
UCLA
Earthquake Engineering

Title
Radiation Damping of Shallow Foundations on Nonlinear Soil Medium

Permalink
https://escholarship.org/uc/item/1hc2543n

Authors
Zhang, Jian
Tang, Yuchuan

Publication Date
2007-01-21

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1hc2543n
https://escholarship.org
http://www.cdlib.org/


4th International Conference on  
Earthquake Geotechnical Engineering 

June 25-28, 2007 
Paper No. 1150 

 
 
 

RADIATION DAMPING OF SHALLOW FOUNDATIONS ON 
NONLINEAR SOIL MEDIUM 

Jian ZHANG1 and Yuchuan TANG2  

ABSTRACT 
 
The paper evaluates the radiation damping associated with shallow foundations sitting on linear or 
nonlinear soil medium. The study was motivated by the need to develop macroscopic foundation 
models that can realistically capture the nonlinear behaviour and energy dissipation mechanism of 
shallow foundations. Such model is essential to simulate the complex behaviour of structure 
components (e.g. shear walls, columns etc.) sitting on flexible foundations due to soil-structure 
interaction effects. In this study, the dynamic response of an infinitely long strip foundation resting on 
an elastic and inelastic half-space is investigated. The numerical analysis results presented here reveal 
that dynamic responses of shallow foundations strongly depend on amplitude and frequency of the 
input motion. In particular, the radiation damping of the system is affected by soil nonlinearity, 
foundation geometry and excitation frequency. The yielding of soil reduces the energy dissipation 
through the out going waves. As a result, the radiation damping of nonlinear soil medium is 
significantly lower than the elastic soil counterpart. The effects of initial elastic stiffness, yielding 
stress and excitation amplitude are incorporated in a nonlinearity indicator, which has shown strong 
correspondence to the radiation damping of the system. 
 
Keywords: radiation damping, shallow foundation, nonlinear soil, dynamic stiffness, soil-structure 
interaction 
 
 

INTRODUCTION 
 
Recent earthquakes in major urban areas have underscored the need to better understand the responses 
of structures (e.g. bridges and buildings) to seismic actions. The responses of structures are affected by 
not only the nonlinear dynamic behavior of individual components (i.e. superstructure, foundations 
and surrounding soil) but also the complex interaction among them, i.e. the soil-structure interaction 
effects. During earthquakes, the foundation and surrounding soil interacts with the superstructure 
through changing stiffness and energy dissipation either by means of hysteretic damping or radiation 
damping. This interacting behaviour is often referred as inertial response in literature (Kramer 1996). 
The characteristics of inertial interaction can be represented by frequency dependent dynamic 
stiffness, which subsequently provide information on equivalent spring and dashpot constants of 
foundations. The kinematic response, which refers to the modification to foundation input motion due 
to the presence of foundations, is dealt elsewhere and is not the subject of this paper.  
 
Various analytical models are available to describe the dynamic stiffness of shallow foundations of 
different shapes on elastic soil medium. The dynamic stiffness of rigid strip foundations on 
homogeneous elastic half-space was derived by Luco and Westmann (1972) and Hryniewicz (1981) 
independently. The solution for strip foundation on visco-elastic soil layer was provided by Gazetas 
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and Roesset (1979) and Gazetas (1981). The dynamic stiffness of rigid circular foundation was 
derived by Luco and Westmann (1971) and Veletsos and Verbic (1974) for homogeneous elastic soil 
half-space and by Veletsos and Verbic (1973) for viscoelastic half-space. Wong and Luco (1976 and 
1985) explored dynamic stiffness of rectangular foundations on either elastic soil half-space or elastic 
layered soil medium. Pais and Kausel (1988) proposed approximate formulas for dynamic stiffness of 
cylindrical and rectangular embedded foundations on homogeneous elastic soil half-space. Gazetas 
(1991) provided approximate formulas and charts to estimate dynamic stiffness of surface or 
embedded foundations on homogeneous elastic soil half-space. Most recently, Mylonakis et al. (2006) 
compiled an extensive set of graphs and tables for dynamic stiffness of foundations with a variety of 
geometries and linear soil conditions. 
 
Despite the abundance of analytical solutions for shallow foundations on linear soil medium, very 
limited work has been reported on the dynamic stiffness of shallow foundations on nonlinear soil 
medium (Mylonakis et. al., 2006). Current engineering practices rely on these linear models to 
estimate the dynamic response of foundations so as to derive spring and dashpot constants for use in 
analysis. However, the true behavior of soil is far from being linear in reality. The nonlinearity of soil 
has caused reduced stiffness and modified energy dissipation mechanism. As pointed out by Borja and 
his co-workers (Borja et al. 1993; Borja and Wu 1994), the local yielding in an otherwise 
homogeneous elastic soil half-space tends to reduce the radiation damping and create resonance 
frequencies. Their study, nevertheless, did not quantify the reduction of radiation damping resulted 
from soil nonlinearity.  
 
A limited number of experiments have also been conducted on shallow foundations to evaluate their 
static and dynamic load-deformation behavior (Gajan et al. 2005; Faccioli et al. 2001 among others). 
These experimental results generally showed the nonlinear response of shallow foundations due to soil 
yielding and the opening and close of the gap between foundation base and underlying soil. They 
confirmed the need to evaluate the response of shallow foundations in the nonlinear range. However, 
due to the limit size of laboratory tests, these experimental results did not yield the information about 
the radiation damping of the system because the specimens are usually confined in a small domain. 
The radiation damping can be a significant portion of the energy dissipation mechanism. It often 
exceeds the amount of energy dissipated through hysteretic damping due to nonlinearity, especially at 
the higher frequencies. Therefore, it is important to accurately quantify the radiation damping when 
soil deforms into the nonlinear range.  
 
In this study, finite element method is adopted to compute the dynamic response of an infinitely long 
strip foundation resting on an elastic and inelastic half-space. Numerical results from finite element 
method are compared with the theoretical solution of strip foundation on elastic half-space so as to 
provide guidance on choosing appropriate domain scale, mesh size and boundary conditions for 
correct modeling the wave propagation in a half-space. A series of parametric study is conducted to 
evaluate the effects of foundation width and elastic soil properties (Young’s modulus and Poisson’s 
ratio) on the dynamic stiffness of strip foundations. Closed-form formulas are developed to describe 
the frequency-dependent linear dynamic stiffness of strip foundation along both horizontal and vertical 
directions. The emphasis is then put on analyzing the dynamic response of strip foundation on 
nonlinear soil medium. Nonlinear constitutive model has been incorporated to exhibit yielding and 
kinematic hardening behavior of soil. The energy dissipation due to radiation damping is separated 
from that of the hysteretic damping. The numerical results show that radiation damping depends on the 
width of foundation, amplitude and frequency of the motion, and development of soil nonlinearity. 
The yield zone in soil reduces the energy dissipated through outgoing waves. As result, the radiation 
damping of nonlinear soil medium is significantly lower than that of elastic soil counterpart. The 
effects of initial stiffness, yielding stress of soil medium on dynamic stiffness of strip foundations are 
also investigated. The study provides valuable guidance on estimating nonlinear radiation damping 
parameter for soil-structure interaction analysis in engineering practices. 
 
 



DYNAMIC STIFFNESS OF STRIP FOUNDATION ON ELASTIC SOIL HALF-SPACE 
 
Consider an infinitely-long rigid strip foundation sitting on elastic soil half-space subject to harmonic 
excitations, as shown in Figure 1. Its dynamic stiffness can be obtained analytically. Luco and 
Westmann (1972) derived theoretic dynamic compliance of rigid strip foundation bonded to an elastic 
soil half-space using the theory of singular integral equations. An exact solution was presented for 
incompressible soil (Poisson’s ratios ν=0.5) while approximate solutions were obtained for soil of 
Poisson’s ratio ν=0, 1/4, 1/3. Hryniewicz (1981) obtained the dynamic stiffness of rigid strip 
foundation on an elastic half-space of Poisson’s ratio ν=0.25. Under a harmonic motion, the reacting 
forces are related to displacements by the general form shown in Eq. (1):  
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where G is the shear modulus of soil, πG(c11+id11) and πG(c22+id22) are the dynamic stiffness in 
vertical and horizontal directions respectively. The force-displacement relationship in Eq. (1) is 
analogous to that of a spring-dashpot system with spring constant πGc11 (or πGc22) and dashpot 
coefficient πGd11/ω (or πGd22/ω). The dynamic stiffness parameters c11, d11, c22, d22 depend on both 
the frequency of excitation and soil properties. The dynamic stiffness parameters are conventionally 
plotted against dimensionless frequency a0= ωb/vs for a given Poisson’s ratio, where b is the half-
width of strip foundation and vs is the shear wave velocity in soil medium. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Finite element method is used in this study to conduct the dynamic analyses of strip foundation under 
harmonic displacement excitation in vertical and horizontal directions respectively. The soil half-space 
is represented by a finite domain where an absorbing boundary condition needs to be present to 
correctly model the outgoing waves of an infinite medium (Figure 2). Maximum element size, 
boundary conditions and scale of the finite domain dominate the accuracy of finite element analysis of 
the dynamic response of strip foundation. Judicious selection of domain scale and mesh size is 
required to minimize the numerical oscillations that were often observed with finite element method in 
this study. 
 
The maximum element size is controlled by the shear wave length L. Kuhlemeyer and Lysmer (1973) 
and Lysmer et al. (1975) suggested that the maximum element size lmax should satisfy 
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For a given finite element mesh, this rule equivalently puts an upper limit on the applicable 
dimensionless excitation frequency a0, on a specific mesh, i.e. 
 

Figure 2.  Finite domain and absorbing 
boundary 

  finite domain 

2H 
D

 
Uv0  sinωt 

Uh0  sinωt

Figure 1.  Foundation geometry and  
           excitation conditions 

soil half-plane 

absorbing boundary 



max
0

2
5
1~

8
1

l
ba π

⎟
⎠
⎞

⎜
⎝
⎛≤  (3) 

 
Finite element simulation of wave propagation requires an absorbing boundary along the finite domain 
to allow an effective transmission of the outgoing waves. The energy dissipation mechanism of 
transmitting waves outwards is referred as radiation damping. Viscous damping boundary (Lysmer 
and Kuhlemeyer, 1969) and infinite element boundary (Lynn and Hadid, 1981) are most widely used 
absorbing boundaries, both of which are available in the commercial software ABAQUS Version 6.4. 
However, either viscous damping boundary or infinite element boundary in ABAQUS results in 
unexpected numerical oscillations if the selected domain is not large enough. 
 
To avoid the uncertainty of absorbing boundary, a reliable alternative is to set up a finite domain large 
enough to achieve steady state response before the wave reflection at boundary contaminates the 
dynamic response of foundation (Borja et. al., 1993). For this purpose, the scale of the finite domain 
needs to satisfy 
 

rp LnTv ≤  (4) 
 
where Lr is the length of the shortest wave reflection path within the finite domain, vp is the 
longitudinal wave velocity, T is the period of harmonic excitation,  n is the number of periods from 
beginning of excitation which includes one full cycle of steady state response. Substituting 
dimensionless frequency a0 into Eq. (4) for period T yields the lower bound on the applicable 
dimensionless excitation frequency 
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 Figure 3.  Dynamic stiffness parameters from FEM model: vertical (a,b) and horizontal (c,d) directions
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A finite mesh of H=250m, D=250m, lmax=1.25m (refer to Figure 2) was set up for a strip foundation of 
half-width b=1m on elastic soil medium of vs=201.5m/s, ν=0.25, ρ=1600kg/m3. Eq. (5) gives lower 
bound of excitation frequency as a0≥0.04 while Eq. (3) gives upper bound of excitation frequency as 
a0≤1.0. For input frequency within this range, the numerical oscillation is well eliminated. The 
dynamic stiffness parameters computed by finite element method using commercial software 
ABAQUS are plotted in Figure 3 against the theoretical solution given by Hryniewicz (1981). The 
excellent agreement validates the capacity of finite element method in modeling of the foundation-soil 
system. 
 
Further analyses show that the effect of either foundation half-width or Young’s modulus of soil 
medium on dynamic stiffness parameters can be normalized by means of using dimensionless 
frequency a0 as shown in Figure 4,  where the effect of half-width is shown in subplots (a), (b) and 
effect of Young’s modulus is shown in subplots (c), (d).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another important property of elastic soil, the Poissson’s ratio ν, also affects the relationship between 
dimensionless dynamic stiffness parameters c11, d11, c22, d22 and dimensionless frequency a0 (Figure 5). 
The family of c11−a0 curves and d11−a0 curves corresponding to different Poisson’s ratio describe 
completely the vertical dynamic stiffness of rigid strip foundation on elastic soil half-space (Figures 5a 
and 5b). Similarly, c22 −a0 curves and d22− a0 curves represent the horizontal dynamic stiffness (Figures 
5c and 5d). For practical use, the following simplified formulas are developed based on finite element 
analysis results: 
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Figure 4.  Effects of foundation half-width and Young’s modulus of soil 
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The predicted c11 values with Eq. (6) and d11 values with Eq. (7) are compared with the finite element 
results in Figure 5 and showed excellent agreement. Similarly, the predicted c22 values with Eq. (8) 
and d22 values with Eq. (9) are also compared well with the finite element results in Figure 5 for 
horizontal direction. In computing the parameters c11 (or c22) and d11 (or d22) by finite element method, 
equations (10) to (12) are followed.  
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Figure 5.  Effect of Poisson’s ratio on dynamic stiffness along vertical (a, b) and horizontal directions (c, d)
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where )(ωC  is equivalent dashpot value, dW  is the dissipated energy per loading cycle, 0U  is the 
displacement amplitude and )(tP  is the reaction force at time t. 
 
 

RADIATION DAMPING OF STRIP FOUNDATION ON NONLINEAR SOIL HALF-SPACE 
 
During strong earthquakes, soil often behaves nonlinearly. The plasticity experienced in soil reduces 
the energy dissipated through outgoing waves. As result, radiation damping of nonlinear soil is quite 
different from that of linear soil. Analytical derivation meets big difficulty to deal with the dynamic 
response of shallow foundation on nonlinear soil half-space. Alternatively, finite element modeling is 
an effective way to reveal the amplitude and frequency dependent nature of the foundation-nonlinear 
soil system. 
 
In this section, the finite element method is used to evaluate the radiation damping of rigid strip 
foundation on nonlinear soil medium. It is recognized that the response of an infinitely long strip 
foundation on nonlinear soil medium behaves differently under static cyclic loading and dynamic 
harmonic excitation, as shown in Figure 6. The area within static loop accounts for hysteretic energy 
Wh only and is frequency independent. On the other hand, the area within dynamic loop accounts for 
total dissipated energy Wt through both hysteretic and radiation damping, which depends on excitation 
frequency. The difference between Wt and Wh is therefore the nonlinear radiation energy, Wd, which is 
related to nonlinear radiation dashpot coefficient C in Eq. (10) and nonlinear radiation damping 
parameter dii in Eq. (11).  
 
A simple procedure has been developed to derive the model parameters for nonlinear constitutive 
model of soil based on widely available shear modulus reduction curves. Stress-strain relationship for 
simple shear can be easily obtained from shear modulus reduction curves. By applying the Masing rule 
to this 1D stress-strain relationship, one can obtain a cyclic loop, similar to the one shown by 
continuous line in Figure 7, where the soil parameters associated with Painter Street Bridge (Zhang 
and Makris 2002) are used. The Bouc-Wen model (Wen 1976) is then used to simulate the cyclic loop 
as shown by the dashed line in Figure 7. Excellent agreement can be obtained easily by adjusting the 
model parameters of Bouc-Wen model. This procedure allows for easy generation of cyclic behavior 
of different soil types so that the effects of various soil properties such as initial stiffness, yield stress 
and post-yielding stiffness can be evaluated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Static response and 
dynamic response of nonlinear soil 
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Figure 7.  Bouc-Wen model for simple shear 



 
An elasto-plastic constitutive model of von Mises yield criterion and nonlinear kinematic hardening 
rule in ABAQUS was selected to simulate nonlinear soil material. The elasto-plastic material model 
was defined by a few representative points on the steady-state cyclic loop, e.g. the one given by Bouc-
Wen model in Figure 7. Figure 8 compares the response of a single plane-strain element subjected to 
simple shear predicted by ABAQUS and the input curve based on Masing rule. The input to ABAQUS 
was done by picking up four representative points from the Bouc-Wen loop in Figure 7 and the 
program computes the nonlinear kinematic hardening parameters automatically. The excellent 
agreement shown on Figure 8 verifies this procedure. A number of simulations (not shown here) have 
also been conducted to verify that the possibility of using this model to predict the response of other 
soil types. With the careful selection of nonlinear kinematic hardening parameters, the model is able to 
predict the soil behavior and energy dissipation with reasonable accuracy. Nevertheless, this model is 
not intended to be used for liquefiable soil. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Parametric studies are performed on three different soil models to evaluate the effects of initial 
stiffness and yielding stress on dynamic stiffness of the strip foundation on nonlinear soil medium. 
Three Bouc-Wen simple shear loops, Cases A, B and C, were generated for this purpose (Figure 9). 
Case A differs from Case B only in yield shear stress τy, which is 3.0x104 N/m2 and 2.1x104 N/m2 for 
Case A and B respectively. Case A differs from Case C only in shear modulus G, which is 6.0x107 
N/m2 and 1.0x108 N/m2 for Case A and C respectively. Poisson’s ratio 0.25 is specified for all three 
soil material cases. 
 
Besides Eq. (3) and Eq. (5), the possible development of plasticity in soil medium should also be taken 
into account to set up finite element mesh for nonlinear dynamic analysis. Development of plasticity 
results in smaller wave velocity, which requires finer mesh in the region where soil yields. Following 
all the restrictions and taking advantage of symmetry or anti-symmetry, two plane strain finite element 
meshes was set up for different excitation frequency ranges. For frequency range 0.4Hz~1.0Hz, the 
mesh is of H=D=1800m, lmax=10m and has uniform finer rectangular elements of 0.1mx0.1m within 
the 12mx12m region near the foundation. For frequency range 1.0Hz~3.0Hz, the mesh is of 
H=D=700m, lmax=3m and has uniform finer rectangular elements of 0.1mx0.1m within the 14mx14m 
region near the foundation. 
 
Effect of soil density is discussed at first. Dynamic finite element analyses of a strip foundation of 
half-width b=1m on soil medium of material Case A under vertical harmonic excitation 

ttU ωsin02.0)( = (meter) were performed with different soil densities ρ=800kg/m3, 1600kg/m3, 
2000kg/m3 respectively. Figure 10 plots d11 vs. a0 curves for different soil density. It shows that soil 
density does not affect the dimensionless nonlinear radiation damping parameter. This finding does 
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Figure 8.  ABAQUS simulation of simple shear 

-6.0E+04

-4.0E+04

-2.0E+04

0.0E+00

2.0E+04

4.0E+04

6.0E+04

-0.012 -0.008 -0.004 0 0.004 0.008 0.012

Masing Rule
ABAQUS

Shear strain 

Sh
ea

r s
tre

ss
 

(N
/m

2 ) 



d11 d11 

not contradict the experimental evidence that the soil density affects the response of soil. Instead, its 
effect is normalized through the dimensionless parameter a0 hence does not show up in the plot.   
 
It is anticipated that the amplitude of displacement excitation will affect the development of 
nonlinearity in soil medium. As a result, nonlinear radiation damping is displacement-amplitude 
dependent, as it differs from linear radiation damping. Figure 11 plots the nonlinear radiation damping 
for soil material Case A with density of ρ=1600kg/m3 and different combinations of foundation half-
width b and displacement amplitude U0. It is observed from Figure 11 that the nonlinear radiation 
damping parameter depends on the ratio U0/b rather than U0 itself. Analyses with soil material Cases B 
and C reveal the similar trend. Larger U0/b results in more nonlinearity in soil, which leads to smaller 
radiation damping due to outgoing waves. 
 
Besides the ratio U0/b, soil properties also affect the nonlinear behavior of strip foundation. Figure 12 
shows the static responses of a strip foundation of b=2m under vertical cyclic displacement of 
amplitude 0.04m with soil material Case A, B, C respectively. Case A and Case B lead to different 
yield displacement in foundation behavior. Case A and Case C lead to different initial stiffness in 
foundation behavior.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Static analysis of the strip foundation on nonlinear soil with finite element method gives a nonlinear 
initial loading curve as shown in Figure 13. Assuming small deformation, the initial linear portion of 
the nonlinear curve can be extended to any displacement level to get the linear counterpart. The 
deviation of the nonlinear curve from its linear counterpart indicates the degree of nonlinearity in the 
soil medium. To quantify the degree of nonlinearity in soil medium under displacement excitation at 
foundation, nonlinearity indicator δ is defined as 
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Figure 10.   Effect of soil density 
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Figure 12.  Static cyclic behavior of foundation 
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Figure 13.  Static behavior of foundation 
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where Wlinear is the work done along linear loading path from the origin to U0, and Wnonlinear is the work 
done along nonlinear loading path from origin to U0. The shaded area in Figure 13 illustrates the 
numerator in Eq. (13). Essentially, the nonlinear indicator covers both the effect of U0/b and the effect 
of nonlinear soil properties at a global level. 
 
Static finite element analyses were performed to get nonlinearity indicators for the combinations of 
different soil material cases and U0/b ratios as listed in Table 1. Larger nonlinearity indicator indicates 
more nonlinearity in soil. Nonlinear dynamic analyses with finite element method gave nonlinear 
radiation damping parameters of the combinations of different soil material cases and U0/b ratios as 
plotted in Figure 14. Referring to Table 1, Figure 14 reveals that the radiation damping decreases 
monotonically with the development of nonlinearity in soil medium i.e. increase of nonlinearity 
indicator. The results show the great promise of using the nonlinearity indicator as quantifying 
parameter for radiation damping of strip foundation on nonlinear soil medium. 
 

Table 1. Nonlinearity indicators for different combinations 
 U0/b=0.001 U0/b=0.005 U0/b=0.01 U0/b=0.02 

Soil Case A — 0.43% 4.00% 14.87% 

Soil Case B — 1.03% 8.33% 21.77% 

Soil Case C 0.07% 3.16% 15.01% 31.62% 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14.  Nonlinear radiation damping 
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CONCLUSIONS 
 
In this study, the dynamic stiffness of strip foundation on linear and nonlinear soil medium is analyzed 
by finite element method. The numerical results from FEM are compared with theoretical solution of 
strip foundations on elastic half-space. Special attentions are paid to choosing appropriate domain 
scale, mesh size and boundary conditions so that the wave propagation in an infinite domain can be 
correctly modeled. Excellent agreement between finite element analysis and theoretical results can be 
achieved by judicious selection of domain scale and mesh size. Closed-form formulas are then 
developed to describe the spring and dashpot constants of dynamic stiffness as function of frequency 
as well as their dependency on foundation width, Young’s modulus and Poisson’s ratio.  The analysis 
of strip foundation on nonlinear soil medium shows that energy dissipation depends on the amplitude 
of the motion and frequency. The plasticity in soil reduces the energy dissipated through outgoing 
waves. As result, the radiation damping of nonlinear soil is significantly lower than the elastic soil 
counterpart. The study investigated the effects of initial elastic stiffness, yielding stress and post-
yielding stiffness on radiation damping. A nonlinearity indicator is developed and has been shown to 
directly relate to the reduction of radiation damping due to soil yielding. The findings are important to 
dynamic responses of structures supported on shallow foundations since the reduced radiation 
damping at foundation level will result in increased structural response. 
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