax

learning showing higher rates of word learning than more complex syntax,

F(1, 78)=130.41, p<0.0001. These results are consistent both with the

hypothesis that simpler grammar should improve lexical acquisition, and

that higher category coherence also predicts better word learning.

GENERAL DISCUSSION

These three experiments tested two predictions that follow from the

hypothesis that categorization is used as a tool in lexical acquisition.

(1) Variation in language input that affects lexical acquisition also affects

development of category coherence in a similar manner; and

(2) It is the development of categories themselves, and not solely language

input, that facilitates lexical acquisition.
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The results of these three experiments support these predictions. All

three show direct relationships between input condition and corresponding

improvements in lexical acquisition and category coherence.

A very clear illustration of this relationship is demonstrated in Figure 6,

from Experiment 1, where increasing amounts of input positively

influenced both category coherence and word learning. This supports the

idea that there is a relationship between category development and speed

of word learning. However, it is still not clear from these results if

this relationship is of the nature as described in our second prediction, or

is driven by language input driving both factors independently, but in

coincidentally similar ways.

A key finding that addresses this issue comes from Experiment 2, where

the frequency of the words in each category was manipulated. Here, while

the nature of the input remained constant – in terms of the richness of the

vocabulary – we see a direct relationship between improvements in category

and lexical development. This suggests that lexical acquisition is affected by

changes that the input has on category structure.

Word learning mechanisms

Much of the work that has been devoted to explaining word learning

focuses on the dramatic changes in rate of lexical acquisition that occur

during the middle of the second year of life. Two basic types of theories

have been proposed. One class of theories hypothesizes that language
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specific constraints and principles appear during the vocabulary spurt and

have the effect of improving the ability of children to acquire new words.

These accounts have tended to emphasize the language-specific nature of

the constraints involved in word learning (Woodward & Markman, 1998;

Markman, 1989), although it is also possible that these domain-specific word

learning constraints may arise from more domain-general processes, as in

the ‘lexical principles’ model (Golinkoff, Mervis & Hirsh-Pasek, 1994).

An alternative to the constraints and principles view is one that words

are learned through domain-general processes that make note of statistical

associations between words and other properties that accompany their

referents. These theories are entirely compatible with a view that other

cognitive processes like categorization may aid in knowledge generalization

from similar words in the same category. The simulations we report here

illustrate how such a mechanism might work. The simulations demonstrate

that a single learning mechanism that does not change over the course of

development can account for a number of ways in which input differences

seem able to influence word learning ability. The effects are mediated by

category knowledge; interestingly, the development of these categories can

be manipulated not only by quantitative variations in the input, but also by

differences in grammatical complexity and frequency distributions across

the input vocabulary.

These results are thus consistent with Gopnik & Meltzoff’s (1993)

account of the use of categorization as a tool in learning language as a

‘complex bi-directional interaction’. We find a direct inter-relationship

between improvement in category scores and word learning, when starting

from clean conceptual slate. By training neural networks, we were able to

examine how linguistic input might serve to carve out categorical space in

the absence of any other kind of perceptual input, and how this categorical

space in turn improves proficiency in lexical acquisition. In this way, we find

support for a bidirectional influence of language and categorical development.

Through semantic information that is encoded solely in language, it is

possible to find relationships between improvements in linguistic ability and

category development in the absence of perceptual input.

Overall, we have found that a single domain-general mechanism can

account for a number of patterns in child word learning. Initially, our

networks show very low category coherence, as it learns about individual

items. This pattern is also observed in children, where analysis of early

vocabulary shows that children tend to learn about basic level words before

superordinate or subordinate items (Mervis, 1983). Category coherence

improves because the neural networks eventually learn to categorize word

items that are more similar to each other. More input aids in this process,

by allowing the network to have a larger variety of experience and examples

in which it may use to more appropriately classify items into groups.
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Simpler syntax is useful in allowing the network to process simpler relations

that are easier to understand and more easily grouped. Also, having a highly

frequent exemplar in each noun category was useful to allow the networks

to understand one example very well in a variety of contexts, thereby allowing

other members of the same category to be organized more easily into a

group. Word learning was improved in cases of better developed category

coherence, because the networks were able to generalize from its knowledge

of other members in the category to new words seen in similar contexts.

Role of input

The role of language input is highly emphasized in this paper. However, it

is important to acknowledge several ways in which the experience of the

networks differs from that of children. First, in these simulations we are

limited to using a simplified artificial language that does not represent the

full richness and complexity of natural language. Undoubtedly there are

many other factors in CDS that may affect the outcome of this study. For

instance, earlier disagreement about the role of structural complexity in

language might actually be related to a connection in increasing complexity

of CDS with age. Hoff & Naigles (2002) found that increased syntactic

complexity in CDS was a better predictor of vocabulary size in 2;0

year olds. On the other hand, Brent & Siskind’s (2001) study suggest that

simpler complexity is beneficial was achieved with children at 0;9 to 1;3. It

could be that increased complexity is beneficial for older children, like those

in Hoff & Naigles (2002). A similar sort of result is reported by Elman

(1993), where networks trained on input complexity that was incrementally

increased in complexity demonstrated better learning than starting off with

complex input initially.

Second, the input used in this study completely ignores the role that

other social and perceptual cues may play in language learning. We have no

doubt that input in other forms and modalities is crucial in both language

and cognitive development. In fact, there is evidence that around the time

of the vocabulary spurt, children seem to be making important develop-

ments in their social abilities as well. Thus, we emphasize that we do not

believe that information from verbal input is the sole determinant of

conceptual development.

Nonetheless, it is a striking result that the linguistic input alone – absent

the experiential input available to real children – is such a rich source of

information about category structure. Furthermore, we suspect that the

additional information available to children will be learned through a

similar kind of association mechanism that organizes experience based upon

similarity. Essentially, input comes in many forms, but the underlying

principles for learning is the same for all of them.
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CONCLUSIONS

It is clear from these experiments that there are potentially many factors

in CDS that may influence both a child’s ability to learn words and her

categorical knowledge. Here it is implied that disadvantages that arise from

deficient input will persist due to influences that remain from the cognitive

implications of this deficit. However, by identifying at least one underlying

cognitive factor that is affected by change in language input, it is possible

that interventions may be designed for children in normally impoverished

linguistic environments. For instance, Hart & Risley (1995) mention

somewhat pessimistically that differences in the amount of language input that

are related to socioeconomic status are so large that it would require a

continuous intervention of 40 hours per week to make up for ‘ lost input’.

Perhaps focused training on category development may boost word learning

ability in these children that could at least partially make up for deficiencies

in language experience by aiding them to make the most efficient use of

language that they do hear. This may also apply to cases where children

may have difficulty learning language, or where there may be a delay of input

due to conditions like deafness. Indeed studies by Smith, Jones, Landau,

Gershkoff-Stowe & Samuelson (2002) have shown that training children to

attend to shape rather than texture of objects boosts the number of object

words known several months later. It is still left to be determined if this kind

of approach could also apply to other types of categories, and other aspects

of input. These are all important questions that merit further study.

In conclusion, while there are a number of limitations to this study, both in

its simplification of language input and in the exclusion of other forms of

perceptual input, the results we have found still are able to account for several

patterns in language acquisition in children. Indeed, our results do mimic

trends that we have already seen in the developmental literature. For instance,

we replicated findings by Huttenlocher and colleagues (1991) and Hart &

Risley (1995), that less exposure to linguistic input seems to put children

at a disadvantage in language knowledge and learning. If anything, this type

of replication suggests that the kinds of phenomena we have measured in

our simulations, should also relate to learning in children. Most importantly,

overall, this work provides a clearer understanding of a possible mechanism

by which the development of category knowledge and word learning may be

related.
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APPENDIX 1

AVERAGE PRECISION

Average precision is calculated in several steps. First, the Euclidean

distance between each word’s hidden unit vector and every other word is

calculated. This is to find the pair-wise distance between each word and

every other in representation space. The values are then ranked, so that for

each word the other words that have the most similar hidden unit

representation are ranked closer than those that are not. Then, the average

precision of each word is calculated with the following formula:

P(w)=
1

Cwj j
X

i2Cw

nwi(Cw)j j
nwi(all)j j

Where P(w) stands for the average precision of one word, Cw is the number

of words in the category, nwi is the rank number of a particular word, and

nwi(C) is the number of words in the target words category that have

appeared before the particular rank. Simply, this algorithm calculates the

proportion of words that belong to a target word’s category at each rank,
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and then divides this proportion by the number of words in the category. In

a best case scenario, where all the words in a category are the closest ranked

members, this would yield a value of one. Theoretically, these values can

approach zero, where all within category words are infinitely far away from

the target word. However, in practice, this result is difficult to achieve, so

normally, just by chance, average precision values will hover around 0.2

without any real structure.

APPENDIX 2

SEMANTIC RELATIONS BETWEEN CATEGORIES

Intransitive relations

FOOD
CHANGE 

OBJECT

HUMAN COMMUNICATION

ANIMAL 
MOTION

HUMAN

Transitive relations

ANIMALS 
EATING FOOD

HUMANS

ANIMALS ANIMALS
ACTION

HUMANS HUMANS

ANIMALS HUMANS {hears}
ANIMALS

PERCEPTION
FOOD {tastes}

HUMANS OBJECTS {feel  touch}
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Ditransitive relations

FOOD
HUMAN TRANSFER HUMAN

OBJECTS  

Matrix relations

(Transitive)
HUMAN PSYCH HUMAN

(Intransitive)

APPENDIX 3

EXAMPLES OF SENTENCES USED IN THE STUDY

Transitive sentences

EATING:

kid gobbles pizza.

bird drinks water.

PERCEPTION:

rabbit sees bread.

grandmother touches book.

ACTION:

animal bites puppy.

teacher hugs lamb.

Intransitive sentences

CHANGE:

cake falls.

box breaks.

COMMUNICATION:

boy talks.

kid laughs.

MOTION:

tiger moves.

mother jumps.
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Ditransitive sentences

TRANSFER

mother buys brother cup.

brother offers grandfather box.

Matrix sentences

PSYCH

uncle wants grandmother sees duck.

grandfather convinces brother sits.
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