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Abstract
There are ongoing debates whether logarithmic compression
in number-to-space mapping reflects logarithmic encoding
of large numbers (bias) or uncertainty about numeric value
(noise). We tested these two hypotheses by disentangling the
effect of bias and noise. When 80 adults and 80 4- to 7-year-
olds were asked to estimate the number of dots on a number
line, both children and adults were more logarithmic on 0-100
than 0-30 problems. Internal noise explained some of the vari-
ance in logarithmicity, but only for children. We then exam-
ined the wisdom of crowds effect by comparing accuracy of
children’s mean estimate with accuracy of each adult’s esti-
mates. As predicted, children as a crowd were not as accurate
as individual adults, indicating that noise is not the only source
of children’s errors. Generally, increasing the size of a crowd
also had a smaller effect on 0-100 than 0-30 problems, indi-
cating that inaccuracy on 0-30 problems is likely due to noise.
The present study provides evidence that bias and noise have
an additive effect on logarithmic compression and that chil-
dren’s logarithmicity reflects bias in number representations,
not just noise.
Keywords: wisdom of crowds effect; number-line estimation;
cognitive development

Introduction
Inaccurate judgments entail errors that consist of noise, bias,
or both (Kahneman, Sibony, & Sunstein, 2021). As noise
and bias have additive effects on error, error rates across
age groups actually reveal little about cognitive development.
Does accuracy improve with age because children become
less noisy, less biased, or both? To answer this question, we
focused on developmental changes in estimation. A novel
feature of our study was to revisit Galton’s (1907) wisdom
of crowds effect, wherein the mean (and median) estimated
weight of an ox was as accurate as the best individual esti-
mate. Like Galton, we wondered if the average estimate of
a crowd of children, where noise is cancelled out, is more
accurate than that of any individual adult? As we will see,
prominent theories of numerical representation have different
implications for the wisdom of crowds effect.

In our study, we asked children and adults, not to esti-
mate the weight of an ox, but to estimate the numerosity of
dots on a number-line. Number-line estimation is preferable
to Galton’s method because humans and other species spon-
taneously map numbers to space (Adachi, 2014; de Hevia,
Izard, Coubart, Spelke, & Streri, 2014; de Hevia & Spelke,
2010; Drucker & Brannon, 2014; Lourenco, 2010; Rugani,
Vallortigara, Priftis, & Regolin, 2015), even if they cannot re-
port a specific number (e.g., because they are not fluent with

the names of large numbers). Number-to-space mapping has
been examined extensively using the number-line estimation
task, where participants are asked to estimate the position of
a numerosity or numerical value on a horizontal line flanked
by 0 and a larger number (Siegler & Opfer, 2003; Dehaene,
Izard, Spelke, & Pica, 2008). Number-line studies typically
show that differences between small numbers tend to be over-
estimated and that differences between larger numbers are
underestimated, much like numbers on a logarithmic ruler.
Some researchers propose that this logarithmic compression
reflects an evolved bias in encoding numerical information
(Dehaene et al., 2008; Siegler & Opfer, 2003; Yuan, Prather,
Mix, & Smith, 2020). For a hungry animal, the differences
between 1 and 10 pieces of food matter more than the differ-
ences between 101 and 110 pieces of food. In contrast, others
suggest that noise and uncertainty result in logarithmic com-
pression, perhaps because the bounded number line results in
the truncation of responses (Rips, 2013). In this paper, we
aim to test these two hypotheses about bias versus noise.

Logarithmic Encoding of Numerical Information
Previous studies have shown that young children show loga-
rithmic compression in number-line estimates. With educa-
tion and numerical experience, children’s estimates become
more linear. This log-to-linear shift occurs first for small
and familiar numbers, resulting in the co-existence of loga-
rithmic and linear representations at any given age (Siegler,
Thompson, & Opfer, 2009). For example, Kim and Opfer
(2017) showed that kindergarteners estimated 0-30 number
lines linearly, but 0-100 number lines logarithmically. Sim-
ilarly, second graders estimated 0-100 number lines linearly,
but 0-1000 number lines logarithmically (Siegler & Opfer,
2003). Third graders estimated 0-1000 number lines lin-
early, but 0-10,000 number lines logarithmically (Thompson
& Opfer, 2010). Thus, at any given age, children are likely to
show a mixture of logarithmic and linear responses.

To quantify the degree of logarithmicity in number line es-
timates, Anobile, Cicchini, and Burr (2012) proposed a mixed
log-linear model (MLLM):

y = a
(

λ
U

ln(U)
ln(x)+(1−λ)x

)
,

where y denotes the estimate of a target number x on a num-
ber line with an upper-bound U . a is a scaling parameter. λ is
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the index of logarithmic compression in estimates, measuring
the relative contribution of log representations in comparison
with that of linear representations. When estimates are per-
fectly logarithmic, λ equals 1. When estimates are perfectly
linear, λ equals 0. Studies have shown that λ decreases with
age and increases with number range of number line (Lee,
Kim, Opfer, Pitt, & Myung, 2022). Lee et al. (2022) ex-
amined logarithmic compression in numerosity estimates on
0-50, 0-100, 0-200, and 0-400 number line. Kindergarten-
ers to second graders were most logarithmic regardless of the
range of number line, followed by third to seventh graders
and adults. In addition, both children and adults were more
logarithmic on 0-400 than 0-50 number lines.

In addition to the effect of numeric range, estimates change
from trial to trial depending on the information available from
previous trials. Kim and Opfer (2018) examined the source of
logarithmic compression by analyzing logarithmicity of esti-
mates in trial-by-trial basis. In their study, logarithmicity of
each trial was calculated across participants. For example,
logarithmicity of first trial was calculated by collapsing first
estimates of all participants. When 5- to 6-year-old children
and adults were asked to estimate the number of dots on the
0-30 number line, both children (λ = 1) and adults (λ = 0.70)
were logarithmic on the first trial. Nevertheless, estimates of
adults became linear over trials (λ = 0.18 for the last trial)
while the last trial of children (λ = 1) was as logarithmic as
their first trial. Dynamics in the number-line estimation fur-
ther supports that the natural psychological scaling of num-
bers is logarithmic, but context of the number-line task such
as numeric range or sequential effect help to suppress the in-
tuitive logarithmic representation for more accurate represen-
tation.

Effect of Uncertainty on Number-to-Space Mapping
Against the logarithmic encoding hypothesis, an alternative
approach proposes that numbers are encoded linearly, but the
noise of representation increases with numerical value. As
a result, the uncertainty that covaries with numerical value
drives logarithmic compression in number line estimation
task (Cantlon, Cordes, Libertus, & Brannon, 2009). Ac-
cording to this linear-scalar hypothesis, increasing the uncer-
tainty of stimuli will increase logarithmicity of estimates re-
gardless of the numeric range of the number line. Chesney
and Matthews (2013) manipulated uncertainty by presenting
numbers in either decimal form (e.g., 2272 or 4960) or expo-
nential form (e.g., .018×104.5 or .025×104.5). Adults were
more logarithmic when numbers were presented in unfamiliar
form (exponential) than in familiar form (decimal).

More recently, Cicchini, Anobile, Chelli, Arrighi, and Burr
(2022) examined whether internal noise of representation and
external noise of stimuli drive compression of estimates. To
examine the effect of internal noise on logarithmic compres-
sion of estimates, internal noise was quantified using Disper-
sion Index (DI) which is based on response variance. Like
Kim and Opfer (2018), Cicchini et al. (2022) calculated log-
arithmic component λ and DI on a trial-by-trial basis. Both

λ value and DI was found to decrease over trials, resulting in
a positive correlation between logarithmicity and DI. The re-
searchers then examined the effect of external noise on com-
pression of estimates by presenting color line estimation task.
In the task, color patches were presented instead of dot ar-
rays. External noise was added either at the high end or at the
low end of the color line. The result showed that estimates
were logarithmic when external noise was added at the up-
per end, whereas estimates were exponential when the noise
was added at the lower end. From these findings, Cicchini
et al. (2022) proposed that internal and external noise drive
compression of estimates, rather than logarithmic encoding
of number.

Wisdom of Crowds
An effective tool for decomposing error into noise and bias is
the wisdom of crowds effect (Surowiecki, 2005). When es-
timates are unbiased, estimation errors of individuals cancel
when averaged, leaving an accurate mean estimate (Galton,
1907; Lorenz, Rauhut, Schweitzer, & Helbing, 2011). In his
study, Galton (1907) analyzed the guesses in weight-judging
competition where competitors had to estimate the weight of
the ox. The result showed that the mean of estimates across
competitors was as accurate as the best guesser, which dif-
fered 1lb from the actual weight of the ox (Galton, 1907;
Hooker, 1907). After Galton (1907)’s study, numerous stud-
ies have shown that the average of individuals’ estimates
tends to be more accurate than the estimate of individuals
or even experts (Hommes, Sonnemans, Tuinstra, & Van de
Velden, 2005; Lorenz et al., 2011; Lorge, Fox, Davitz, &
Brenner, 1958; Yaniv & Milyavsky, 2007).

We simulated the wisdom of crowds effect and effect of
crowd size on accuracy of estimates given different assump-
tions about the internal scaling of number. Our simulation
shows that logarithmic and linear-scalar encoding can be dis-
tinguished based on the wisdom of crowds effect (Figure 1).
Given typical logarithmic compression for large numbers (λ =
0.5) and constant variability (SD = 10), the wisdom of crowds
effect would not be observed (Figure 1C left). In addition,
increasing the crowd size from 10 to 50 would not improve
accuracy of mean estimates (Figure 1A). In contrast, if noise
covaries with numerical value (SD = .4 × target number) with
no compression (λ = 0.0), both a wisdom of crowds effect
(Figure 1C right) and an effect of crowd size would be ob-
servable (Figure 1B). Thus, the wisdom of crowds effect pro-
vides a valid and novel method for testing competing theories
of number representation.

The Current Study
In this paper, we propose that the effects of numeric value and
uncertainty on logarithmic compression are not mutually ex-
clusive. Indeed, education and numeric experience decrease
both bias and uncertainty about numbers, leading adults’ es-
timates to be less biased and less noisy than children’s. Like
Cicchini et al. (2022), we manipulated external noise of stim-
uli and measured internal noise using DI. Additionally, we ex-
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Figure 1: A. Simulated data assuming logarithmic represen-
tation with constant response variance. B. Simulated data
assuming linear representation with scalar variability. A, B.
Left panels show the estimates of 10 simulated participants.
Right panels show the estimates of 50 simulated participants.
Red dots indicate mean estimates of each target number. Per-
cent absolute error (PAE) was calculated based on mean es-
timates. Increasing the number of simulated participants de-
creased PAE of mean estimates only for linear-scalar model.
C. Difference between each individual’s PAE and PAE of the
crowd’s mean estimate. Wisdom of crowds effect was most
salient in linear-scalar model, where the average estimate of a
large crowd was as accurate as the most accurate individual.

amined the wisdom of crowd effect for small numbers (where
bias was expected to be low) and large numbers (where bias
was expected to be high).

To examine the effect of external noise, we orthogo-
nally manipulated numerical value and perceptual entropy,
an information-theoretic measure of uncertainty. Entropy is
defined as a weighted average of the number of bits of in-
formation that are required to predict value of the stimulus
(DeWind, Bonner, & Brannon, 2020; Shannon & Weaver,
1949; Young & Wasserman, 2001). Perceptual entropy in-
creases with a set size because more items need to be encoded
to estimate numerosity. In addition to set size, perceptual en-
tropy is higher when a set consists of more diverse objects
compared to homogenous set. For example, an 8-dot array
with 8 distinct colors has higher entropy than an 8-dot array
with same color (Qu, DeWind, & Brannon, 2022). In the
present study, we manipulated perceptual entropy by includ-

ing two levels of numeric range and two levels of perceptual
variability. We included 0-30 and 0-100 number lines which
were presented either in single-colored dot arrays or multiple-
color dot arrays. By measuring external noise based on per-
ceptual entropy, we aimed to decompose the effect of external
noise that covary with numerical value from the effect of nu-
meric value itself.

In addition to perceptual entropy, we investigated the effect
of internal noise on logarithmic compression of estimates.
We quantified internal noise based on dispersion index (DI)
proposed by Cicchini et al. (2022). Cicchini et al. (2022) cal-
culated DI across participants for each trial order to examine
the relation between logarithmicity and internal noise. How-
ever, calculating DI across participants measures disagree-
ment between participants rather than internal noise of num-
ber representation within participant. To overcome this lim-
itation, we calculated DI on a subject by subject basis. Sub-
sequent regression analyses then allowed us to examine the
source of logarithmic compression by comparing the relative
effects of numerical value, perceptual entropy, and internal
noise on estimates.

The second purpose of the present study was to use the wis-
dom of crowd effect to examine whether children are more er-
roneous than adults because children are simply noisier than
adults or more biased. To investigate this issue, we compared
the accuracy of the mean estimate of a small crowd of chil-
dren, the mean estimate of a large crowd of children, and the
accuracy of individual adult estimates. If children’s errors
were solely based on noise (as we predict for small numbers),
the mean estimate of a large crowd of children would be as
accurate as the most accurate adults, when accuracy is mea-
sured based on percent absolute error (PAE). If children’s er-
rors were due to bias (as we predict for large numbers), es-
timates of individual adults would be more accurate than the
mean estimate of a large crowd of children.

Method

Participants

Ninety-six undergraduate students and eighty-four 4- to 7-
year-old children participated in the study. The experiment
was conducted online for adults. Adults received course
credit for their participation. Two participants who took
longer than 30 minutes and two participants whose estimates
were completely logarithmic (λ = 1) across all conditions
were excluded. Twelve participants who replied stimuli did
not fit the screen were excluded. A total of eighty adults were
included in the analysis (M = 20.81 years, SD = 3.41 years;
47 females, 30 males, 3 nonbinaries). Age of one participant
was not available.

Children completed the in-person experiment at schools.
Children received a sticker for their participation. Four chil-
dren who did not complete the experiment were excluded. A
total of eighty children were included in the analysis (M =
6.17 years, SD = 0.68 years; 42 females, 38 males).

1381



Figure 2: Illustration of a number-line estimation trial

Materials and Procedures
The experiment was conducted using jsPsych library version
6.2.0 (de Leeuw, 2015) for both adults and children. Adults
completed the experiment online. Children completed the ex-
periment on a 13-inch laptop. Adults and children completed
a nonsymbolic number-line estimation task individually at a
computer. The size and the presentation time of each ex-
perimental stimulus were equal between adults and children.
For adults, we asked whether experimental stimuli fit on the
screen. In the task, a 1000px horizontal line was presented
on the neutral gray background. The line was flanked by 0
dots on the left end and a fixed number of dots on the right
end. Dot arrays were presented on the 300px × 300px black
square. Once participants clicked a 30px × 30px white box
at the bottom of the screen, a target dot array was presented
for 750ms below the number line. Participants were asked to
estimate the number of dots by clicking a position on a line
(Figure 2).

The entropy of each condition was manipulated based on
two levels of numeric range and perceptual variability. Nu-
merical range of number line was either 0 to 30 (small) or
0 to 100 (large). Dot arrays with low perceptual variabil-
ity were generated using a single color (single). Dot arrays
with high perceptual variability were generated by randomly
choosing a color for each dot (multi). Dot arrays were gener-
ated using MATLAB with Psychophysics Toolbox-3. Color
of dots was chosen from HSV color space. Single-colored
dot arrays were presented with green dots [HSV: 0.33 1 1].
For multiple-colored dot arrays, hue was randomly chosen
for each dot. Saturation and value were fixed to 1.

Participants completed four conditions: single-small,
single-large, multi-small, and multi-large. In each condition,
10 target numerosities were chosen to sample non-subitizable
numbers evenly. For 0 to 30 number line, target numerosities
were 5, 8, 11, 13, 16, 18, 21, 23, 26, and 28. For 0 to 100
number line, target numerosities were 17, 27, 37, 43, 53, 60,
70, 77, 87, and 93. Each target numerosity was presented
twice. On half of the trials, the dot size of target stimuli was
equal to the dot size of the right-end dots. On the other half
of the trials, total surface area covered by dots was equal to
the accumulated area of the right-end dots.

Each participant completed 80 trials in total, with 20 trials
in each condition. The order of target stimuli was determined
by a balanced Latin square, such that each target numeros-

ity was presented twice on each order of the 20 trials in a
block. The order of condition was counterbalanced. Instruc-
tions were given before each block, and participants started
the task with no practice trials.

Analysis
Perceptual entropy of the upper-end dot arrays was calculated
using the entropy function in MATLAB, defined as:

Entropy =−
n

∑
i=1

pi log2 pi

where pi is the proportion of individual pixel value belonging
to the ith category of value in an array, and n is the total num-
ber of pixel values. We calculated entropy for each channel
of RGB based on the pixel value and averaged them. The en-
tropy value was 0.04 for 30 single-colored dots, 0.11 for 30
multi-colored dots, 0.10 for 100 single-colored dots, and 0.36
for 100 multi-colored dots.

Internal noise was calculated based on dispersion index
(DI) proposed by Cicchini et al. (2022). Researchers first
computed response variance as follows:

σ̂
2
i =

n

∑
j

(yi, j − yi, j)
2

n

/
xi

where y denotes the estimate of a target number x and n de-
notes the number of estimates of a target number x. DI was
then calculated as follows:

DI =

√
N

∑
i

σ̂
2
i
/

N

where N denotes the number of target numbers. Unlike
Cicchini et al. (2022), the present study includes multiple
ranges of number line. Therefore, we scaled raw responses y
and target numerosity x by dividing them by the upper bound
U to scale DI across multiple upper bounds. Scaled DI of
each participant was computed. To calculate scaled DI, we
first computed the variance of scaled raw responses yi, j/U for
each target numerosity xi where i denotes numerosity condi-
tion (x1, x2, . . . , x10) and j denotes counter running of the
numerosity xi. We then normalized each response variance by
dividing it by scaled target numerosity xi/U . We then aver-
aged these normalized variances across ten numerosity stim-
uli and took their square root to obtain the dispersion index.

Results
We first examined the effects of numeric range of number line
and external noise on internal noise. DI of each participant
was regressed against numeric range and perceptual entropy
of the upper-end dot array. For adults, DI increased with nu-
meric range, b = 0.23, SE = 0.06, p < .001. However, the
effect of entropy was not significant, b = -0.09, SE = 0.06,
p = 0.16. Similarly for children, DI increased with numeric
range, b = 0.15, SE = 0.06, p < .05, but the effect of entropy
was not significant, b = -0.05, SE = 0.06, p = 0.411.
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C. Log vs. Linear Children

Figure 3: A, B. Difference between adult’s individual PAE and PAE of mean estimates of children in single-colored conditions.
Negative values indicate adults whose estimates were more accurate than children’s mean estimates. Effects of crowd size
were larger in small numeric range (0-30) than in larger numeric range (0-100). The difference in the wisdom of crowds effect
indicates errors for large numeric range cannot be due to noise alone. C. Difference between linear children’s individual PAE
and PAE of mean estimates of logarithmic children.

Our main interest was to examine the relative effects of
number, internal noise, external noise on logarithmic com-
pression. Across four conditions, children (single-small: λ

= 0.34, single-large: λ = 0.51, multi-small: λ = 0.24, multi-
large: λ = 0.48) were more logarithmic than adults (single-
small: λ = 0.0, single-large: λ = 0.19, multi-small: λ = 0.0,
multi-large: λ = 0.18). We predicted that if the logarithmic
compression is derived by uncertainty, the effects of internal
and external noise would be larger than the effect of number
on logarithmic component. In contrast, if logarithmic com-
pression in number line estimation is due to bias, the effect of
number would be larger. To examine this, logarithmic com-
ponent (λ) of each participant was regressed against the nu-
meric range of number line, DI, and entropy of the upper-end
dot array. For adults, logarithmicity increased with numeric
range of number line, b = 0.36, SE = 0.05, p < .001. However,
we did not find the significant effects of DI, b = 0.01, SE =
0.05, p = 0.912, and entropy, b = -0.04, SE = 0.05, p = 0.416.
The results indicate that adults’ logarithmic compression of
estimates reflects internal bias of number representation, not
due to noise. When same regression analysis was conducted
for children, children’s logarithmicity increased with numeric
range of number line, b = 0.21, SE = 0.05, p < .001, and DI,
b = 22, SE = 0.05, p < .001. The effect of entropy was not
significant, b = -0.04, SE = 0.05, p = 0.409. Unlike adults, in-
ternal noise and numerical range had additive effect on chil-
dren’s compression.

Overall, our results indicated that log-to-linear shift reflects
both representational change and reduction in noise. To fur-
ther investigate the source of children’s error, we examined
whether children exhibited the wisdom of crowds effect. To
compare errors of children with errors of adults, we computed
percent absolute error (PAE) as follows:

PAE =

∣∣∣∣Estimate−TargetNumber
U pperBound

∣∣∣∣ .
Higher PAE value indicates less accurate estimation. To cal-

culate errors of children as a crowd, PAE of mean estimates
were calculated for each condition in each block. Therefore,
we calculated mean estimates of 20 children for each target
number and computed PAE of these mean estimates. For
adults, PAE was calculated for each participant. We then
subtracted children’s PAE of mean estimates from adults’
individual PAE. For example, children’s PAE of mean esti-
mates in single-small condition in the first block was sub-
tracted from each adult’s individual PAE of single-small con-
dition done in the first block. We predicted that if children’s
compression is due to the noisy representation of numbers,
then children’s PAE of mean estimates would be as low as
the PAE of the most accurate adult. If children’s compres-
sion reflects the logarithmic encoding of numbers, then chil-
dren’s PAE of mean estimates would be higher than the most
accurate adult. The result showed that 26.25% of adults in
single-small condition, 45% of adults in single-large condi-
tion, 36.25% of adults in multi-small condition, and 48.75%
of adults in multi-large condition exhibited lower PAE than
the PAE of mean estimates of children. Even though chil-
dren’s response noise was canceled out by averaging their es-
timates, their mean estimates were not as accurate as adults.

Next, we examined if children as a crowd would outper-
form individual adults when we increase the crowd size. To
examine this, PAE of mean estimates of all children were cal-
culated for each condition after collapsing data across blocks.
We calculated mean estimates of 80 children for each target
number and computed PAE of these mean estimates. When
children’s PAE of mean estimates was subtracted from adults’
individual PAE, 5% of adults in single-small condition, 45%
of adults in single-large condition, 18.75% of adults in multi-
small condition, and 43.75% of adults in multi-large condi-
tion exhibited lower PAE than children’s PAE of mean esti-
mates.

Overall, examining the wisdom of crowds effect of chil-
dren further supported our hypothesis that logarithmic encod-
ing of numbers and uncertainty have additive effects on chil-
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dren’s compression. Even after reducing the response vari-
ance of children by averaging their estimates, they were more
erroneous than the most accurate adult. Interestingly, the
effect of the crowd size differed depending on the numeric
range of the number line. Increasing crowd size reduced the
proportion of adults who were more accurate than children as
a crowd on 0-30 number line, suggesting that children’s er-
ror can be partly explained by noise (Figure 3B). However,
the crowd size did not have an effect on 0-100 number line
(Figure 3A). This result suggests that larger logarithmicity in
larger numeric range reflects the internal bias of number, not
due to uncertainty that covaries with numeric value.

We next examined the wisdom of crowds effect among
children by comparing children who were completely loga-
rithmic (λ = 1) with children who were completely linear (λ
= 0). Due to the small N of completely logarithmic children
(single-small: 12, single-large: 14, multi-small: 8, multi-
large: 11) and linear children (single-small: 19, single-large:
5, multi-small: 27, multi-large: 6) per condition, we com-
bined single-colored conditions with multiple-colored condi-
tions, considering that the effect of perceptual entropy was
not significant. When we examined the wisdom of crowds
effect among children, 30.43% of children who were com-
pletely linear on 0-30 number line had lower PAE than the
PAE of mean estimates of children who were completely log-
arithmic. In 0-100 number line condition, 81.82% of linear
children had lower PAE than the PAE of mean estimates of
logarithmic children (Figure 3C). Smaller effect of wisdom
of crowds in larger numeric range further suggests that log-
arithmicity that increases with numeric range of number line
reflects bias of encoding numerical information and that in-
ternal noise alone cannot explain compression in number-to-
space mapping.

Discussion

The present study investigated the sources of errors and de-
velopmental change by comparing the effects of noise and
bias on number-line estimation. Like previous studies, we
found that numeric range of number lines (0-30 vs. 0-100)
contributed to logarithmic compression of estimates across
the life span, and the effect of internal noise decreased with
age. These results suggest that children’s large number rep-
resentations are both noisier and more biased than those of
adults. Parallel results were found in wisdom of crowds ef-
fects, which allow us to disentangle effects of bias versus
noise. Against Galton (1907), we found that a crowd of chil-
dren was not as accurate as any individual adult, further sup-
porting the idea that noise is not the only source of errors.
This was particularly true for large numbers. Increasing chil-
dren’s crowd size improved performance on 0-30 but not on
0-100 number lines. The effect of numeric range was also
evident when examining the wisdom of crowds effect among
children themselves, some of whom provided adult-like (lin-
ear) estimates and some of whom provided immature (loga-
rithmic) estimates. On 0-100 number lines, most individual

linear children showed lower error rates than the average of
a crowd of logarithmic children. On 0-30 number lines, the
wisdom of crowds effect was more salient.

Based on these findings, we propose numbers are initially
encoded logarithmically. Over development, children learn
to minimize both bias and noise for more accurate estimates.
If children’s errors were solely based on bias, we would
not have found the wisdom of crowds effect nor the effect
of internal noise on logarithmicity. If noise were the only
source of children’s logarithmic compression, numeric range
of number line would not have affected the logarithmicity of
estimates after controlling for the effects of internal and exter-
nal noise. Further, averaged estimates of children would have
been as accurate as the most accurate adult (i.e., the wisdom
of crowds). We suggest both noise and bias drive logarithmic
compression, based on our intermediate findings that showed
the additive effect of internal noise and bias and wisdom of
crowds effect which differed depending on the numeric range.
A follow up study on symbolic number line task, where Ara-
bic numerals are presented instead of dot arrays, would allow
us to generalize the present findings to symbolic number rep-
resentation.

Examining wisdom of crowds effect allowed us to disen-
tangle noise versus bias by reducing the noise in estimates.
However, averaging estimates does not reduce internal noise
of number representation. In the present study, we mainly
focused on reducing the noise in estimates because previous
studies proposed truncation of responses due to the bounded
feature of number line could be the source of logarithmic
compression (Rips, 2013). Future studies that directly ma-
nipulate internal noise would provide further evidence on the
additive effects of noise and bias on estimation errors.

The sources of errors in human judgment and decision
making has been investigated in a wide variety of contexts
(Kahneman et al., 2021; Surowiecki, 2005). In addition to
numerical cognition, our findings shed light on cognitive de-
velopment in general. Estimation or judgment across differ-
ent situations become more accurate with age. The present
study illustrates how the wisdom of crowds effect can be an
effective method to investigate developmental changes in hu-
man judgment.
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