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Abstract

Printing the Polyphorm: Using 3D Printing to Manufacture Biologically Inspired

Rhizomatic Structures

by

Drew Ehrlich

We present a pipeline for converting voxelized data generated by the Monte Carlo

Physarum Machine (MCPM) based Polyphorm data visualization software into a mesh

that can then be 3D printed. This reconstruction technique is based on the Marching

Cubes algorithm paired with a suite of pre and post processing tools. Our process can

be used to create both biomimetic structures and computational art, and can be tuned

to create various visual effects based on the desired stylistic output.
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Chapter 1

Introduction

Additive manufacturing, otherwise known as 3D printing has recently become

very popular among both hobbyists and professionals alike over the past decade. Based

on the idea of creating a 3D volume by extruding one very thin (usually less than .3mm)

layer of melting plastic at a time, shapes are slowly created by combining hundreds or

even thousands of these layers to create the desired shapes. While there are many meth-

ods designed to accomplish this task, some like selective laser sintering and polyjetting

are simply out of reach for most enthusiasts simply due to the costs of the proprietary

machines required to use these techniques. However, fused deposition modeling systems

(otherwise known as FDM or FFF) are much more accessible and can be found on 3D

printers that cost less than a midrange GPU. However, just because the cost of entry

is lower doesn’t mean this technique is any less effective. An extruder head that can

move on three axes deposits hot material (usually a plastic) in very small and precise

amounts to construct a physical shape over time.

Another important technology here is the Monte Carlo Physarum Machine

(MCPM). The MCPM is an algorithm based on the behavior of the physarum poly-

cephalum slime mold, which is a protist without cells that has been extensively docu-

mented in the past to move in an optimal manner in regards to acquiring resources. The

MCPM takes this behavior and applies it 3D point sets, generating visually intruiging

computational visualizations in Polyphorm.

Initially designed with cosmological research in mind, Polyphorm can use any

well formatted dataset to create compelling transport networks that can serve as both art
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and act as optimal structures. Even though these kinds of designs were not its original

purpose, Polyphorm’s structures are still applicable to this case since the MCPM still

allows it to create optimal transport networks regardless of the source of the input

data. These transport networks represent how data travels through the structure, and

since these data are looking to minimize their traveling time from place to place, these

networks are optimal - in a way resembling a shortest paths solution in three dimensions.

This software paired with 3D printing inspired two distinct tasks - the first be-

ing finding a way to create a 3D printed representation of the simulations in Polyphorm,

and the second being to explore the possibilities of using Polyphorm to create biomimetic

(meaning mimicking biological structures or processes) structures that could be used

to help minimize material use in 3D prints. However, not all shapes that Polyphorm

generates are printable - an important part of this thesis is to determine the best ways

to tune the simulation controls to create printable shapes that have strong and clear

connections between them.

Figure 1.1: A screenshot taken of Polyphorm
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1.1 Goals

The goals for this thesis are as follows:

• Tune Polyphorm’s simulation to represent a printable structure

• Take the data that Polyphorm can export and reconstruct it as a 3D mesh

• Take this mesh and 3D print it

• See what kind of shapes could be generated using this method, and what kind of

structural benefits the reconstruction process might have

Figure 1.2: The Ender 3 printer
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Chapter 2

Background

2.1 Defining Key Terms

Before going any further, our pipeline uses many not commonly known tech-

niques and tools. This section will help clear up these terms for more clarity in analysis

of our technique.

2.1.1 Monte Carlo Physarum Machine

The Monte Carlo Physarum Machine (MCPM), is the algorithm that backs

Polyphorm and determines how points in density fields should be connected. The al-

gorithm is built to model the behavior of the Physarum polycephalum ’slime mold’,

and should allow for optimal connections of points due to the nature of the Physarum

polycephalum needing to be as efficient with resource gathering as possible to survive.

2.1.2 Polyphorm

Polyphorm, created by Oskar Elek in the Creative Coding Lab at UC Santa

Cruz is a piece of software that displays connections in a density field which are deter-

mined by the MCPM algorithm. [1] Initially intended for use with cosmological data,

it can work on any set of well formatted data, and creates unique visual networks that

theoretically have optimal substructure.
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2.1.3 Density Field

A density field is a way to use probability to describe the chances of finding a

piece of data at any specific point, with the areas with increased density representing

increased probability of data being present at any given time. In terms of Polyphorm,

the generated simulation from the MCPM is a density field represented in 3D space

with the denser areas of a shape representing the increased odds that agents will be

found in that space at any given time.

2.1.4 Gaussian Filter

Used here for reducing noise when creating a final mesh, a Gaussian Filter is

an algorithm that creates a visual blur, and in our case just seeks to remove unnecessary

noise. Any photo editing software that has a blur filter is almost certainly based off of

this, and in this case it is simply applied in 3D. [2]

2.1.5 Marching Cubes Reconstruction Algorithm

The Marching Cubes Algorithm is a method of reconstructing a mesh from

a set of points that functions on a very specific set of rules. The algorithm iterates

through every possible voxel in the object, and for each voxel determines which corners

of the voxel are ’in’ the shape and then draws triangles inside the voxel based off of

which specific corners are marked as part of the final shape. The triangles added are

predefined, coming from a set of 15 corner combinations.[3]

2.1.6 Slicer

A slicer is a piece of software that prepares 3D models for 3D printing by

turning their shape into a series of mechanical movements the printer can understand

and execute. Slicers are also used to define the settings the printer should use while

printing, like print speed and how thick each layer of filament should be.
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2.2 Related Work

Over the past decade there has been relevant research to this topic in regards

to creating more optimal infill patterns for 3D printed models, which is something our

technique hopes to address due to the MCPM creating optimal structures.

The broadest of these papers is ’OpenFab: A Programmable Pipeline for Multi-

Material Fabrication’ by Vidimče et al. (2013) which creates a framework for using many

kinds materials and structures inside of 3D prints for both artistic and structural effects.

[4]

Another relevant paper to this topic is ’Global Stiffness Structural Optimiza-

tion for 3D Printing Under Unknown Loads’ by Wang et al. (2016). This work lays

out a new method for creating optimal infill patterns that minimize material usage to

create more efficient 3D prints. [5]

In a similar vein to Wang et al., ’Density-based topology optimization for 3D-

printable building structures’ by Vantyghem et al. (2018) has a similar goal of creating

optimized structures except in this case for use in construction and architecture. The

authors here more focus on topology and the properties of the materials they use that

the shape of the structures themselves. [6]

The most relevant of these is ’The Fabric of the Universe: Exploring the Cosmic

Web in 3D Prints and Woven Textiles’ by Diemer and Facio. The paper also dicusses

taking 3D density fields and converting them into printable structures, but they generate

the data in a different way and their main application is textiles. [7]

While all of these works cover more ground than this one does, they all serve

as good jumping off points for learning more about infill optimization and optimal

structures. However, we are still covering new ground since none of these processes

have been applied to the MCPM and Polyphorm or in the context of an algorithm built

off of the behavior of the physarum slime mold.

6



Chapter 3

Methods

3.1 Preprocessing for Polyphorm

There are two ways to go about selecting a dataset to give to Polyphorm. The

first is to take any OBJ and run it through a script bundled with Polyphorm that turns

it into a set of points that the software can understand. The other option is to use

one of the datasets built into Polyphorm that are based on a variety of distributions

or shapes. These include mathematical distributions like a Poisson Distribution, and

cosmological ones like the datasets from the Sloan Digital Sky Survey or the Bolshoi-

Planck simulation. While some OBJ files may perform better than others, anything

with vertices should be compatible with the software, since those are the values that

are taken from the OBJ file to prepare it for use with Polyphorm.

Another important consideration is the number of vertices in the model being

used. Depending on how sparse the resulting mesh is desired to be, we found it appro-

priate to either decimate or subdivide the vertices of the OBJ file, either lowering or

raising the vertex count respectively. The results from a point set with too vertices will

result in a vastly different look from a point set with too many vertices, even if they are

tuned the same way inside Polyphorm.
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Figure 3.1: Resulting meshes from chess pawns with the original amount vertices (left)

and double the amount of vertices (right)

3.2 Tuning Polyphorm’s Visualization of the model

Once the data has been loaded into Polyphorm, the visualization can be tuned.

The goal of this process is for there to be visible connections between all the points so

the final model can have a solid structure and integrity. To get these visible connections,

there are four major variables (controlled by sliders) that can aid in the process of tuning

the simulation. These variables are sense angle, sense distance, move angle, and move

distance.

Since Polyphorm is based on an algorithm that creates many independent

agents, these sliders govern their behavior and change the way they move around the

simulation. Sense angle and distance govern what each agent can ’see’ in the process

of looking for other points to move towards. Sense angle defines how wide this range

is in degrees, while sense distance defines how far away points can be detected. With

sense angle and distance covering what the agent can detect, move angle and distance

define how the agents can move towards other points. Move angle defines the an area of

points the agent can move to, which move distance defines how far away points in this

range can be to travel to. While they may seem similar, the distinction between these
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sensing and moving is that the points the agent can move to is usually a subset of the

points the agent can detect. The reason that both metrics exist is that agents can move

a very long distance over the course of the simulation, and it’s important for them to

be aware of more than just the points they can move to help optimize the paths they

create through moving through the density field.

Figure 3.2: How agents in the MCPM move and how move angle, move distance, sense

angle, and sense distance are involved. Reprinted with permission from [8].

While there are some other values that can be changed in the simulation, these

can usually be left alone after being set to a specific default value. These values are

persistence and agent deposit, which both control different aspects of how paths between

points are visualized.

Most tuning can be done by just looking at the simulation and adjusting sliders

until the desired look is achieved, and there are some good rules of thumb for this process.

These being that sense angle should be around double the value of move angle, move

distance should be in the .03-.05 range, persistence should be in the .91-.94 range, and

agent deposit should usually be set to zero. For most inputs, these setting should create

results that get you past a basic tuning.

3.3 Exporting the Data for Reconstruction

In Polyphorm, you can press F5 or F6 to pause the simulation and export the

current state of the agents as a list of voxels. This creates a binary file that is used to

generate the mesh later on, and a metadata file that includes useful information, like the

size of the point cloud in voxels. This is the only format Polyphorm can export voxels

too, making this pipeline necessary since this proprietary format needs to be translated
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into something a 3D printer can understand.

3.4 Creating a 3D Mesh from the Binary Export Data

The goal of this process is to take the exported voxels from Polyphorm and

use them to create a mesh that can be 3D printed.

3.4.1 Reshaping the Data

The first step in this pipeline is to take the binary file that Polyphorm provides

and read the raw data into a three dimensional numpy array. This array is then reshaped

into a specific three dimensional shape as defined by the metadata file that was created

alongside the binary file. This is important since if the dimensions used do not match

those in the metadata, then the mesh won’t be created properly as the voxels won’t

be spaced out as intended, since the dimensions of the shape will be swapped and the

result won’t look as intended.

Figure 3.3: The chess pawn dataset in Polyphorm before and after tuning the

simulation
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3.4.2 Using Marching Cubes to Create a Mesh

Using the PyMCubes Python library, we were able to pass in our reshaped

numpy array to a function and get a 3D mesh from it. [9] However, there were a couple

additional steps taken to help increase the quality of the resulting meshes. The first is to

apply a Gaussian Filter to the data to reduce existing noise in the data, and the second

was to experiment with the threshold that takes the Marching Cubes function takes in.

This threshold determines what data is ’inside’ the shape, and what is ’outside’ based

the densities of the points. For this specific function, the lower the threshold the less

points included in the shape, and vice versa.

Figure 3.4: A shape created by the Marching Cubes algorithm generated from a

Bolshoi-Planck simulation
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Chapter 4

Results

4.0.1 Optimizing the Gaussian Filter and Marching Cubes

When it came to deciding the parameters to use for blurring and thresholding

the Marching Cubes function, determined that in most cases a blur of (1.2, 1.2, 1.2) was

the best general purpose value. However, for some models, extra tuning was necessary

based on the density and amount of vertices in the shape. In addition, we determined

that the best value to use as a threshold for the marching cubes function was 17, as

it balanced removing extra noise from most shape and not cutting into material that

belonged to the shape itself. Like tuning for the blur, some models benefitted from

different thresholds for similar reasons, but values beyond 17 give minimal discernible

difference, and values smaller than it tend to eat away at the shape at an accelerated

rate.

4.1 The Printing Process

There are two main steps in turning a 3D model into a 3D print, slicing and

using the printer itself. Both step aren’t necessarily straightforward and do require some

attention and tuning to get right.

4.1.1 Slicing the Reconstructed Model in PrusaSlicer

Where there are many slicing softwares, the software we chose to use was

PrusaSlicer for previous experience and ease of use, but in general any slicer that can
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Figure 4.1: Cubes based on the same data generated using thresholds of 10 (left) and

20 (right)

support your printer will work for this pipeline. The settings we used were built off of

PrusaSlicer’s presets for the printer we used, the Creality Ender 3.

To even begin using the slicer, the intended mesh must be watertight and not

have incomplete geometry. Since our technique usually resolves this (and if it cannot,

the automatic repair tool inside of PrusaSlicer does a decent job of patching up open

geometry), we can move forwards with the slicing process. The main settings that we

considered were layer height, infill, supports, and use of brim. Layer height is up to

the user, however we used .28mm layer heights for speed of printing but lower layer

heights will lead to more precise results. We chose to use no infill or supports since

the shapes produced by our pipeline usually don’t have large angles or overhangs and

should be able to stand on their own. The lack of supports are also inspired by the

fact that these shapes should also have optimal structure due to the nature of the

MCPM algorithm being based off of a slime mold that moves optimally. In cases where

support is necessary due to the model having large overhangs, PrusaSlicer has a ’paint-

on supports’ tool that allowed us to only put supports on the overhanging area since

the rest of the model should not need them.
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We also scaled the models down by large amounts to reduce printing time,

however most models should be able to printed at any size. However, models generated

using shapes with large overhangs may need supports at a certain scale even if they can

print at smaller sizes.

Figure 4.2: A screenshot of PrusaSlicer

4.1.2 Printing the Final Result

The final step in our process is to print the model itself. This lies mostly in

the hands of the end user, but external factors like the height of the printing surface not

being calibrated properly or the print not adhering to the bed can cause failed attempts.

In our testing, we used PLA on a Creality Ender 3, which uses fused deposition modeling,

to print our models with extruder temperatures ranging from 205 to 210 degrees celsius

and bed temperatures ranging from 55 to 60 degrees celsius. This technique should still

work on more advanced machines like those that use SLS or polyjetting, we simply did

not have access to these kinds of resources for this testing.
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Figure 4.3: A comparison of sparse and dense versions of Bolshoi-Planck simulation

data printed in clear PLA with .24mm layer height and no supports. 9 volt battery for

scale.
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Chapter 5

Discussion

5.1 What Kinds of Shapes Worked Best?

In our testing we noticed that shapes that didn’t have any large flat surfaces

were treated the best by the algorithm. For example, a 3D model of Rodin’s ’The

Thinker’ we used didn’t have any large flat surfaces (save for the bottom which was

treating as an opening), and printed easily. However, we had issues on the 3D printing

benchmarking print Benchy. The issue with Benchy was that the deck of the boat

wasn’t really recognized as having points by Polyphorm and these point were therefore

not included in the mesh leading to the resulting shape being neither accurate nor

printable.

However, unlike flatter surfaces, very irregular shapes and structures work very

well. For example, a model based off of a sculpture called ’Zoe’ by Colleen Flanigan and

a model based off of the SDSS cosmological dataset both led to excellent reconstructions

that were both printable at high levels of detail and represented the original datasets

well even at lower resolutions.

For most of our initial testing, we used subsections of a large cube generated

using a Poisson distribution in three dimensions. While this also worked very well

with this method, an interesting artifact from our pipeline was areas where connections

were chopped off by the selected subsection ending were left open, which disrupted the

printability and structure of the model. However, this could be resolved by setting the

values along the sides of the cube to be zero, which meant that they were ignored by
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the algorithm, however the model no longer had open sides.

5.2 Possible Further Applications of this Pipeline

There are two possible further applications for this pipeline that we’re in the

process of pursuing. The first is creating computational art by using this process on ex-

isting ideas and concepts and giving them a more biological inspired look. For example,

one of the models we created was based from a chess pawn along with the previously

mentioned ’The Thinker’ sculpture.

The second area we’re considering is using the generated structures to mimic

biomimetic structures for use as potential new infill methods for 3D printing. This

would be significant since a lot of work has been done in the area of replicating nature’s

techniques for creating optimal structures (such as the behavior of the physarum slime

mold), and there are very promising possibilities that it will be useful for creating new

infill patterns and methods for 3D printing.

Figure 5.1: Rodin’s ’The Thinker’, white PLA at .24mm layer height and no supports

(left). A chess pawn printed to scale, clear PLA at .24mm layer height and no

supports (right)
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5.3 Failed Initial Methods

An initial attempt at creating our pipeline involved using a technique called

Screened Poisson Reconstruction, and required a lot more hoops to jump through in-

cluding generating normals for vertices and manually creating the OBJ file in our script.

While this method worked, the results weren’t as strong as they could be, and the switch

to using marching cubes led to strictly better results. Marching cubes allowed for much

more thinner and detailed filaments in the resulting shapes that screened Poisson recon-

struction simply ignored. While screen Poisson reconstruction still creates shapes that

could serve as computational art, it misses the mark in terms of detail and resolution

we are seeking in our search for recreating biomimetic structures.

Figure 5.2: Less optimal results from screened Poisson reconstruction (left) versus

Marching Cubes (right). Various colors, PLA, .16-.24 layer heights, no supports.

5.4 Areas to Improve the Pipeline

While most of the pipeline is somewhat optimized at this point since the only

computationally intense task, the marching cubes algorithm itself, uses a function from

an open source library. There are two distinct areas that could possibly be improved.

The first is this marching cubes function, and the improvement would involve rewriting

18



the algorithm from scratch, focusing on changing the behavior around irregular shapes

to better suit the kinds of models we used.

The other place to optimize is in Polyphorm itself, which is still being developed

and will be receiving support from the UCSC Center for Research in Open Source

Software this fall. There are currently advances in de-noising the simulation, but these

updates are not publicly available yet, and are still being tested. Another change that

could be made to Polyphorm would be to modify the MCPM to specifically not allow

for the rendering of overhangs that won’t be printable without support in an effort to

increase the amount of meshes that will be printable without need for supports.

While more advanced printing technologies could also help yield better results,

we simply do not have access to machines that can perform anything more advanced

than FDM printing. This is an area that can be explored in future work if that status

quo happens to change, as SLS and polyjetting are both very promising technologies.
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Chapter 6

Conclusion

We have a created a pipeline to take the exported data from Polyphorm and

turn it into a 3D printable mesh. These models can serve both artistic and structural

purposes, as the MCPM generates optimal structures itself. This work is significant

because Polyphorm previously did not have a way to convert its output into a 3D mesh,

and the results show promise for creating new methods for making optimal internal

structures for 3D prints.

6.1 Future Work

In the near future, we are planning to make a more focused investigation on

the prospects of using this technique to propose new infill patterns and methods to

help optimize various kinds of 3D structures for various factors including minimizing

material and maximizing structural integrity.
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