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Abstract

We study the properties of a quasi-maximum likelihood (QML) for the parame-

ters of a ”weak” GARCH process obtained by contemporaneous aggregation of two

independent ”strong” GARCH processes. The inconsistency of the Gaussian quasi-

likelihood estimator (QMLE) has already been reported by Nijman & Sentana (1996)

but has not yet been solved. In this paper we identify the causes of inconsistency of

QMLE in the ”weak” GARCH case and compare the performance of QMLE when the

innovations are assumed to have Gaussian, Laplace (double exponential) or ®-stable

distribution.

Keywords: aggregation, GARCH, estimation, quasi-maximum likelihood, consis-

tency.

JEL codes: C13, C15, C32, C51
¤The author is PhD candidate at HEC - School of Management, Department of Finance, 1 Rue

de la Libération, 78351 Jouy-en-Josas, France. This paper was written while the author was visiting

the UCSD Department of Economics, whose hospitality is gratefully acknowledged. I am indebted

to Clive Granger, James Hamilton, Graham Elliott, Hal White, Allan Timmermann, Robert Engle,

Peter Hansen and all the participants of the Econometrics Department Seminar for their precious

comments. I am also thankful to my advisor, Michael Rockinger, for his interest in this research.

1



1 Introduction

It is well known that GARCH type models give a parsimonious representation of the con-

ditional heteroskedasticity exhibited by the …nancial time series such as exchange rates and

stock prices. One serious drawback of this type of models, however, is their internal incon-

sistency by aggregation. In fact, the class of ”strong” GARCH processes, as de…ned by

Engle [10] and Bollerslev [4], is not closed under contemporaneous aggregation. In general,

the sum of two independent ”strong” GARCH processes cannot be described as a ”strong”

GARCH whose parameters are functions of the parameters of the two underlying processes.

In order to overcome this aggregation problem, Nijman & Sentana [23] de…ne a new class of

processes called ”weak” GARCH. The latter are closed under contemporaneous aggregation

and therefore seem to provide a solution to the aggregation problem. However, when trying

to estimate the parameters of such a model by Gaussian quasi-likelihood estimator, the au-

thors note that the latter is ”approximately consistent in some cases and clearly inconsistent

in others”.

Table 4 : weak GARCH parameters estimated plim of Gaussian QMLE

¯1 ®1 ¯2 ®2
Ã1
Ã2

¯ ® ¾2´ p lim b̄ p lim b®

0.5 0.35 0.8 0.05 1 0.569 0.281 8.282 0.690 0.125

0.5 0.35 0.8 0.05 4 0.516 0.334 112.158 0.581 0.234

0.5 0.35 0.8 0.05 1/4 0.705 0.145 26.167 0.775 0.062

To illustrate their conclusion, we report some of the results shown by Table 4 in [23].

In this paper we identify the causes of inconsistency of the QMLE in the ”weak” GARCH

models and compare the performance of QMLE under di¤erent density assumptions, namely

Gaussian, Laplace and ®-stable.

2 Problem Identi…cation

To describe the problem we consider, suppose that the data consists of observations yt; t =

1; : : : ; T generated by a univariate GARCH (1; 1) process, as …rst de…ned by Engle [10] and
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Bollerslev [4]. Let Ft ´ (yt¡1; yt¡2; : : :) denote the information set at period-t and let f»tg be

a sequence of innovations that is independent and identically distributed (iid). The process

fytg to be estimated can then be described as

yt = ¾t»t; (1)

¾2t = Ã + ¯¾2t¡1 +®y
2
t¡1: (2)

Throughout, we assume that the period-t innovation is centered, E [»t] = 0, and reduced,

E[»2t ] = 1. Many GARCH models of the form (1) are estimated by assuming a particular

form for the innovation density function. For example, the families of density functions used

are Gaussian, t density, Gamma, etc.

In order to estimate the parameters of such a process we use a QMLE. If the likelihood

is assumed to be Gaussian, then the QMLE is the value of µ ´ (Ã; ¯; ®)0 that maximizes

LT(µ) ´ T¡1
PT

t=1 lt(µ) where the period-t conditional log-likelihood of yt given Ft, lt(µ), is

de…ned as

lt(µ) ´ ¡ ln ¾t ¡ (
yt
¾t
)2. (3)

The QMLE obtained by maximizing the Gaussian log-likelihood is known to be consistent

and asymptotically normal, as shown by Bollerslev and Wooldridge [7], Lumsdaine [19],

Weiss [28] and Lee & Hansen [18], among others.

The asymptotic results on the behavior of the QMLE in the classical ”strong” GARCH

case (1) however, no longer hold for ”weak” GARCH processes, as de…ned by Nijman &

Sentana [23]. The ”weak” GARCH processes are typically obtained by contemporaneous

aggregation of two univariate ”strong” GARCH, as in (1). Thus if y1;t and y2;t are two

independent ”strong” GARCH(1; 1) with

yi;t = ¾i;t»i;t;

¾2i;t = Ãi + ¯i¾
2
i;t¡1+ ®iy

2
i;t¡1;

for i = 1; 2, their sum yt ´ y1;t +y2;t is a ”weak” GARCH(1; 1), provided that their per-

sistence parameters are the same, i.e. ¯1 + ®1 = ¯2 + ®2. One way to describe a ”weak”

3



GARCH model that is estimated is

y2t = ¾2t + ´t; (4)

¾2t = Ã + ¯¾2t¡1 +®y
2
t¡1; (5)

where ¾2t is the period-t linear projection of y2t on F 0
t ´ (1; y2t¡1; y

2
t¡2; : : :) and ´t is the

period-t innovation. It can easily be shown that ´t is a white noise, f´ tg » WN(0; ¾2´).
1

To understand why identi…cation di¤ers for ”strong” and ”weak” GARCH processes, we

focus on three fundamental di¤erences between the two speci…cations.

The …rst notable di¤erence between the models (1) and (4) is the characterization of

¾2t : the ”strong” GARCH ¾2t is the period-t conditional expectation of y2t given Ft, i.e.

¾2t = E[y2t jFt], whereas the ”weak” GARCH ¾2t is the period-t linear projection of y2t on

F 0
t ´ (1; y2t¡1; y

2
t¡2; : : :), i.e. ¾2t = bE[y2t jF 0

t].
2 We will give the estimation related implications

of this characterization of ¾2t in the following sections.

The second important di¤erence between the two processes lies in the nature of scaled

variable,
yt
¾t

, the ratio of the observed variable to its conditional standard deviation. In the

”strong” GARCH case, the scaled observations are independent and identically distributed

conditional on Ft, i.e.

½
yt
¾t

jFt

¾
» iid(0; 1) whereas in the ”weak” GARCH case, their

conditional distribution has no longer the iid property. Thus the conditional moments of the

”weak” GARCH scaled observations
yt
¾t

, E [(
yt
¾t
)rjFt] will no longer be independent of Ft.3

1Throughout the paper we use the following de…nition of white noise: the process fZtg is said to be white

noise with mean zero and variance ¾2, fZtg » WN (0; ¾2), i¤ fZtg has zero mean and covariance function

°(h) =

8
<
:

¾2 if h = 0;

0 if h 6= 0:

2We will use the symbol bE to denote a linear projection on the set F 0
t composed of past realizations of

y2
t along with a constant term 1.

3Consider for example the conditional second and fourth moments of
yt

¾t
:

E[
y2

t

¾2
t

jFt ] = E[
(y1;t + y2;t)

2

¾ 2
t

jFt ]

= ¾¡2
t

¡
E [y2

1;tjFt ] + 2E[y1;ty2;tjFt ] + E [y2
2;t jFt ]

¢

= ¾¡2
t

¡
¾2

1;t + ¾2
2;t

¢
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The third somewhat less visible di¤erence between the two processes lies in the nature of

the parameter µ to estimate. In the strong GARCH case (1) and assuming that the period-t

innovation »t is Gaussian, »t » N (0; 1), we need to estimate µ ´ (Ã; ¯; ®)0 where di¤erent

components of µ are mutually independent. In the weak GARCH case however, we need to

estimate µ ´ (Ã; ¯; ®; ¾2´)
0 where ¾2´, the variance of the period-t innovation ´t, depends on

the other components of µ, as will be shown in the next sections.

As before, we are interested in estimating the parameters of a ”weak” GARCH process.

In order to estimate the parameters of such a process let us follow the original approach of

Nijman & Sentana [23] and use a QMLE. Thus, we …rst need to make a choice of a particular

family of distributions for the scaled variable
yt
¾t

. Since
yt
¾t

is symmetrically distributed we

adopt their Gaussian assumption
yt
¾t

» N (0; s2) where s2 ´ E [(
yt
¾t
)2].4 The Gaussian QMLE

is then the value of µ = (Ã; ¯; ®; s2)0 that maximizes LT (µ) ´ T ¡1
PT

t=1 lt(µ) with

lt(µ) ´ ¡ ln s¡ ln ¾t ¡ s¡2(
yt
¾t
)2. (6)

Unfortunately, the Gaussian QMLE thus obtained is ”approximately consistent in some

cases and clearly inconsistent in others” as noted by Nijman & Sentana [23]. The question

then is wether the previous results on the consistency and asymptotic normality of a Gaussian

QMLE in the classical ”strong” GARCH case still hold in the ”weak” GARCH one.

For example, Weiss [28] proves consistency and asymptotic normality of MLE in the

ARCH models, under the assumptions that
yt
¾t

are iid and the fourth moment of yt …nite.

By using slightly di¤erent approaches Bollerslev & Wooldridge [7] and Lumsdaine [19] derive

the consistency and asymptotic normality conditions in GARCH (1; 1) and IGARCH(1; 1)

models. Lumsdaine [19] assumes that the scaled variable
yt
¾t

is iid and drawn from a symmet-

and

E[
y4

t

¾4
t

jFt ] = E[
(y1;t + y2;t)4

¾4
t

jFt ]

= ¾¡4
t

¡
E [y4

1;tjFt ] + 4E[y3
1;ty2;tjFt ] + 6E[y2

1;ty
2
2;tjFt ] + 4E[y1;ty

3
2;tjFt] + E [y4

2;t jFt ]
¢

= ¾¡4
t

¡
¾4

1;tE[»4
1;t] + 6¾2

1;t¾
2
2;t + ¾4

2;tE[»4
2;t ]

¢
;

which both depend on the information set.
4 In fact, ¾2 ´ E [(

yt

¾t
)2] is no longer 1 since ¾2 = E[E [(

yt

¾t
)2jFt]] = E [¾¡2

t

¡
¾2

1;t + ¾2
2;t

¢
]:

5



ric unimodal density with 32nd moment …nite. On the other hand, Bollerslev & Wooldridge

[7] provide quite general but somewhat abstract regularity conditions, which ensure asymp-

totic normality of the QMLE for a wide class of models.5 Finally, Lee & Hansen [18] require

the scaled variable
yt
¾t

to be strictly stationary and ergodic. They prove the consistency of the

QMLE under the condition that the conditional 2 + ± moment of
yt
¾t

is uniformly bounded,

for some ± > 0. The asymptotic normality is proved by adding the assumption that the con-

ditional fourth moment of
yt
¾t

is uniformly bounded. In addition, all these authors assume

that the conditional mean and the conditional variance of yt are correctly speci…ed.

Clearly, the main assumptions for the consistency and asymptotic normality of a Gaussian

QMLE are: (1) correct speci…cation of the conditional mean and variance of yt, (2) strict

stationarity of the scaled variable
yt
¾t

, and (3) some additional moment conditions on either
yt
¾t

or yt. Before applying the known asymptotic results, we must therefore ensure that these

requirements are met in the ”weak” GARCH case.

The main goal of this paper is therefore to provide a consistent method for estimating the

parameters of aggregated GARCH processes, also known as ”weak” GARCH. We proceed

by carefully examining the four possible sources of bias in the Gaussian QMLE of ”weak”

GARCH processes, namely: (1) new characterization of the conditional variance ¾2t , (2) non-

iid structure of the scaled variable
yt
¾t

, (3) dependence in the components of the parameter

to estimate, and (4) possible non-existence of higher moments of the residuals.

3 Properties of aggregated GARCH processes

In this section we recall some of the existing results on the contemporaneous aggregation of

two GARCH(1; 1) processes, as …rst derived by Nijman & Sentana [23] in 1996. The prop-

erties of the ”weak” GARCH obtained by aggregation are then compared to the properties

of the classical ”strong” GARCH some of which we recall hereafter.
5Typically, the authors prove consistency by using the uniform law of large numbers. The proof of

asymptotic normality of the QMLE relies on the fact that the score st(µ) of the conditional log-likelihood,

evaluated at the true parameter µ0, is a vector martingale di¤erence sequence with respect to Ft . They then

apply a martingale central limit theorem to fst(µ0)g.
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3.1 ”Strong” GARCH properties

Let fy1;t g and fy2;t g be two independent univariate GARCH(1; 1) processes de…ned by

yi;t = ¾i;t»i;t; (7)

¾2i;t = Ãi + ¯i¾
2
i;t¡1 +®iy

2
i;t¡1 (8)

for i = 1; 2. As before we assume that the period-t innovations are centered, E [»i;t] = 0,

and reduced, E [»2i;t] = 1. Throughout the paper we do not assume any particular form

for the innovation density function but, instead, give necessary conditions for the processes

fyi;t g ; i = 1; 2 to be well de…ned. Let us in that view transform (8) and consider the

ARMA(1; 1) representation for the time series of squared returns

y2i;t = Ãi + (¯i + ®i) y
2
i;t¡1 + ´i;t ¡¯i´i;t¡1 (9)

where the period-t innovation ´i;t is de…ned as ´i;t ´ y2i;t ¡ ¾2i;t for i = 1; 2. In order for (9)

to be causal and invertible ARMA(1; 1) we need to impose the following conditions on the

parameters Ãi, ¯i and ®i, i = 1; 2,

Ãi > 0 , ¯i > 0 and ®j > 0 (10)

and

1 ¡ (¯i + ®i)z 6= 0 for all z 2 C such that jzj 6 1. (11)

Moreover, the period-t innovation ´i;t needs to be a white noise. This last property is

ensured by the following condition.

Proposition 1 Under conditions (10) and (11) and provided that

E
£
»4i;t

¤
< 1 + ®¡2i

£
1¡ (¯i + ®i)2

¤
,

the sequence
©
´i;t

ª
of period-t innovations ´i;t ´ y2i;t ¡ ¾2i;t satis…es

©
´ i;t

ª
» WN(0; ¾2´;i);

where

¾2´;i = ¾
4(E

£
»4i;t

¤
¡ 1) 1 ¡ (¯i +®i)2

1¡ (¯i + ®i)2+ (1¡ E
£
»4i;t

¤
)®2i

7



and

¾2 ´ Ã

1 ¡ (¯i +®i)
:

The fourth moment condition on »i;t; i = 1; 2, ensures the positivity of the variance ¾2´;i

of period-t innovation ´i;t and imposes an additional constraint on the parameters ¯i and

®i; i = 1; 2, which also have to satisfy (10) and (11). It is interesting to note that the moment

condition E
£
y4i;t

¤
< 1 results in the same restrictions on ¯i and ®i; i = 1; 2. Indeed, E

£
y4i;t

¤

and E
£
»4i;t

¤
are related through

k»;i = ki
1¡ (¯i +®i)2 +®2i
1 ¡ (¯i + ®i)2+ ki®2i

(12)

where ki is the kurtosis of yi;t, ki ´ E
£
y4i;t

¤
(E

£
y2i;t

¤
)¡2, and k»;i the kurtosis of »i;t, k»;i ´

E
£
»4i;t

¤
.6 It is interesting to note that (12) can also be used in the expression of the variance

¾2´;i of period-t innovation ´i;t,

¾2´;i = ¾
4(ki ¡ 1)

1¡ (¯i + ®i)2

1¡ (¯i + ®i)2+ ®2i
(13)

Thinking in terms of ARMA(1; 1) representation (9) of GARCH(1; 1) process fyi;tg, we can

see that the vector parameter that fully determines (9) is (Ãi; ¯i; ®i; ¾2´;i). However, the last

component of the parameter vector is not independent from the other components, as shown

by (13). We can solve this dependency in parameter components problem by using a di¤erent

parametrization, i.e. by considering a vector parameter (Ãi; ¯i; ®i; k»;i) whose components

are mutually independent.

The results of Proposition 1 can be generalized to higher order GARCH processes. Con-

sider the case where fyi;tg ; i = 1; 2 are generated by GARCH (p; q)

yi;t = ¾i;t»i;t (14)

¾2i;t = Ãi +

pX

k=1

¯i;k¾
2
i;t¡k +

qX

l=1

®i;ly
2
i;t¡l (15)

where the parameters Ãi , ¯i;k; 1 6 k 6 p and ®i;l; 1 6 l 6 q satisfy the causality and

invertibility conditions:

Ãi > 0 , ¯i;k > 0 for all k : 1 6 k 6 p , and ®i;l > 0 for all l : 1 6 l 6 q , (16)

6Equivalently, we can say that ki = k»;i
1 ¡ (¯i + ®i)

2

1 ¡ (¯ i + ®i)
2 ¡ (k»;i ¡ 1)®2

i

.
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and

1 ¡ (¯i;1 + ®i;1)z ¡ :::¡ (¯i;r +®i;r)zr 6= 0 for all z 2 C such that jzj 6 1 , (17)

where r = max(p; q) and we de…ne ¯i;k ´ 0 for k > p and ®i;l ´ 0 for l > q. The conditions

(16) and (17) are mere generalizations of (10) and (11). The following proposition gives the

necessary conditions for the period-t innovation ´i;t to be a white noise.

Proposition 2 Under conditions (16) and (17) and provided that

E
£
»4i;t

¤
< 1 + [1 ¡ (

pX

k=1

¯i;k +

qX

l=1

®i;l)
2][

qX

l=1

®2i;l]
¡1,

the sequence
©
´i;t

ª
of period-t innovations ´i;t ´ y2i;t ¡ ¾2i;t satis…es

©
´ i;t

ª
» WN(0; ¾2´;i);

where

¾2i;´ = ¾
4
i

¡
E

£
»4i;t

¤
¡ 1

¢
1¡ (

pX

k=1

¯i;k +

qX

l=1

®i;l)2

1¡ (
pX

k=1

¯i;k +
qX

l=1

®i;l)2 + (1¡ E
£
»4i;t

¤
)

qX

l=1

®2i;l

and

¾2i ´ Ãi

1¡
pX

k=1

¯i;k ¡
qX

l=1

®i;l

:

The results of Proposition 2 can be viewed as a generalization of the …nite fourth moment

conditions derived by both Weiss [28] in the case of univariate ARCH models, and Bollerslev

[4] in the special case of a GARCH(1; 1) process. We therefore report them in this paper

together with a proof.

Proof of Proposition 2. see the Appendix 6.

Before considering the aggregation of univariate GARCH processes, let us give two more

results on the higher-order moments of
©
´i;t

ª
in the special case where fyi;tg; i = 1; 2 are

GARCH(1; 1) with Gaussian innovations, i.e. f»i;tg » N (0; 1).

9
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Figure 1: Domains of de…nition Dr, Dr ´ f(¯i; ®i) 2 [0; 1]2 : E [´ri;t] < 1g for r = 1; : : : ; 4, of

di¤erent moments of
©
´i;t

ª
in the ”strong” GARCH(1; 1) case.

Proposition 3 Under conditions (10) and (11) and provided that

1 ¡ ¯3i ¡ 3¯2i ®i ¡ 9¯i®2i ¡ 15®3i > 0

the sequence
©
´i;t

ª
of period-t innovations is third order stationary and E [´3i;t]=¾´ <1.

In the same manner, we have the following result.

Proposition 4 Under conditions (10) and (11) and provided that

1¡ 4¯3i ®i ¡ 18¯2i®2i ¡ 60¯i®3i ¡ ¯4i ¡ 105®4i > 0

the sequence
©
´i;t

ª
of period-t innovations is fourth order stationary and E [´4i;t]=¾

2
´ <1.

The Figure 1 represents the domains of de…nition Dr, Dr ´ f(¯i; ®i) 2 [0; 1]2 : E[´ri;t] <
1g for r = 1; : : : ; 4, of di¤erent moments of

©
´ i;t

ª
in the ”strong” GARCH(1; 1) case.
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3.2 ”Weak” GARCH properties

Let us at present consider the sum fytg of the two independent univariate GARCH(1; 1)

processes fyi;t g ; i = 1; 2
yt ´ y1;t+y2;t : (18)

As in the case of ”strong” GARCH processes fyi;t g ; i = 1; 2, we are considering the ARMA

representation of the process fy2t g of squared aggregated returns. In order to determine the

parameters of aggregated process we follow the approach of Nijman & Sentana [23] and

report their results in Proposition 5.

Proposition 5 Let fyi;t g ; i = 1; 2 be two independent univariate GARCH(1; 1) processes

de…ned by (7) and (8) and such that ¯1 + ®1 = ¯2 + ®2. Then the aggregated process

yt ´ y1;t+y2;t satis…es

y2t = ¾2t + ´t;

¾2t = Ã + ¯¾2t¡1 +®y
2
t¡1;

where ¾2t is the period-t linear projection of y2t on F 0
t ´ (1; y2t¡1; y

2
t¡2; : : :) and ´t is the period-

t innovation. The parameters Ã; ¯ and ® are functions of the parameters of the two processes

fyi;t g ; i = 1; 2 and are determined by

Ã = Ã1 +Ã2;

¯(1 + ¯2)¡1 =
¯1¾

2
´;1+ 4(¯1 +®1)¾

2
1¾
2
2 + ¯2¾

2
´;2

(1 + ¯21)¾
2
´;1+ 4[1 + (¯1 + ®1)

2]¾21¾
2
2 + (1 + ¯

2
2)¾

2
´;2

;

® = (¯1 + ®1)¡ ¯;

and ´ t is a white noise, f´tg » WN(0; ¾2´), with

¾2´ = ¾
4(k ¡ 1) 1¡ (¯ +®)2

1 ¡ (¯ +®)2+ ®2

where k is the kurtosis of the aggregated process fytg, k ´ E [y4t ] (E [y
2
t ])

¡2 = ¾¡4E [y4t ].

Thus de…ned, the aggregated process fytg is said to be ”weak” GARCH(1; 1).

There are two results of this Proposition that need to be proven: the functional forms

of the parameters Ã; ¯ and ®, and the fact that f´tg » WN(0; ¾2´). The expression of Ã; ¯

11



and ® as functions of the parameters of the two processes fyi;t g ; i = 1; 2 has already been

derived by Nijman & Sentana [23] so we refer to their results. We therefore only provide the

proof of the second result of Proposition 5, which has not yet been reported in the literature.

Proof of Proposition 5. see the Appendix 7.

The …rst important result of Proposition 5 is the characterization of ¾2t : the ”weak”

GARCH ¾2t is the period-t linear projection of y2t on F 0
t ´ (1; y2t¡1; y

2
t¡2; : : :), i.e. ¾2t =

bE[y2t jF 0
t ] and no longer the period-t conditional expectation of y2t given Ft, i.e. ¾2t = E[y

2
t jFt],

as in the ”strong” GARCH case. Therefore, the conditional variance of yt is no longer

correctly speci…ed. Indeed, we have

E[y2t jFt] = E[(y1;t + y2;t)
2jFt] = ¾

2
1;t + ¾

2
2;t 6= ¾2t : (19)

Even though the conditional mean of yt remains correctly speci…ed, i.e. E[ytjFt] = 0, there

is a misspeci…cation of the conditional variance of yt in the ”weak” GARCH models. Thus,

one of the main assumptions for the consistency and asymptotic normality of the Gaussian

QMLE no longer holds in the ”weak” GARCH case. Moreover, if we de…ne s2t as the

period-t conditional expectation of y2t given Ft, s2t ´ E[y2t jFt], then s2t will no longer be

an ”ARMA(1,1)” as in the ”strong” GARCH case. We can thus say that the aggregated

process is no longer GARCH(1; 1) for the conditional expectation of y2t .7

The second important result of Proposition 5 is that the scaled variable
yt
¾t

is no longer

iid conditional on the information set Ft. Indeed, let us consider the conditional moments

of
yt
¾t

, E [(
yt
¾t
)rjFt] with r > 0. For example, the conditional second and fourth moments of

yt
¾t

are

E [
y2t
¾2t

jFt] = ¾¡2t
¡
¾21;t + ¾

2
2;t

¢

and

E [
y4t
¾4t

jFt] = ¾
¡4
t

¡
¾41;tE [»

4
1;t] + 6¾

2
1;t¾

2
2;t + ¾

4
2;tE[»

4
2;t]

¢
:

Therefore, both second and fourth conditional moments of
yt
¾t

depend on the information set

Ft, which is in contradiction with the conditional iid property.
7I am thankful to Clive Granger for pointing out this property.
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Figure 2: Domain of de…nition D02 of the second moment of ”weak” GARCH(1,1) innovations

f´tg, D02 ´ f(¯; ®) 2 [0; 1]2 : E [´2t ]< 1g, and the boundary of D2 for ”strong” GARCH(1,1)

innovations f´ i;tg.

The third but somewhat indirect result of Proposition 5 deals with the higher-order

moments existence of the period-t innovation ´t. Whereas in the ”strong” GARCH case we

can easily derive the analytical expressions for the boundaries of the domains of de…nition

of higher-order moments of f´ tg (see Propositions 3 and 4), we can only determine them

numerically in the ”weak” GARCH case. Figures 2, 3 and 4 represent the domains D 0
r,

D0r ´ f(¯; ®) 2 [0; 1]2 : E [´rt ] < 1g for r = 2; 3; 4, where the higher-order moments of

f´tg exist in the ”weak” GARCH(1; 1) model. As we can see from di¤erent plots, we have

D0r ½ Dr, i.e. D0r is strictly included in Dr.

In order to illustrate the practical implications of the previous results, let us consider

the following example and compute di¤erent moments of f´tg in the ”weak” GARCH(1; 1)

models originally studied by Nijman & Sentana [23].

Example: ”weak” GARCH(1; 1) parameters obtained by aggregation of two independent

strong GARCH(1; 1) with parameters (Ãi; ¯i; ®i)

13



Figure 3: Domain of de…nition D03 of the third moment of ”weak” GARCH(1,1) innovations

f´tg, D03 ´ f(¯; ®) 2 [0; 1]2 : E [´3t ]< 1g, and the boundary of D3 for ”strong” GARCH(1,1)

innovations f´ i;tg.

¯1 ®1 ¯2 ®2
Ã1
Ã2

¯ ® ¾2´ s´ k´

0.5 0.35 0.8 0.05 1 0.569 0.281 8.282 1 1
0.5 0.35 0.8 0.05 4 0.516 0.334 112.158 1 1
0.5 0.35 0.8 0.05 1/4 0.705 0.145 26.167 <1 1

The parameters s´ and k´ denote the skewness and the kurtosis of the ”weak” GARCH

innovations f´tg. Their existence depends on the values of the ”weak” GARCH ¯ and ®.

Thus for ¯ = 0:569 and ® = 0:281 for example, we have E [´3t ] = 1 and E[´4t ] = 1. This

fact will be particularly important for the construction of the Gaussian QMLE, which we

study in the next section.

The fact that ¾2t is a linear projection of y2t on Ft, and no longer its conditional expecta-

tion, together with the non-iid property of the scaled variable
yt
¾t

and a possible non-existence

of higher order moments of the innovations f´tg, are important reasons why an aggregated,

”weak” GARCH, process is fundamentally di¤erent from the classical, ”strong” GARCH

14



Figure 4: Domain of de…nitionD 0
4 of the fourth moment of ”weak”GARCH(1; 1) innovations

f´tg, D04 ´ f(¯; ®) 2 [0; 1]2 : E [´4t ] < 1g, and the boundary of D4 for ”strong” GARCH

innovations f´ i;tg.

one. Moreover, these facts invalidate the applicability of the classical results on the consis-

tency and asymptotic normality of the Gaussian QMLE to ”weak” GARCH models.

In the next paragraph we further explore the di¤erences between the two types of

processes.

Similar to the ”strong” GARCH case, let us consider the ARMA(1; 1) representation

for the series of squares fy2t g of aggregated process. It is given by

y2t = Ã + (¯ +®)y
2
t¡1 + ´ t ¡ ¯´t¡1; f´tg » WN(0; ¾2´): (20)

Thinking in terms of ARMA(1; 1) representation (20) of the ”weak” GARCH (1; 1) process

fytg, we can see that the vector parameter that fully determines (20) is (Ã; ¯; ®; ¾2´). How-

ever, as noted before, the last component of this parameter vector is not independent from

the other components since

¾2´ = ¾
4(k ¡ 1) 1¡ (¯ + ®)2

1¡ (¯ +®)2 + ®2 : (21)
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Unlike in the ”strong” GARCH case, we can no longer solve this dependency in parameter

components problem by using a di¤erent parametrization. Indeed the kurtosis k of the

aggregated process given by

k =
k1¾

4
1 + 6¾

2
1¾
2
2 + k2¾

4
2

(¾21+ ¾
2
2)
2

(22)

is dependent on the parameters of the two processes fyi;t g ; i = 1; 2. Consequently, k is not

independent of (Ã; ¯; ®). As in the ”weak” GARCH case we can no longer specify yt as

yt = ¾t»t where f»tg is some iid process, such that E[»t] = 0 and E[»2t ] = 1, we can no longer

re-parametrize our problem and use k» instead of ¾2´. When estimating the parameters of

(20) we will therefore have to account for the dependence between the components of the

parameter vector (Ã; ¯; ®; ¾2´).

In conclusion to this section let us resume the fundamental di¤erences between ”strong”

and ”weak” GARCH processes and derive their implications on the estimation methods

used for parameter identi…cation in ”weak” GARCH processes.

First, when constructing the unobservable series f¾2tg based on the observations fytg
obtained by contemporaneous aggregation of two independent GARCH processes, we need

to take into account the fact that ¾2t is the linear projection of y2t on F 0
t, and no longer

its conditional expectation. Consequently, the conditional variance of yt is misspeci…ed and

we can no longer apply the classical results on the consistency and asymptotic normality

of the Gaussian QMLE to ”weak” GARCH models. Another complication due to this new

characterization of ¾2t is related to the construction of the latter. In order to construct

estimates of ¾2t , i.e. linear projections of y2t , we have to use an appropriate procedure. One

of them is the innovations algorithm de…ned by Brockwell & Davis [8], which we describe in

more details in the next section.

Second, once we have the series f¾2tg together with the observations fytg, we know that

the scaled variable
yt
¾t

is not iid. Together with the previous considerations, this property

makes the classical QMLE inapplicable in the ”weak” GARCH case. Instead, we propose to

estimate the parameters of the ”weak” GARCH by considering the ARMA representation

for fy2t g. We use QMLE based on the innovations f´tg.
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Finally, when estimating the parameter vector of the ARMA series of squared observa-

tions fy2t g, we need to take into account the possible dependence within its components as

well as a possible non-existence of higher order moments of f´tg.

4 QMLE for aggregated GARCH processes

In this section we construct estimators of parameters of a ”weak” GARCH process. These

are obtained as QMLE of parameters of an ARMA process generated by a white noise

sequence which does not have the usual ”good” properties, i.e. an iid process whose variance

is independent of other system parameters’ values. Moreover, some of the higher-order

moments of the innovations might not exist, depending on the true values of the system

parameters ¯ and ®. We start by constructing the estimates of the innovations f´tg by using

the Innovations algorithm. We then compute the QMLE under the Gaussian assumption.

Finally, alternative density assumptions, like Laplace or ®-stable, are examined.

For the simplicity of computations involved in the construction of estimates, we hereafter

consider the GARCH(1; 1) case. Our results can however be easily generalized in the case

of a higher order GARCH.

4.1 Innovations ´t

Recall from the previous section (20) that the process fy2t g of squared returns yt = y1;t+y2;t

follows

y2t = Ã + (¯ + ®) y
2
t¡i + ´t ¡ ¯´t¡1; f´tg » WN

¡
0; ¾2´

¢
;

where the parameters Ã, ¯ and ® satisfy the conditions (10) and (11) and the variance ¾2´

of the period-t innovation ´t is given by the (21). Let fxtg be a centered series such that for

every t > 0 we have

xt ´ y2t ¡ E[y2t ] = y2t ¡¾2. (23)

The sequence fxtg thus de…ned satis…es the recursion

xt ¡ Áxt¡1 = ´t + µ´t¡1; f´tg » WN
¡
0; ¾2´

¢
(24)
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where Á ´ ¯ +® and µ ´ ¡¯.

Given an observed sequence fytg we …rst need to construct the innovations f´tg appearing

in (24). Recall from Proposition (5) that the period-t innovation ´t is de…ned as ´t ´ y2t ¡¾2t
where ¾2t is the linear projection y2t on the set F 0

t, i.e. ¾2t = bE[y2t jF 0
t].

8 Thus ´ t = y
2
t¡ bE [y2t jF 0

t],

or equivalently,

´t = xt ¡ bE [xtjF 0
t]. (25)

We compute ´ t by using Brockwell & Davis’ [8] innovations algorithm, which we describe

next.

Let bxt be the best linear predictor of xt in terms of the constant 1 and the past observa-

tions (x1; :::; xt¡1) and rt¡1 its mean squared error, i.e.

bxj ´ bE [xjjx1; :::; xj¡1] for 2 6 j 6 T , bx1 = 0; (26)

rj = ¾
¡2
´ E(xj+1¡ bxj+1)2 for 1 6 j 6 T ¡ 1 . (27)

In the case of a causal-invertible ARMA(1; 1) process bxt and rt¡1 can be computed recursively

by using the innovations algorithm proposed by Brockwell & Davis [8].9 We hereafter recall

their main results, the details of which can be found in [8] (ch 5.3).

Proposition 6 (The Innovations Algorithm) Let fxtg be a zero mean sequence gener-

ated by ARMA(1; 1) process (24) and whose autocovariance function we denote by °X(:).

Let m = 1 and by convention µj = 0 for j > 1. The best linear one-step predictors

bxn+1; 0 6 n 6 T ¡ 1 and their mean squared errors rn; 0 6 n 6 T ¡ 1 are then given

by

bxn+1 = Áxn + µn;1 (xn ¡ bxn) ; 1 6 n 6 T ¡ 1;

and

E(xn+1 ¡ bxn+1)2 = ¾2´rn
8Recall that F 0

t ´ (1; y2
t¡1;y

2
t¡2; : : :).

9The same type of result holds for ARMA(p; q) processes.
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where µn;j and rn can be computed recursively from

8
>>>>>>><
>>>>>>>:

r0 = ¾
¡2
´ °X(0);

µn;n¡k = r
¡1
k [k(n + 1; k + 1) ¡

k¡1X

j=0

µk;k¡jµn;n¡jrj]; k = 0; 1; : : : ; n¡ 1;

rn = k(n +1; n + 1)¡
n¡1X

j=0

µ2n;n¡jrj;

with

k(i; j) =

8
>>>>>><
>>>>>>:

¾¡2´ °X(0); i = j = 1;

¾¡2´ [°X(1) ¡ Á°X(0)] ; min(i; j) = 1 and max(i; j) = 2;

µ2; i = j > 1;

0; otherwise:

Proof of Proposition 6. See Proposition 5.2.2. and (5.3.1)-(5.3.10) in [8].

Before continuing, let us make several remarks on the above results. The main di¤erence

between the representation

bxn+1 = Áxn + µn;1 (xn ¡ bxn) ; 1 6 n 6 T ¡ 1; (28)

and the one obtained through Durbin-Levinson algorithm is that in (28) bxn+1 depends of only

one past observations xn and only one past innovation (xn ¡ bxn) : Recall that the Durbin-

Levinson algorithm gives a recursive formula for computing bxn+1 as linear combination of

n past observations xn; : : : ; x1, i.e. bxn+1 = Án;1xn + : : : + Án;nx1; 1 6 n 6 T ¡ 1. The

representation (28) for bxn+1 is therefore particularly convenient from the practical point of

view because it requires the storage of at most 2 past realizations in order to predict xn+1.

It can also be shown that if fxtg is invertible, then rn ¡! 1 , µn;1 ¡! µ, as n¡! 1.10

The quantities k(i; j) de…ned in Proposition (6) depend on ARMA(1; 1) parameters Á

and µ. Moreover, by (21) we know that the variance ¾2´ of the innovation process depends

on Á and µ as well. This implies that the quantities µn;1 and rn are not independent of ¾2´.

This result is particularly important for the construction of the QMLE of the parameters in

(24), as we show next.
10See [8].
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4.2 Corrected Gaussian QMLE

We propose to estimate the parameters in (24) by using QMLE under the Gaussian assump-

tion. However, since the components of the vector parameter to estimate (Á; µ; ¾2´) are no

longer independent, we need to de…ne a ”corrected” log-likelihood function which takes into

account this dependence.

Following [8] the Gaussian log-likelihood l(¢) of the vector of observations XT ´ (x1; :::; xT)0

is

l(Á;µ; ¾2´) = ¡T
2
ln(2¼) ¡ T

2
ln(¾2´) ¡ 1

2

TX

t=1

ln (rt¡1) ¡ 1

2¾2´

TX

t=1

(xt ¡ bxt)2
rt¡1

(29)

where bxt and rt¡1 are obtained recursively by innovation algorithm de…ned in Proposition 6.

The following Proposition gives the optimality conditions for l(Á; µ; ¾2´).

Proposition 7 Let l(Á; µ; ¾2´) be de…ned by (29). Then the …rst order conditions for an

optimum of l(Á; µ; ¾2´) are

¾2´T
£
1 + ±T(Á; µ; ¾

2
´)

¤
=

TX

t=1

(xt ¡ bxt)2
rt¡1

(30)

@

@Á
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = (31)

¡ T ±T (Á; µ; ¾2´)
@

@Á
ln

TX

t=1

(xt ¡ bxt)2
rt¡1

and

@

@µ
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = (32)

¡ T ±T (Á; µ; ¾2´)
@

@µ
ln

TX

t=1

(xt ¡ bxt)2
rt¡1

where

±T(Á; µ; ¾
2
´) ´ T¡1[¾2´

@

@¾2´

TX

t=1

ln rt¡1 +
@

@¾2´

TX

t=1

(xt ¡ bxt)2
rt¡1

]: (33)

Proof of Proposition 7. see the Appendix 9.
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By considering the special case where the quantities bxt and rt¡1 do not depend on ¾2´,

i.e. the case where the system parameters
¡
Á; µ; ¾2´

¢
are independent, we obtain the usual

set of …rst order conditions

¾2´ = T
¡1

TX

t=1

(xt ¡ bxt)2
rt¡1

; (34)

@

@Á
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = 0; (35)

and
@

@µ
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = 0: (36)

The Gaussian QMLE (bÁ;bµ;b¾2´) then satisfy

b¾2´ = T¡1S(bÁ;bµ); (37)

where

S(bÁ;bµ) =
TX

t=1

(xt ¡ bxt)2
rt¡1

; (38)

and bÁ;bµ are the minimizers of

l(Á; µ) ´ T¡1
TX

t=1

ln rt¡1 + ln(T
¡1S(Á; µ)): (39)

(see for example Brockwell & Davis [8] (8.7.7)). If µ is invertible, then rt ¡! 1, and the

term T¡1
TX

t=1

ln rt¡1 is negligible compared to ln(T¡1S(Á; µ)). Therefore, the minimization

of l(Á; µ) in (39) is equivalent to the minimization of S(Á; µ), and the maximum likelihood

estimator will have similar asymptotic properties as the least squares estimator.

The main di¤erence between the two sets of …rst order conditions, (34)¡ (36) and (30)¡
(32), is that the quantity ±T de…ned in (33) is no longer zero if the variance ¾2´ of the

innovations depends on the parameters Á and µ. We therefore need to correct the scores of

the classical log-likelihood function. We propose a correction method in which we replace the

right hand sides of (31) and (32) by their estimated values. For example, consider the case

where we have a weakly consistent preliminary estimate (eÁ;eµ;evn) of our system parameter

(Á; µ; ¾2´).
11 We can then use (eÁ;eµ;evn) to construct the series of best linear predictors fextg of

11For details concerning the construction of (eÁ; eµ; evn ) see Appendix 8.
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the process fxtg as well as their mean squared errors fert¡1g. An estimator f±T of the quantity

±T(Á; µ; ¾2´) de…ned in (33) is then obtained from the …rst order condition (30)

f±T =
"
T¡1

TX

t=1

(xt ¡ ext)2
ert¡1

#
/evn ¡ 1: (40)

By substitution, the two …rst order conditions (31) and (32) now become

@

@Á
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = ¡Tf±TesÁ (41)

and

@

@µ
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

³
Xt ¡ bXt

´2

rt¡1
) = ¡Tf±Tesµ (42)

where the constants esÁ and esµ are obtained through

esÁ =
@

@Á
(ln

TX

t=1

(xt ¡ ext)2
ert¡1

) and esµ =
@

@µ
(ln

TX

t=1

(xt ¡ ext)2
ert¡1

). (43)

The estimators bÁ and bµ of the system parameters are the values of Á and µ which minimize

cl(Á; µ) ´ T ¡1
TX

t=1

ln rt¡1 + ln
TX

t=1

(xt ¡ bxt)2
rt¡1

+f±T (ÁesÁ + µesµ) (44)

quantity that we shall refer to as the ”corrected” log-likelihood. In the same manner, we

obtain an estimate b¾2´ of the variance ¾2´ of the period-t innovation ´t

b¾2´ = T ¡1[1 +f±T]¡1
TX

t=1

(xt ¡ bxt)2
rt¡1

(45)

where bxt and rt¡1 are obtained at the optimum, i.e. when (Á; µ) = (bÁ;bµ).
The estimator (bÁCG;bµCG;b¾2´CG) obtained by maximizing the ”corrected” Gaussian quasi-

log-likelihood (44) will be called ”corrected” Gaussian QMLE.

4.3 Alternative density assumptions

In order to estimate the parameters of the model (24)

xt ¡ Áxt¡1 = ´t + µ´t¡1; f´tg » WN
¡
0; ¾2´

¢
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we have assumed in the previous paragraph that the innovations f´tg had a Gaussian density.

We have then maximized the corresponding Gaussian quasi-log-likelihood l(¢) of the vector

of observations XT ´ (x1; :::; xT )
0

l(Á;µ; ¾2´) = ¡T
2
ln(2¼) ¡ T

2
ln(¾2´) ¡ 1

2

TX

t=1

ln (rt¡1) ¡ 1

2¾2´

TX

t=1

(xt ¡ bxt)2
rt¡1

with bxt and rt¡1 being obtained recursively by Innovations algorithm de…ned in Proposition

6. This approach however does not take into account the heavy-tailedness of the innovations

f´tg, whose third and fourth moment might not exist for a particular set of values (Á; µ)

(see the discussion in the previous section). The estimates discussed so far are standard

procedures developed for the case where the innovations are Gaussian or have …nite fourth

moment. The estimates of the parameters of the model (24) are in that case consistent and

asymptotically normal, as shown by Hannan & Rissanen [16] for example.

In the case where the innovation distribution is not normal, other density assumptions

might be more suitable. Thus, Money & al [21], propose a rule, based on the kurtosis of

the innovations, for selecting the most appropriate value of p for the family of Lp norm esti-

mates.12 It is well known that the Lp norm estimation is equivalent to the QML estimation

under the assumption that the innovations have power distribution whose density is

1

2¾¡(1 + 1=p)
exp[¡jz ¡ ¹

¾
jp].13 (46)

Special cases include the equivalence between the L2 norm estimator (LS) and the Gaussian

QMLE, or the one between the L1 norm estimator (LAD) and the Laplace (or double ex-

ponential) QMLE. We can therefore apply the results by Money & al [21] for selecting the

most appropriate density assumption in the construction of the QMLE. In the case where the

sample kurtosis of the innovations f´tg is greater than 6, the authors suggest the choice of

p = 1, which corresponds to the QML under Laplace (or double exponential) assumption.14

12The Lp norm estimators minimize the sum of the p-th powers of the absolute deviations of the errors.
14 In fact, the authors found that a suitable p could be chosen by using the formula

p =
9

K 2
´

+ 1

where K´ is the kurtosis of the innovations f´tg.
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We therefore construct the corresponding Laplace quasi-log-likelihood lL(¢) of the vector of

observations XT ´ (x1; :::; xT )
0

lL(Á; µ; ¾
2
´) = ¡T

2
ln(¾2´) ¡ 1

2

TX

t=1

ln (rt¡1) ¡ 1

¾´

TX

t=1

jxt ¡ bxtjp
rt¡1

(47)

with bxt and rt¡1 being obtained recursively by Innovations algorithm de…ned in Proposition

6. The QMLE obtained by maximizing (47) is denoted by (bÁL;bµL;b¾2´L).
The latter estimate is suited for the cases where the innovations are leptokurtic, i.e. with

…nite kurtosis k´ > 3. In some cases, however, the kurtosis of the ”weak” GARCH inno-

vations f´tg might not exist. In fact, the ”weak” GARCH(1; 1) parameters ¯ and ® being

close to the boundary of D02, the variance of the innovations f´ tg increases and tends to

in…nity.15 Based on this ground, we make the assumption that the innovations f´tg have

an ®-stable distribution S®(¾; ¯; ¹) with parameters (®; ¾; ¯; ¹). The probability densities

of ®-stable random variables exist and are continuous but, with few exceptions, they are

not known in closed form (see [24]). Among the exceptions are (1) the Gaussian distrib-

ution S2(¾; 0; ¹) = N (¹; 2¾2) whose density is
1

2¾
p
¼
exp[¡(z ¡ ¹)2

4¾2
],and (2) the Cauchy

distribution S1(¾; 0; ¹) whose density is

¾

¼((z ¡ ¹)2 + ¾2) .

In general, we only know the characteristic function ©Z (t) ´ E [exp(itZ)] of a random

variable Z that has a stable distribution S®(¾; ¯; ¹)

©Z(t) =

8
<
:
exp[¡¾®jtj®(1¡ i¯(sign t) tan

¼®

2
) + i¹t]; if ® 6= 1;

exp[¡¾jtj(1¡ i¯ 2
¼
(sign t) ln jtj) + i¹t]; if ® = 1.

(48)

The parameter ® is the index of stability, 0 < ® 6 2, and

sign t =

8
>>><
>>>:

1; if t > 0;

0; if t = 0;

¡1; if t < 0:

The scale parameter ¾, ¾ > 0, the skewness parameter ¯, ¡1 6 ¯ 6 1, and the location

(or shift) parameter ¹, ¹ 2 R, are unique.16 Let f®(¢) denote a symmetric stable density
15Recall that D0

2 ´ f(¯; ®) 2 [0;1]2 : E[´2
t ] < 1g.

16¯ is irrelevant when ® = 2.
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with index ® and scale parameter 1: We compute the ®-stable QMLE by minimizing the

quasi-log-likelihood lS(¢) of the vector of observations XT ´ (x1; :::; xT )
0

lS(Á; µ; (®; ¾; ¯; ¹)) = ¡T
2
ln(¾2) ¡ 1

2

TX

t=1

ln (rt¡1) ¡
TX

t=1

lnf®(
xt ¡ bxt ¡ ¹
¾
p
rt¡1

) (49)

with bxt and rt¡1 being obtained recursively by Innovations algorithm de…ned in Proposition

6.17 The ®-stable QMLE could be obtained by simultaneously maximizing lS(¢) over the

ARMA parameters (Á; µ) and the ®-stable distribution parameters (®; ¾; ¯; ¹). Instead, we

use the weakly consistent preliminary estimates (eÁ;eµ;evn) to construct the series of best linear

predictors fextg of the process fxtg, as well as their mean squared errors fert¡1g. We then

construct consistent quantile estimates (e®;e¾; ē;e¹) of the ®-stable distribution parameters

(®; ¾; ¯; ¹) by using McCulloch’s [20] method (see the Appendix 10). These estimates are

then used to form a ”reduced” e®-stable quasi-log-likelihood leS (¢)

leS(Á; µ) = ¡1
2

TX

t=1

ln (rt¡1)¡
TX

t=1

ln fe®(
xt ¡ bxt ¡ e¹

e¾p
rt¡1

). (50)

The QMLE obtained by maximizing (50) is denoted by (bÁeS;
bµeS).

The asymptotic properties of di¤erent estimators obtained, namely: Gaussian QMLE,

Laplace QMLE and ®-stable QMLE, are further studied by Monte Carlo simulations. As an

alternative approach, bootstrapping methods can be employed to approximate the sampling

distribution of these QMLE estimates. Unfortunately, the limit of the bootstrap approxima-

tion to the sampling distribution in an ARMA setting is still unknown.

4.4 Asymptotic properties of QML estimators

We study the properties of di¤erent QML estimators by performing a series of Monte-Carlo

simulations. The true data generating process (TDGP) parameters µ0 used to generate the

series are the ones originally studied by Nijman & Sentana [23] and reported in Table 4.

The sample means and standard deviations of the QML estimates obtained under di¤erent

density assumptions are reported in Tables 1-3.

17Note that if Z » S®(1; 0; 0) then ¾Z + ¹ » S®(¾; 0; ¹).
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Table 1: ”Weak” GARCH with TDGP parameter (¯0; ®0) = (0:569; 0:281)

and its QMLEs under various density assumptions.

µ0 bµN&S bµG bµL bµS

¯ 0:569
0:690

(¡)
0:6572

(0:0857)

0:4293

(0:1700)

0:5591

(0:1701)

® 0:281
0:125

(¡)
0:1547

(0:0488)

0:3238

(0:0640)

0:3130

(0:1822)

N ¡ 30 36717 509 1403

T ¡ 80000 5000 5000 5000

By examining the sample means of the QML estimators bµG ´ (bÁG;bµG), bµL ´ (bÁL;bµL)
and bµ eS ´ (bÁeS;

bµeS ) obtained, respectively, under Gaussian, Laplace and ®-stable law as-

sumption, we can see that bµ eS performs the best in estimating the MA parameter ¯ in all

three ”weak” GARCH(1; 1) processes studied. The asymptotic bias of b̄ obtained by QML

under ®-stable law assumption is thus smaller than under either Gaussian or Laplace as-

sumption. This result is quite intuitive in the case when both skewness and kurtosis of

the aggregated process are in…nite, and its variance close to the boundary of D02, i.e. the

case (¯0; ®0) = (0:516; 0:334). The assumption that the innovations are ®-stable distrib-

uted, which implies that they have in…nite variance, seem suited for this particular case of

…gure. We would expect, however, that in the case when skewness and kurtosis of the aggre-

gated process are in…nite but its variance quite small, i.e. the case (¯0; ®0) = (0:569; 0:281),

the Laplace assumption would lead to the best results in terms of asymptotic consistency.

This expectation is not con…rmed by the empirical …ndings reported in Table 1. The result

obtained in the …nite skewness case, i.e. when (¯0; ®0) = (0:705; 0:145), is even more interest-

ing with that the respect to the point raised previously. In this particular case, the Laplace

QMLE performs very badly in terms of asymptotic consistency, whereas the ®-stable QMLE

presents small asymptotic bias. These …ndings would suggest that as long as the kurtosis

of the ”weak” GARCH innovations is in…nite, the best performing QMLE is the one that

does not assume the …niteness of their variance. The importance of the assumption generally

used when estimating the parameters of a general ARMA model, seems to be con…rmed in
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our case. Unfortunately, there are yet no theoretical results on the asymptotic behavior of

QMLE relating the latter to the existence of di¤erent moments of the innovations.

Table 2: ”Weak” GARCH with TDGP parameter (¯0; ®0) = (0:516; 0:334)

and its QMLEs under various density assumptions.

µ0 bµN&S bµG bµL bµS

¯ 0:516
0:581

(¡)
0:5782

(0:0835)

0:4093

(0:1284)

0:5256

(0:1431)

® 0:334
0:234

(¡)
0:2351

(0:0507)

0:3427

(0:0490)

0:4116

(0:1524)

N ¡ 30 32046 417 152

T ¡ 80000 5000 5000 5000

In terms of the GARCH(1; 1) AR parameter ® estimates, we can no longer claim that

the ®-stable QMLE performs the best. As seen from Tables 1-3, b®eS presents the smallest

asymptotic bias in the case when skewness and kurtosis of the aggregated process are in…nite

but its variance quite small, i.e. the case (¯0; ®0) = (0:569; 0:281). Counter intuitively, it

performs worse than b®L in the case (¯0; ®0) = (0:516; 0:334), i.e. when both skewness and

kurtosis of the aggregated process are in…nite, and its variance close to the boundary of D02.

We however need to point out that this result might be in‡uenced by the fact that we have

quite a small sample of b® eS obtained by simulations (152 simulations). This is due to the very

slow convergence of our optimization algorithm in this particular case of …gure. It should

also be noted that the primitive parameters estimated by maximizing the quasi-likelihood

functions (39), (47) and (50), are in fact (Á; µ) ´ (¯ + ®;¡¯). Hence we can complete the

results of Table 2 by noting that eÁeS = 0:9372, eÁL = 0:7520 and eÁG = 0:8133, knowing that

the TDGP value Á0 is always given by Á0 = 0:85. The Gaussian assumption seems therefore

to give the best QML estimate of the AR parameter Á. The same applies to the case studied

in Table 3, when the skewness of the ”weak” GARCH innovations is …nite. In the latter

case we have eÁeS = 0:8050, eÁL = 0:7018 and eÁG = 0:8296. These result would suggest that

the QMLE is more robust to the departures from moment …niteness when estimating for the
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AR parameter in (20), than for the MA parameter. The latter observation seems to con…rm

the well know empirical fact that the MA parameter an ARMA(1,1) model, such as (20), is

more di¢cult to estimate than the AR one.18

Table 3: ”Weak” GARCH with TDGP parameter (¯0; ®0) = (0:705; 0:145)

and its QMLEs under various density assumptions.

µ0 bµN&S bµG bµL bµS

¯ 0:705
0:775

(¡)
0:7578

(0:0845)

0:4066

(0:2089)

0:7381

(0:1465)

® 0:145
0:062

(¡)
0:0718

(0:0330)

0:2952

(0:0879)

0:0669

(0:0997)

N ¡ 30 30081 613 821

T ¡ 80000 5000 5000 5000

5 Conclusion

In conclusion let us resume the fundamental properties of the ”weak” GARCH models and

stress out some of their implications. First, the scaled variable
yt
¾t

looses its iid property

by aggregation. Therefore, any testing procedure based on this property becomes invalid

by aggregation of the series. Second, the ”weak” GARCH models are di¢cult to estimate

by QML because of the misspeci…cation of the conditional second moment of yt. Di¤erent

density assumptions will lead to di¤erent asymptotic properties of the estimators, which

are so far tractable only by numerical simulation. As an alternative approach one could

use the generalized method of moments (GMM) estimators. The major inconvenient of this

approach however, is the necessity to derive analytic expressions for various moments of

the innovations ´t. The latter are not only tedious to derive but also dependent on the

parameters of the two original ”strong” GARCH processes, which are in general unknown.

This brings us to the third important property of the ”weak” GARCH. The problem of the
18 In an ARMA setting the MA parameters are the coe¢cients relatives to the innovation lags and are

therefore more sensitive to di¤erent speci…cations of the innovations’ distribution.
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existence of some higher-order moments of the innovations ´t cannot be assessed directly

since we do not have an analytical form of their domains of de…nition.

The QML estimation of ”weak” GARCH models is a nice example of what can happen

to the asymptotic properties of the estimators if some important assumptions are relaxed.

The speed of convergence of the QMLE might also be a¤ected by the choice of a particular

density, as is the case for the MLE. Indeed, it is well know that in the Gaussian case the

MLE is n1=2-consistent, while in the ®-stable case, its rate of convergence is proportional to

n1=®. Wether this property still holds for QMLE is an open question. A theoretical study

of the asymptotical properties of the QMLE under alternative density assumptions, namely

Laplace or ®-stable, appears to be an important question for the future research, which is

however, out of the scope of this paper

The Monte-Carlo simulation study conducted in this paper shows that ®-stable assump-

tions leads to overall better QML estimates of the parameters of an aggregatedGARCH(1; 1)

process. The ®-stable QMLE of the MA parameter has the smallest asymptotic bias among

the class of estimators studied. The asymptotic bias of an ®-stable QMLE for the AR parame-

ter is however larger than for the MA parameter, and is minimal under Gaussian assumption.

The latter result would suggest that the QMLE is more robust to the departures from mo-

ment …niteness when estimating for the AR parameter than for the MA parameter. We leave

a more theoretical study of this empirical conclusion for future research.
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6 Appendix

Proof of Proposition 6. In what follows we consider a single univariate GARCH(p; q)

process yt de…ned by

yt = ¾t»t (51)

¾2t = Ã +
pX

i=1

¯i¾
2
t¡i +

qX

j=1

®jy
2
t¡j (52)

with E [»t] = 0 and E
£
»2t

¤
= 1. Moreover de…ne the period-t innovation ´t ´ y2t ¡¾2t . Let Ft

be the ¾-algebra generated by the observations y21; :::; y
2
t , i.e. Ft ´ spfys; s6 tg. We then

have

E [´t] = E
£
y2t ¡ ¾2t

¤

= E
£¡
»2t ¡ 1

¢
¾2t

¤

= E
£
E

£¡
»2t ¡ 1

¢
¾2t jFt¡1

¤¤

= E
£
¾2t

¡
E

£
»2t jFt¡1

¤
¡ 1

¢¤

= 0

for all t . We can further calculate E [´2t ] for all t by considering

E
£
´2t

¤
= E

h¡¡
»2t ¡ 1

¢
¾2t

¢2i

= E
£
¾4t

¡
»4t ¡ 2»2t + 1

¢¤

= E
£
¾4tE

£
»4t ¡ 2»2t + 1jFt¡1

¤¤

=
¡
E

£
»4t

¤
¡ 1

¢
E

£
¾4t

¤
:
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From equation (52) we have

¾4t = (Ã +
pX

i=1

¯i¾
2
t¡i +

qX

j=1

®jy
2
t¡j)

2

= Ã2 +
pX

i=1

¯2i¾
4
t¡i +

qX

j=1

®2jy
4
t¡j + 2Ã

pX

i=1

¯i¾
2
t¡i + 2Ã

qX

j=1

®jy
2
t¡j +2

pX

i=1

qX

j=1

®j¯i¾
2
t¡iy

2
t¡j:

We know from (51) that E [y4t ] = E
£
¾4t»

4
t

¤
= E [¾4t ]E

£
»4t

¤
. Together with the fact that

E [y2t ¾
2
t ] = E [¾

4
t ] the above relation becomes

E
£
¾4t

¤
= E

£
¾4t

¤
(
pX

i=1

¯2i + E
£
»4t

¤ qX

j=1

®2j + 2
pX

i=1

qX

j=1

®j¯i) +Ã
2 + 2Ã(

pX

i=1

¯i +
qX

j=1

®j)¾
2

where

¾2 ´ E
£
y2t

¤
= Ã

Ã
1¡

pX

i=1

¯i ¡
qX

j=1

®j

!¡1

.

Thus

E
£
¾4t

¤
(1¡

pX

i=1

¯2i ¡ E £
»4t

¤ qX

j=1

®2j ¡ 2
pX

i=1

qX

j=1

®j¯i) = Ã
2 + 2Ã(

pX

i=1

¯i +
qX

j=1

®j)¾
2 (53)

Condition (17) together with the non-negativity conditions (16) ensures that
pX

i=1

¯i+

qX

j=1

®j <

1 so that the process fy2t g is covariance-stationary. The relation (53) can be rewritten as

E
£
¾4t

¤
(1 ¡ (

pX

i=1

¯i +

qX

j=1

®j)
2 + (1¡ E

£
»4t

¤
)

qX

j=1

®2j) = ¾
4(1 ¡ (

pX

i=1

¯i +

qX

j=1

®j)
2):

Given the condition

1 ¡ (
pX

i=1

¯i +

qX

j=1

®j)
2 + (1¡ E

£
»4t

¤
)

qX

j=1

®2j > 0

we then have

E
£
´2t

¤
= ¾4

¡
E

£
»4t

¤
¡ 1

¢
(1¡(

pX

i=1

¯i+
qX

j=1

®j)
2)(1¡(

pX

i=1

¯i+
qX

j=1

®j)
2+

¡
1¡ E

£
»4t

¤¢ qX

j=1

®2j)
¡1

which proves that E [´2t ] = ¾
2
´ < 1, for all t. Moreover for every pair (t; s) such that s < t

we have

E [´t´s] = E
£¡
y2t ¡ ¾2t

¢ ¡
y2s ¡ ¾2s

¢¤

= E
£¡
y2s ¡ ¾2s

¢ ¡
E

£
y2t jFs

¤
¡ E

£
¾2t jFs

¤¢¤
:
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Thus, in order to show that E [´t´s] = 0 we need to prove

E
£
y2t jFs

¤
= E

£
¾2t jFs

¤
, for all s < t. (54)

This is easily veri…ed by noting that for all s < twe have E [y2t jFs] = E [E [E [y2t jFt¡1] jFt¡2] :::jFs]
since Fs µ ::: µ Ft¡1. Thus

E
£
y2t jFs

¤
= E

£
E

£
¾2t jFt¡2

¤
:::jFs

¤

= E
£
¾2t jFs

¤

which establishes (54). Finally, the process f´ tg satis…es

E [´t] = 0 and E[´ t´s] =

8
<
:
¾2´ < 1 , if t = s

0 , if t 6= s
,

i.e. f´tg » WN
¡
0; ¾2´

¢
which completes the proof of Proposition 2.

7 Appendix

Proof of Proposition 5. Following the developments of Nijman & Sentana [23] we know

that

y2t = (yt;1+ yt;2)
2

= Ã1 + Ã2 + (¯1 +®1) y
2
t¡1 (55)

+´1;t ¡ ¯1´1;t¡1 + ´2;t ¡ ¯2´2;t¡1 +2y1;ty2;t ¡ 2 (¯1 + ®1) y1;t¡1y2;t¡1.

By introducing the parameter Ã ´ Ã1+Ã2 and taking into account that ¯1+®1 = ¯2+®2,

we rewrite (55) as

y2t = Ã + (¯1 + ®1)y
2
t¡1 + ut;

where

ut ´ ´1;t ¡ ¯1´1;t¡1 + ´2;t ¡ ¯2´2;t¡1+ 2y1;ty2;t ¡ 2°y1;t¡1y2;t¡1: (56)

It is easy to show that futg is a zero-mean stationary process with autocovariance function

°u(¢) such that °u(h) = 0 for jhj > 1 and °u(1) 6= 0. Following the results of Proposition
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3.2.1 [8] we know that futg is an MA(1) process, i.e. there exists a coe¢cient ¯ and a white

noise process f´ tg such that

ut = ´ t ¡ ¯´t¡1; f´tg » WN(0; ¾2´): (57)

Rewriting (57) then yields to (Equation 10, [23])

y2t = Ã + (¯1 +®1)y
2
t¡1 + ´t ¡ ¯´t¡1; f´ tg » WN (0; ¾2´): (58)

The autoregressive parameter is identi…ed as ¯ +®, so that (58) becomes

y2t = Ã + (¯ +®)y
2
t¡1 + ´ t ¡ ¯´t¡1; f´tg » WN(0; ¾2´):

The invertibility condition being satis…ed we consider the MA(1) representation of fy2t g
given by

y2t = ¾
2 + ´t +

1X

j=1

®(®+ ¯)j¡1´t¡j (59)

where ¾2 ´ E[y2t ] =
Ã

1 ¡ (¯ +®). Using (59) we can easily compute the second moment of

fy2tg. Thus

E
£
y4t

¤
= E[(¾2 + ´t +

1X

j=1

®(¯ +®)j¡1´t¡j)
2]

= ¾4 + E[´2t ] +
1X

j=1

®2(¯ + ®)2(j¡1)E [´2t¡j]

= ¾4 + ¾2´(1 + ®
2
1X

j=1

(¯ + ®)2(j¡1))

= ¾4 + ¾2´
1 ¡ (¯ + ®)2 +®2
1 ¡ (¯ +®)2 :

If 1¡ (¯ + ®)2 + ®2 > 0 we have

¾2´ = ¾
4(k ¡ 1) 1¡ (¯ +®)2

1 ¡ (¯ +®)2+ ®2 (60)

where we de…ne the kurtosis k of the aggregated process fytg as k ´ E [y4t ] (E [y
2
t ])

¡2 =

¾¡4E [y4t ].
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8 Appendix

In this Appendix we construct weakly consistent preliminary estimate (eÁ;eµ;evn) of the para-

meter vector (Á; µ; ¾2´) by …tting a high-order MA model to fxtg. The series fxtg being a

causal zero-mean stationary sequence, we can write its MA(1) representation

xt =
1X

i=0

¼i´t¡i , f´tg » WN(0; ¾2´); (61)

where, by using the MA(1) representation of (24), the coe¢cients ¼i satisfy
8
<
:
¼0 = 1

¼i = Á
i¡1(µ + Á); i = 1; : : :

(62)

We can …t an MA process of order n < T to the data XT = (x1; :::; xT )
0 by using the

innovation algorithm [8].19 The …tted MA(n) process is

xt =
nX

i=0

eµn;i´t¡i , f´tg » WN(0;evn) for t = n +1; :::; T (63)

where eµn ´
³
eµn;1; : : : ;eµn;n

0́
and evn are the innovation estimates. We use the innovations

algorithm20 to …t moving average processes of increasing orders n = 1; 2; :::; N ,with N =

o(T 1=3) to the data and thus determine eµn and evn from the recursions

8
>>>>>>><
>>>>>>>:

ev0 = b°(0);

eµn;n¡k = ev¡1k

Ã
b°(n¡ k)¡

k¡1X

j=0

eµk;k¡jeµn;n¡jevj
!
; k = 0; 1; : : : ; n¡ 1;

evn = b°(0)¡
n¡1X

j=0

eµ2n;n¡jevj;

(64)

where b°(¢) is the empirical autocovariance function, b°(h) ´ T ¡1
T¡hX

t=1

(xt ¡ xT) (xt+h ¡ xT ),

for every h : 0 6 h 6 T ¡ 1, and xT ´ T¡1
TX

t=1

xt.

19Later on we determine the optimal value of n.
20See, for example, De…nition 8.3.1, in [8].
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We can then compute f(n) = lnevn+ n
lnT

T
; n = 1; 2; :::; N and choose the optimal value

n¤ such that n¤ ´ arg min
n
f (n). We then obtain the parameters eµn¤ and evn¤, which are

estimates of the coe¢cients ¼i; 1 6 i6 n¤ and the innovation variance ¾2´ as de…ned in (61).

For i = 1; 2 we then replace ¼i by eµn¤;i in (62) and obtain the following system of equations

eµn¤;1 = µ + Á; (65)

eµn¤;2 = µ(µ + Á):

Thus

eµ = eµn¤;2=eµn¤;1; (66)

eÁ = eµn¤;1 ¡eµn¤;2=eµn¤;1:

The preliminary estimate
³
eÁ;eµ;evn

´
of the system parameter (Á; µ,¾2´) obtained by this

method is weakly consistent as shown in [8].

9 Appendix

Proof of Proposition 7. In this proof we derive the …rst order conditions for an optimum

of

l(Á; µ; ¾2´) = ¡T
2
ln(2¼) ¡ T

2
ln(¾2´) ¡ 1

2

TX

t=1

ln (rt¡1)¡
1

2¾2´

TX

t=1

(xt ¡ bxt)2
rt¡1

:

Di¤erentiating l(¢) gives

dl(Á; µ; ¾2´) =
@l(Á; µ; ¾2´)

@Á
dÁ +

@l(Á; µ; ¾2´)

@µ
dµ +

@l(Á; µ; ¾2´)

@¾2´
d¾2´. (67)

Recall that Á ´ ¯ + ®, µ = ¡¯ and the variance ¾2´ of the innovation process is given by

(21). Thus we have

dÁ = d® + d¯;

dµ = ¡d¯; (68)

d¾2´ =
@¾2´
@Ã
dÃ +

@¾2´
@¯
d¯ +

@¾2´
@®
d®:
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Taking into account (68) the expression (67) becomes

dl(Á; µ; ¾2´) = [
@l(Á; µ; ¾2´)

@Á
¡ @l(Á; µ; ¾2´)

@µ
+
@l(Á; µ; ¾2´)

@¾2´

@¾2´
@¯
]d¯

+[
@l(Á; µ; ¾2´)

@Á
+
@l(Á; µ; ¾2´)

@¾2´

@¾2´
@®
]d® (69)

+
@l(Á; µ; ¾2´)

@¾2´

@¾2´
@Ã
dÃ.

The …rst order conditions corresponding to the maximum of the Gaussian log-likelihood

function l(¢) are then
@l(Á; µ; ¾2´)

@¾2´

@¾2´
@Ã

= 0; (70)

@l(Á; µ; ¾2´)

@Á
+
@l(Á; µ; ¾2´)

@¾2´

@¾2´
@®

= 0; (71)

@l(Á; µ; ¾2´)

@Á
¡ @l(Á; µ; ¾2´)

@µ
+
@l(Á; µ; ¾2´)

@¾2´

@¾2´
@¯

= 0: (72)

Since
@¾2´
@Ã

6= 0;
@¾2´
@®

6= 0 and
@¾2´
@¯

6= 0 by substitution we have

@l(Á; µ; ¾2´)

@¾2´
= 0; (73)

@l(Á; µ; ¾2´)

@Á
= 0; (74)

@l(Á; µ; ¾2´)

@µ
= 0: (75)

We can at present use the expressions for bxt and rt¡1 given by Proposition 6 and di¤erentiate

the log-likelihood l(¢) with respect to the system parameters (Á; µ; ¾2´). Noting that bxt and

rt¡1 are not independent of ¾2´ we derive the following optimality conditions

¾2´T
£
1 + ±T(Á; µ; ¾

2
´)

¤
=

TX

t=1

(xt ¡ bxt)2
rt¡1

(76)

@

@Á
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = (77)

¡ T ±T (Á; µ; ¾2´)
@

@Á
ln

TX

t=1

(xt ¡ bxt)2
rt¡1
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and

@

@µ
(
TX

t=1

ln rt¡1 + T ln
TX

t=1

(xt ¡ bxt)2
rt¡1

) = (78)

¡ T ±T (Á; µ; ¾2´)
@

@µ
ln

TX

t=1

(xt ¡ bxt)2
rt¡1

where

±T(Á; µ; ¾
2
´) ´ T¡1[¾2´

@

@¾2´

TX

t=1

ln rt¡1 +
@

@¾2´

TX

t=1

(xt ¡ bxt)2
rt¡1

]: (79)

which completes the proof of Proposition 7.

10 Appendix

In this Appendix we describe McCulloch’s [20] quantile estimator for the parameters of an

®-stable distribution S®(¾; ¯; ¹). Let Z » S®(¾; ¯; ¹). We denote by Zp the p-th quantile

of the distribution of Z, i.e. Prfz 6 Zpg = p. In order to estimate the index parameter ®,

0:6 6 ® 6 2, and the skewness parameter ¯, ¡1 6 ¯ 6 1, McCulloch considers the following

quantities

©1(®; ¯) =
Z:95 ¡ Z:05
Z:75 ¡ Z:25

; (80)

©2(®; ¯) =
Z:95 +Z:05 ¡ 2Z:50

Z:95 ¡ Z:05
: (81)

These functions can be inverted so to obtain

® = ª1(©1;©2);

¯ = ª2(©1;©2);

where the functions ª1and ª2 have been tabulated by McCulloch [20] for di¤erent values

of ©1 and ©2: In order to form an estimator of ® and ¯, we sample from the empirical

distribution of Z, and form sample quantiles Z¤p. We then use (80) and (80) to compute ©¤1

and ©¤2. Since Z¤p is consistent for Zp, the obtained quantities ©¤1 and ©¤2 are consistent for
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©1 and ©2. Let

®¤ = ª1(©
¤
1;©

¤
2);

¯¤ = ª2(©
¤
1;©

¤
2):

By using the tables, we can compute ®¤ and ¯¤ which are consistent estimators of ® and ¯.

McCulloch uses a similar procedure to estimate the values of the scale parameter ¾ and the

location parameter ¹.

11 Figures

Figure 5: Convergence of the sample mean of the QMLEs of the ”weak” GARCH with

TDGP parameters (¯0; ®0) = (0:569; 0:281) .
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Figure 6: Convergence of the sample mean of the QMLEs of the ”weak” GARCH with

TDGP parameters (¯0; ®0) = (0:516; 0:334) .
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Figure 7: Convergence of the sample mean of the QMLEs of the ”weak” GARCH with

TDGP parameters (¯0; ®0) = (0:705; 0:145).
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