UC Santa Barbara
UC Santa Barbara Previously Published Works

Title
Javelin 2.0: Java-based parallel computing on the Internet

Permalink
https://escholarship.org/uc/item/197658ak

Journal
Euro-Par 2000 Parallel Processing, Proceedings, 1900

ISSN
0302-9743

Authors

Neary, M O
Phipps, A
Richman, S

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1g7658qk
https://escholarship.org/uc/item/1g7658qk#author
https://escholarship.org
http://www.cdlib.org/

Javelin 2.0: Java-Based Parallel Computing on
the Internet

Michael O. Neary, Alan Phipps, Steven Richman, and Peter Cappello

Department of Computer Science
University of California, Santa Barbara
Santa Barbara, CA 93106
{neary, evodius, joy, cappello} @cs.ucsb.edu

Abstract. Javelin is a Java-based infrastructure for parallel Internet
computing. This paper presents Javelin 2.0, focusing on the enhance-
ments that distinguish it from prior versions of Javelin [9, 16, 15]. With
regard to architecture, the paper presents enhancements that facilitate
aggregating larger sets of host processors. The paper then presents: a
branch-and-bound computational model, the supporting Javelin 2.0 ar-
chitecture, a scalable task scheduler using distributed work-stealing, a
distributed eager scheduler, implementing fault tolerance, and the re-
sults of performance experiments. Taken as a whole, Javelin 2.0 frees
application developers from concerns about complex interprocessor com-
munication and fault tolerance among Internetworked hosts. When all
or part of their application can be cast as a piecework or a branch-
and-bound computation, Javelin 2.0 allows developers to focus on the
underlying application without sacrificing performance.

1 Introduction

Our goal is to harness the Internet’s vast, growing, computational capacity for
ultra-large, coarse-grained parallel applications. By providing a portable, secure
programming system, Java holds the promise of harnessing this large hetero-
geneous computer network as a single, homogeneous, multi-user multiproces-
sor [6,10,1]. Some research projects that are designed to exploit this include
Charlotte [5], Atlas [4], Popcorn [8], Javelin [9], Bayanihan [18], Manta [20],
Ajents [11], and Globe [3]. Javelin 2.0 is designed to achieve 2 goals:

— Obtain the performance of a massively parallel implementation;
— Provide a simple API, allowing designers to focus on a recursive decomposi-
tion/composition of the parallelizable part of the computation.

Summarily, we want the application programmer to get the performance bene-
fits of massive parallelism without the typically attendant costs: adulterating the
application logic with interprocessor communication protocols, topology-specific
(e.g., hypercube) interprocessor communication, and fault tolerance schemes.
The resulting code should run well on as many processors as are available at any

particular execution time, without any change to the program. Indeed, the pro-
gram should perform well even when the set of processors changes dynamically.
In order to achieve these goals, Javelin 2.0 handles all interprocessor com-
munication and fault tolerance for the application programmer, when the par-
allelizable computation can be cast as a branch-and-bound (or piecework) com-
putation. This is a broad class of computations. We focus here on 2 issues that
are fundamental to every application that is deployed as a global computation
(i.e., a computation executing on a large set of Internetworked processors):

— Scalable Performance — If there is no niche where Java-based global com-
puting outperforms existing multiprocessor systems, then there is no reason
to use it. In order for global computing to outperform existing multiproces-
sor systems, it must harness a larger set of processors: The architecture must
scale to a higher degree than existing multiprocessor architectures, such as
networks of workstations (NOW) [2].

— Fault tolerance — An architecture that scales to thousands of hosts must be
fault tolerant, particularly when hosts, in addition to failing, may dynami-
cally disassociate from further participation in an ongoing computation.

Javelin 2.0 extends the piecework computational model to a branch-and-bound
model which is implemented using a weak form of shared memory that itself is
implemented via the pipelined RAM [12] model of cache consistency. This shared
memory model is strong enough to support branch-and-bound computation (in
particular, bound propagation), but weak enough to be fast. Using this cache
consistency model, we present a high-performance, scalable, fault tolerant Inter-
net architecture for branch-and-bound computations, such as are used to solve
NP-complete problems, for example. For such an architecture to succeed, the
architects must be diligently cognizant of the central technical constraint: On
the Internet, communication latency is large.

The remainder of the paper is organized as follows: The next section presents
the branch-and-bound model of computation. Section 3 presents the architecture
of Javelin 2.0. It focuses on those enhancements that facilitate aggregating larger
sets of hosting processors. Section 4 presents Javelin 2.0’s task scheduler, shared
memory, and fault tolerance scheme. Section 5 presents results of performance
experiments, indicating remarkable speedups. The final section concludes the
paper, outlining some immediately fruitful areas of global computing research
and development.

2 Model of Computation

The branch-and-bound method intelligently enumerates all feasible points of a
combinatorial optimization problem. By intelligent we mean that not all feasible
solutions are examined. Branch-and-bound, in effect, produces a proof that the
best solution is found without actually examining all feasible solutions. The
method successively partitions the solution space (branches), and does not search
a subspace (prunes), when there is sufficient information to infer that none of

the subspace’s solutions are as good as a solution (bound) that already has been
found. (See Papadimitriou and Steiglitz [17] for a more complete discussion of
branch-and-bound.) Here is a basic, sequential branch-and-bound algorithm:

activeset = {0}; // "O" is the original problem.
U = infinity;
while (!activeset.empty()) {
node = activeset.select(); // removes node
for (int i = 1; i <= node.numChildren; i++)
if (child[i].lowerBound() < U)
if (child[i] is complete solution) {
U = lowerBound[i];
currentBest = child[i];
}
else
activeset.insert(child[i]);
// else child is killed implicitly
}

The computational model implies the following requirements:

— Tasks (elements of the activeset) are generated during the host computation

— When a host discovers a new best cost, it propagates it to the other hosts.

— Detecting termination in a distributed implementation requires knowing
when all subspaces (children) have been either fully examined or killed.

The challenge, in sum, is to enable:

— hosts to create tasks, which subsequently can be stolen;
— hosts to propagate new bounds rapidly to all hosts;
— the eager scheduler to detect tasks that have been completed or killed

with a minimum of communication. The last bullet item is needed not just for
termination detection, but also for fault tolerance: determining which tasks may
need to be rescheduled.

The piecework model of computation [15] is a degenerate case of the branch-
and-bound model, where:

— all tasks are generated initially (if only in bulk),
— no task is killed; bound distribution is unnecessary; termination detection is
simplified.

To accommodate this new model, the 2.0 APT required adding only a propagat-
eValue method to the API [15].

3 Architecture

In this section we present the Javelin 2.0 system architecture. We begin with a
brief overview of the participating entities and their responsibilities. Next, we
explain the Javelin Broker Name Service, which serves as an entry point for any
host willing to participate in the system. Finally, we give a brief description of
our broker network topology and its host tree preorganization scheme.

3.1 Overview

The Javelin 2.0 system architecture retains the basic structure of its predeces-
sors, Javelin [9] and Javelin++ [14]. There are still three system entities —
clients, brokers, and hosts. A client is a process seeking computing resources; a
host is a process offering computing resources; a broker is a process that coordi-
nates the allocation of computing resources. Figure 1 illustrates the Javelin 2.0
architecture. Clients register their tasks to be run with their local broker; hosts
register their intention to run tasks with the broker. The broker assigns tasks
to hosts that, then, run the tasks and send results back to the clients. The role
of a host or a client is not fixed. A machine may serve as a Javelin host when
it is idle (e.g., during night hours), while being a client when its owner wants
additional computing resources.

Clients

G e

Hosts

Fig. 1. The Javelin 2.0 Architecture.

3.2 Javelin Broker Name Service

When a host (or client) wants to connect to Javelin, it first must find a broker
that is willing to serve it. The JavelinBNS system is a scalable, fault tolerant
directory service that enables the discovery of a nearby Javelin broker, without
any prior knowledge of the broker network structure. It is designed not only to
aid hosts who are searching for brokers, but also to aid brokers who are looking
for neighboring brokers.

A JavelinBNS system consists of at least two JavelinBNS servers!. Each
server is responsible for managing a list of available brokers, responding to broker
lookup requests, and ensuring that the other JavelinBNS nodes contain the same
information. The JavelinBNS system thus serves as an information backbone for
the entire Javelin 2.0 system.

Since the information stored for each broker is relatively small, the service
will scale to a very large number of brokers. A small number of BNS servers
will therefore be capable of administering thousands of broker entries, so a fully

! Information stored by a BNS server is fully replicated.

connected network of BNS servers will not be a bottleneck. At regular intervals,
information is exchanged by the BNS servers. If a BNS server crashes and sub-
sequently restarts, it can simply reload its tables with the information obtained
from its neighbors, thus providing the necessary degree of fault tolerance.

1. Register with BNS

3. Broker list
Broker
5. Connect to
selected broker

4. Ping brokers

2. BNSlookup

Fig. 2. JavelinBNS lookup sequence.

Figure 2 shows the steps involved in a broker lookup operation:

1. At startup, a broker registers its address with a known JavelinBNS server.

2. A host or client willing to participate in Javelin queries the BNS server for
a list of k brokers for some constant k.

3. The BNS server randomly selects up to k broker addresses from its table and
responds.

4. The host sends an RMI ping() call to each broker on the list.

5. The host evaluates the ping results and connects to the most suitable broker,
provided the broker is willing to serve it. If not, it can pick the next broker
or send another query to the BNS.

Likewise, brokers can themselves use the BNS to fill their address tables with
neighboring brokers at startup. The list of known BNS servers is initially loaded
from a configuration file, but can be updated by calling the BNS at runtime.

3.3 Broker Network & Host Tree Management

The topology of the broker network is an unrestricted graph of bounded degree.
Thus, at any time a broker can only communicate with a constant number of
other brokers. This constant may vary among brokers according to their compu-
tational power. Similarly, a broker can only handle a constant number of hosts.
If that limit is exceeded adequate steps must be taken to redirect hosts to other
brokers. The bounds on both types of connection give the broker network the
potential to scale to arbitrary numbers of participants. At the same time, the

Brokers

Fig. 3. Broker Connections.

degree of connectivity is higher than in a tree-based topology like the one used
in the ATLAS project [4]. Figure 3 shows the connection setup of a broker.

When a host connects to a broker, the broker enters the host in a logical tree
structure and responds with an RMI handle of the host’s parent. The top-level
host in the tree will not receive a parent; instead it will later become a child of
the client. This way, the broker maintains a preorganized tree of hosts which are
set on standby until a client becomes active. When a client connects, or client
information is remotely received from a neighboring broker, the whole tree is
activated in a single operation and the client information is passed to the hosts.

Brokers can individually set the branching factors of their trees, and decide
how many hosts they can administer. In case of a host failure, the failed node
is detected by its children and the broker restructures the tree in a heap-like
operation (for details, see [15]). The additional burden of tree management was
previously placed on the client, which could become a bottleneck for large trees.
Thus, placing the tree management on the broker enhances scalability and in-
creases performance when a client starts up, since the computation can begin
immediately.

4 Scalable Computation & Fault Tolerance

4.1 The Scheduler

The fundamental concept underlying our approach to task scheduling is work
stealing, a distributed scheduling scheme made popular by the Cilk project [7].
Work stealing is entirely demand driven — when a host runs out of work it
requests work from some host that it knows. One advantage of work stealing
is its natural way of balancing the computational load, as long as the number
of tasks is high relative to the number of hosts — a property well suited for
adaptively parallel systems.

For our work stealing scheduler, we use two main data structures that are
local to each host: a table of host addresses (technically, Java RMI handles),
and a distributed, double-ended task queue containing “chunks” of work. The
deque is accessed as follows: the local host picks work off one end of the queue,

whereas remote requests get served at the other end. Jobs get split until a certain
minimum granularity — determined by the application — is reached. Then, they
are processed. When a host runs out of local tasks, it selects a neighboring host
from its address table, and requests work from that host.

Since the hosts are organized as a tree, the selection of the host to steal work
from follows a deterministic algorithm based on the tree structure. Initially, each
host retrieves work from its parent, and computes one task at a time. When a
host finishes all the work in its deque, it attempts to steal work, first from its
children, if any, and, if that fails, from its parent. This strategy ensures that all
the work assigned to the subtree rooted at a host gets done before that host
requests new work from its parent. Work stealing within a tree of hosts helps
each host get a quantity of work that is commensurate with its capabilities. The
client is the root of its tree of hosts.

4.2 Shared Memory

It might appear that we cannot implement shared memory efficiently among
Internetworked processors in a manner that scales; the communication latency
is too large. However, for branch-and-bound computation:

— only a small amount of shared memory is needed;
— a weak shared memory model suffices.

The small amount is because only one int or double is needed to represent a
solution’s cost. The weak model suffices because if a host’s copy of best cost
is stale, correctness is unaffected. Only performance may suffer — we might
search a subspace that could be pruned. It thus suffices to implement the shared
memory using a pipelined RAM (aka PRAM) model of cache consistency. This
weak cache consistency model can be implemented with scalable performance,
even in an Internetwork setting.

There are several methods to propagate bounds among hosts. We use the
following: When a host discovers a solution with a better cost than its cached
best cost, it sends this solution to the client. If the client agrees that this indeed
is a new best cost solution (it may not be, due to certain race conditions), it
updates its cached best cost solution, and “broadcasts” the new best cost to
its entire tree of hosts. That is, it propagates the new best cost to its children,
who in turn propagate it to their children, and so on, level by level down the
host tree. This propagation is handled asynchronously by a separate propagator
thread, avoiding the situation where a host blocks until all the hosts in its subtree
have acknowledged the new bound. With a branching factor of 8, for example, 5
such “parallel” propagations can reach a total of 37,448 hosts. Another method,
which we did not implement, is to use multicast.

4.3 Fault Tolerance

Eager scheduling reschedules a task to an idle processor in case its result has not
been reported. It was introduced and made popular by the Charlotte project [5],

and also has been used successfully in Bayanihan [19]. Javelin++ [15,14] also
uses eager scheduling to achieve fault tolerance and load balancing. It efficiently
and relentlessly progresses towards the overall solution in the presence of host
and link failures, and varying host processing speeds.

The Javelin 2.0 eager scheduler is located on the client. Although this may
seem like a bottleneck with respect to scalability, it is not, as we shall explain
below. Eager scheduling, however, is more challenging for branch-and-bound
computation (as compared to piecework computation). Besides detecting positive
results, (i.e., new best cost solutions), the eager scheduler must detect negative
results: solution [subspaces] that have been examined and do not contain a new
best cost solution, and solution subspaces that have been pruned. Performance,
though, requires avoiding unnecessary communication and computation.

In a branch-and-bound computation, the size of the feasible solution space
is exponential in the size of the input. In principle, the algorithm may need to
examine all of these exponentially many feasible solutions to find the minimum
cost solution. In practice, a partial solution, p, is “killed” (a subspace is pruned)
when the lower bound on the cost of any feasible solution that is an exten-
sion of p must be more costly than the currently known minimum cost solution.
The algorithm nonetheless must gather sufficient information to detect that the
minimum cost solution has indeed been found. This implies that killed nodes
and sub-optimal solutions must be detected by the eager scheduler. If a sepa-
rate communication is required to detect each such event, the overall quantity
of communication would nullify the benefits of parallelism. We cope with this
communication overload by aggregating portions of the search space into atomic
tasks, and similarly aggregating negative results into one communication per
atomic task. This lets the eager scheduler know that this part of the problem
tree has been searched, and hence need not be rescheduled. The number of nega-
tive communications consequently is equal to or less than the number of atomic
tasks. In practice, it is much less than the number of atomic tasks; many are
killed. We can adjust the computation/communication ratio by adjusting the
size of atomic tasks, in order to decrease the overall run time. Performance is
quite sensitive to atomic task size, so finding good size values is important.

For performance reasons, we balance the computational size of the hosts’
atomic tasks with the client’s computation of result handling and eager schedul-
ing, so that neither the client nor the hosts have to wait for one another. Addi-
tionally, we want the number of atomic tasks to be much larger than the number
of hosts, to keep them all well utilized, even when some are much faster than
others. This lower bound on the size of the atomic task (to prevent the client
from becoming a bottleneck) implies an upper bound on the number of atomic
tasks we can create from a fixed size branch-and-bound computation. This up-
per bound, in turn, bounds the number of hosts that can be used effectively
to solve the branch-and-bound computation. Thus, decreasing eager scheduling
time decreases the minimum size of atomic tasks, which increases the number of
atomic tasks, which increases the number of hosts that can be used effectively,
which decreases the execution time.

A factor that pulls in the other direction of the preceding analysis concerns
the relationship between eager scheduling and atomic task size: The smaller the
atomic task size, the more atomic tasks there are, the more work must be done
by the eager scheduler. In the final version of this paper we will plot, for a large,
fixed problem size, the run time as a function of atomic task size. In light of these
considerations, we expect the function to minimize somewhere in the middle of
the domain of atomic task sizes.

In our present scheme, hosts communicate to the eager scheduler only when
it has found a less costly solution than its cached minimum cost solution: Specifi-
cally, it communicates only the least cost solutions of atomic tasks that contain a
solution that is less than its cached minimum cost solution. However, along with
that communication, it conveys other atomic tasks that it has done, and nodes
that it has killed. Thus, the number of communications necessary to provide
sufficient information to detect termination is less than the number of nodes in
the fringe of the tree, where the fringe is the set of nodes that represent either
atomic tasks or killed partial solutions. Large tasks (i.e., tasks that are high in
the problem tree) can be rescheduled. This results in hosts splitting these tasks,
allowing the rescheduling and computation of their subtasks to be distributed
(via work stealing) among the hosts.

The basic data structure required is a problem tree, which the client maintains
to keep track of the computation status. The tree is constructed as atomic tasks
report their local minimum cost solution. Each such atomic task is a leaf in this
problem tree. The root of the problem tree represents the complete branch-and-
bound computation. (In the TSP, it represents a starting vertex for a circuit
in input graph.) Its children are the subproblems resulting from branching —
a single split of the root problem. (In the TSP, children of the root problem
represent a partial solution consisting of the first 2 vertices of a circuit in the
TSP input graph.) This branching (splitting) continues, as we proceed down
the problem tree: We subdivide it into smaller and smaller search spaces. (In
the TSP, each node at level[i] in the problem tree represents a partial circuit
consisting of the first ¢ nodes of a circuit in the TSP input graph.) A parameter
determines at what level splitting stops. At that point, a host will search the
space for a solution that is less than the current minimum cost solution. (In
the TSP, if the parameter is, say 10, then each atomic task is associated with
a partial circuit consisting of the first 10 nodes of a circuit in the TSP input
graph. Such a task is required to find the min cost circuit, if any, among those
that start with those 10 vertices.)

As with the piecework model of computation, each node in the problem tree
can be in one of 3 states: done, meaning the results for the subproblem have been
received by the client; partially done, meaning that results have been received
by the client for some but not all descendants of this subproblem (i.e., some but
not all subproblems of this subproblem); and undone, meaning that no results
whatsoever have been received by the client for this subproblem.

In addition to the tree structure, undone nodes (tasks) are put in a circular
linked list. Tasks are eagerly scheduled from this circular list until it becomes

empty: there are no undone tasks. This indicates completion of the computa-
tion; the client then propagates a termination signal down the host tree. The
processing itself consists of two distinct routines: In the description below, the
task identifier “esTask” refers to a task object on the undone task list. It is that
task that was most recently rescheduled.

public void processResult(Solution s){
insert s into ProblemTree;
mark s done;
mark its ancestors in ProblemTree as either
partially done or done, as appropriate;
maintain undone task list;

}

public void selectTask(){
// esTask refers to last eagerly scheduled node
while ((esTask = esTask.next()) !'= null){
while (esTask != null && 'esTask.isAtomic()){

generate esTask’s feasible children & their costs;
insert children into ProblemTree;
maintain undone task list;
esTask = select one of these children;

}

if (esTask.isAtomic())
// found atomic node to process
return esTask;

// else no feasible atomic node on this path of ProblemTree

X
done = true; // set terminate signal
return null;

}

There is another scheme for eager scheduling that we will consider. In this
scheme, the eager scheduler infers for itself what nodes representing partial so-
lutions are killed. This allows the discovery of killed nodes to be deferred until
a task must be eagerly scheduled: There is an idle processor, and no work is
available for stealing (i.e., no hosts have any atomic tasks that they themselves
are not actively working on). The advantage of “lazy” killing — deferring the
identification of killed nodes until no work can be stolen — is that, when killed
nodes need to be identified, a tighter minimum cost bound is known, allowing
the eager scheduler to kill tasks higher in the problem tree: less total work for
the eager scheduler. A disadvantage is that only atomic tasks can be eagerly
scheduled. Since hosts do not report killed nodes to the eager scheduler, if a task
is rescheduled whose subtasks are all killed, the eager scheduler would never
receive this information, thus would eagerly schedule the task forever.

Our current implementation may communicate more killed nodes than ul-
timately is necessary because it communicates them sooner, when the mini-
mum cost bound may not be so tight. However, our current implementation

has the advantage that non-atomic tasks may be rescheduled, which enables the
rescheduling and computation of subtasks to be distributed among the hosts. On
the other hand, in the current implementation, a host does not report negative
results and pruned subtrees until a new minimum cost solution is found. In the
meantime, work that it has completed might be needlessly rescheduled. It thus is
not clear to us which eager scheduling method would perform better overall for
a given branch-and-bound computation, much less for most branch-and-bound
computations.

5 Preliminary Experimental Results

Experiments were run in campus student computer labs under a typical workload

for the network and computers. The heterogeneous test environment? consists
of

4 Sun Enterprise 450 quad-processors with 256 MB RAM and a processor
speed of 400 MHz,
— 14 Pentium IT 350 MHz processors with 128 MB RAM,
14 Celeron 466 MHz processors with 128 MB RAM,
24 Pentium 166 MHz processors with 64 MB RAM, and
a Beowulf cluster of 42 individual nodes, consisting of
e 6 Pentium IIT 500 MHz quad-processors with 1 GB RAM, and
e 36 Pentium IT 400 MHz dual processors with 512 MB or 1 GB RAM.

The Beowulf cluster is running Red Hat Linux 6.0 on all nodes. All other ma-
chines are running Solaris 2.7 and are connected by a 100 Mbit network. We
used JDK 1.2.1 with active JIT for our experiments.

We tested the performance of Javelin 2.0 with a TSP application. The per-
formance was measured by recording the time to find the shortest tour in a given
graph. The test graph is a complete, undirected, weighted graph of 22 nodes,
with randomly generated integer edge weights w, 0 < w < 100. This graph is
complex enough to justify parallel computing, but small enough to enable us to
run tests in a reasonable amount of time. The search tree is recursively decom-
posed by the splitting process described in Section 4 into atomic subtrees, which
are then processed by a single host. The size of such an atomic subtree can be
chosen freely by the application. For instance, if the splitting limit is set to 5,
as in our experiments, any sub-path of 5 nodes from the root node will define a
corresponding atomic subtree. For the given graph, this limit could potentially
yield 21 x 20 x 19 x 18 = 143, 640 atomic subtrees, although in a practical setting
a large portion of these nodes will be eliminated by pruning.

We first measured the time it took a single processor to calculate the result.
The test graph took approximately 8 hours to process on one of the slower

2 This setup describes all possibly available machines. Actual testing only includes
subsets of these, since, e.g., the cluster is still being configured, and not all of the
other machines were ready for experiments either

machines, a Pentium 166. On a Sun E450 it took roughly 3.5 hours, and on our
fastest processors, the Celeron 466s, it took just over 2 hours. The different base
cases are shown in Figure 4.

500 -
400
S 300
E
£
= 200 -
100 1
(0] T
Pentium Il Celeron Pentium Sun Pentium Il Pentium 11
350 466 166 Enterprise 500 400
450 (Cluster) (Cluster)

Processor Type

Fig. 4. Base Case Performance for TSP.

Host tree preorganization (see Section 3) significantly increases the perfor-
mance at startup, as well as application scalability. We have successfully tested
the host tree preorganization with as many as 4 brokers and 32 hosts. In a pro-
duction environment, we would set the host tree’s branching factor, or fanout,
to maximize efficiency. For test purposes, the tree’s branching factor was set to
4, much less than its maximum efficiency, to force the tree to have some depth.

We now discuss what we mean in our setting by the term “speedup”. Tradi-
tionally, speedup is measured on a dedicated parallel multiprocessor, where all
processors are homogeneous both in hardware and in software configuration, and
varying workloads between processors do not exist. Obviously, in such a setting
speedup is well defined as Ty /T, where T is the time a program takes on one
processor and T}, is the time the same program takes on p processors.

Therefore, strictly speaking, in a heterogeneous environment like ours the
term speedup cannot be used anymore. Even if one tries to run tests in as
homogeneous a hardware setup as possible, the varying workloads on both the OS
and the network can amount to big differences in the individual computational
powers of hosts. However, from a practical point of view, a user running a client
application on Javelin 2.0 that is joined by a large set of hosts will definitely
see “speedup”; the application will run faster than on a single machine. We will
use the term practical speedup to distinguish between the two scenarios. In the
following, we may omit the word “practical” when the meaning is clear from the
context.

We now give a more formal definition of our notion of practical speedup:
Let My, Ma, ..., My, denote k different processor types. Let 71 (i) denote the time
to complete the problem using 1 processor of type M;. A conventional speedup,

using p processors of type M; can be defined as T4 (¢) /T, (i) To compute speedup
when we have more than one type of processor, we generalize this formula. Let
a problem be solved concurrently using k types of processors, where there are p;
processors of type M;: The total number of processorsis p = p; +ps+- - -+py. Let
Tp(p1,p2, - -, pr) denote the execution time when using this mix of p processors.
We define a composite base case that reflects this mix of processors:

_ p1T1(1) + poT1(2) + - + ppT1 (k)
pr+pat ok '

T1(p1,p2, -5 Pk)
Finally, we define the speedup S as

S = Tl(p17p27 .. 7pk)/Tp(p17p27 .. 7pk)'

While this definition does not incorporate machine and network load factors, it
does reflect the heterogeneous nature of the set of machines.

Figure 5 shows the speedup we measured in our experiments and calcu-
lated according to the above formula. Speedup was superlinear in all measured
configurations, topping out at a rather amazing 89.48 for 40 hosts. To observe
superlinear speedup for the parallel TSP is quite common, due to the inherent ir-
regularity of the input graph. For instance, say that the optimal tour is found by
the sequential algorithm in one of the last pieces processed. If a parallel version
finds the optimum much faster, it can spread the bound to all other hosts and
they can prune the search tree much more efficiently, thus resulting in a much
better running time and superlinear speedup. However, looking at our results it
seems that the randomly generated test graph was very favorable to this kind of
phenomenon.

100 +
80 +

60 +
——tsp

40 +

Speedup

20 +

Processors

Fig. 5. Practical Speedup for TSP on Javelin 2.0.

To sum up, a graph that took almost 8 hours to calculate on a single computer
took just over 4 minutes on 40 machines that were also servicing students with

their normal, everyday workloads. We consider these results highly encouraging,
although they need to be evaluated further with different input graphs and higher
numbers of hosts®. Also, the effects of eager scheduling must be measured, since it
may add significant overhead to the overall processing time. It will be interesting
to see how varying the splitting limit affects performance. Being pushed for time,
we could not incorporate these measurements in the current version of this paper.
The final version will include these results.

6 Conclusion

The Internet has a vast ocean of computers. Aggregating those computers over
relatively slow communication links in a way that is useful to massively parallel
computation is an opportunity and a challenge. To attract application program-
mers, Javelin must:

— relieve the application programmer of the myriad technical details associated
with using a dynamic set of Internetworked processors
— deliver essentially linear speedup over a large, dynamic set of hosts.

Javelin 2.0’s APT shields the application programmer from all such details, while
obtaining essentially linear speedup.

To enlarge the set of applications that can benefit from Javelin, Javelin 2.0
extends Javelin++’s piecework model of computation to a branch-and-bound
model. The technical challenge is to implement a kind of distributed shared
memory that enables hosts to share the minimum cost upper bound, which is
critical to pruning the search tree. The shared memory’s principal implementa-
tion requirement is to rapidly and efficiently propagate a new bound from the
host that discovered it to all other hosts. One’s intuition suggests that distributed
shared memory cannot be implemented efficiently among Internetworked proces-
sors in a scalable manner — communication latency is too large. We implemented
the pipelined RAM model of cache consistency among hosts sharing the bound.
Our experiments indicate that limited use of this weak shared memory poses no
performance problem, even without resorting to multicast.

To further facilitate aggregating large numbers of hosts, Javelin 2.0 enhances
host registration (with a broker): The host can request the broker name system
to return a set of k broker names, where k is chosen by the host. Currently, the
host then pings these brokers to discover the “nearest”. We may implement an
expanding-ring search [13], and compare its speed to our present implementation.
Similarly, we may distribute code and initial data, and new bounds, to hosts
using multicast, and compare its speed to that of our present implementation.

In Javelin 2.0, hosts organize into a tree under their broker. With but one
Java RMI call on a broker, a client gets a handle to the broker’s entire preorga-
nized host tree. Other brokers convey their host trees with a similar economy of
communication.

3 We ran our tests at a bad time; over 20 of the machines were unavailable, and the
new cluster facility with 96 processors is still being configured. In the next set of
experiments we should be able to run on over 150 hosts!

Since parallel Internet computations need at least an order of magnitude more
computers than conventional NOWSs to justify their use, such infrastructures
must scale to at least an order of magnitude more computers than conventional
NOWSs. But, using that many components indicates a fundamental need for
fault tolerance. According to our goals for Javelin, part of our contract with
the application programmer is to provide Java-based, high-performance network
computing architecture that is both scalable and fault tolerant.

Regarding scalability, we were astonished by the speedups we observed in
the TSP application. In the final version of this paper, we will run performance
tests on several different random graphs and average the results. The TSP appli-
cation appears to suggest that branch-and-bound computations can be sped up
efficiently, even with large numbers of Internetworked hosts. Many combinatorial
optimization versions of NP-hard problems are solved with branch-and-bound
(e.g, the Integer Linear Programming problem). Perhaps others are well suited
to Javelin 2.0.

Regarding fault tolerance, our distributed deterministic work-stealing sched-
uler integrates smoothly, not only with the caching scheme, but also with the
distributed eager scheduler, which provides the essential fault tolerance (and
contributes to load balancing). Javelin also detects and replaces hosts (interior
nodes in the host tree) that have either failed or retreated from the computation.

In the future, we plan to 1) generalize our computational model, in order
to parallelize any divide-and-conquer computation; 2) contribute to the funda-
mental issue of correctness checking; and 3) support host incentives, in order to
attract a much larger set of computational hosts.

References

1. A. Alexandrov, M. Ibel, K. E. Schauser, and C. Scheiman. SuperWeb: Research
Issues in Java-Based Global Computing. Concurrency: Practice and Ezperience,
9(6):535-553, June 1997.

2. T. E. Anderson, D. E. Culler, and D. Patterson. A case for NOW (Networks of
Workstations). IEEE Micro, 15(1), Feb. 1995.

3. A. Bakker, M. van Steen, and A. S. Tanenbaum. From Remote Object to Physically
Distributed Objects. In Proc. 7th IEEE Workshop on Future Trends of Distributed
Computing Systems, Cape Town, South Africa, Dec. 1999.

4. J. E. Baldeschwieler, R. D. Blumofe, and E. A. Brewer. ATLAS: An Infrastructure
for Global Computing. In Proceedings of the Seventh ACM SIGOPS European
Workshop on System Support for Worldwide Applications, 1996.

5. A. Baratloo, M. Karaul, Z. Kedem, and P. Wyckoff. Charlotte: Metacomputing
on the Web. In Proceedings of the 9th Conference on Parallel and Distributed
Computing Systems, 1996.

6. D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, G. Premchandran, and W. Fur-
manski. WebFlow—A Visual Programming Paradigm for Web/Java-based Coarse
Grain Distributed Computing. Concurrency: Practice and Ezperience, 9(6):555—
577, June 1997.

7. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. In 5th ACM SIGPLAN

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Symposium on Principles and Practice of Parallel Programming (PPOPP ’95),
pages 207-216, Santa Barbara, CA, July 1995.

N. Camiel, S. London, N. Nisan, and O. Regev. The POPCORN Project: Dis-
tributed Computation over the Internet in Java. In 6th International World Wide
Web Conference, Apr. 1997.

B. O. Christiansen, P. Cappello, M. F. Ionescu, M. O. Neary, K. E. Schauser, and
D. Wu. Javelin: Internet-Based Parallel Computing Using Java. Concurrency:
Practice and Ezperience, 9(11):1139-1160, Nov. 1997.

G. Fox and W. Furmanski. Java for Parallel Computing and as a General Language
for Scientific and Engineering Simulation and Modeling. Concurrency: Practice and
Ezperience, 9(6):415-425, June 1997.

M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an Environment for Parallel,
Distributed and Mobile Java Applications. In ACM 1999 Java Grande Conference,
pages 1524, San Francisco, June 1999.

Lipton and Sandberg. PRAM: A scalable shared memory. Technical report, Prince-
ton University: Computer Science Department, CS-TR-180-88, Sept. 1988.

T. A. Maufer. Deploying IP Multicast in the Enterprise. Prentice-Hall, 1998.

M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello. Javelin++:
Scalability Issues in Global Computing. In ACM 1999 Java Grande Conference,
pages 171-180, San Francisco, June 1999.

M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello. Javelin++:
Scalability Issues in Global Computing. Concurrency: Practice and Ezperience, to
appear, 2000.

M. O. Neary, B. O. Christiansen, P. Cappello, and K. E. Schauser. Javelin: Parallel
Computing on the Internet. Future Generation Computer Systems, 15(5-6):659—
674, Oct. 1999.

C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms
and Complezity. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1982.

L. F. G. Sarmenta. Bayanihan: Web-Based Volunteer Computing Using Java.
In 2nd International Conference on World-Wide Computing and its Applications,
Mar. 1998.

L. F. G. Sarmenta and S. Hirano. Bayanihan: Building and Studying Web-Based
Volunteer Computing Systems Using Java. Future Generation Computer Systems,
15(5-6):675-686, Oct. 1999.

R. van Nieupoort, J. Maassen, H. E. Bal, T. Kielmann, and R. Veldema. Wide-
Area Parallel Computing in Java. In ACM 1999 Java Grande Conference, pages
8-14, San Francisco, June 1999.

