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HIGH-DIMENSIONAL REGRESSION

JAN DE LEEUW

ABSTRACT. This is an entry for The Encyclopedia of Statistics in Be-

havioral Science, to be published by Wiley in 2005.

In regression analysis there aren observationsyi on a dependent vari-

able(also known as outcome or criterion) that are related ton corresponding

observationsxi on p independent variables (also known as inputs or predic-

tors). Fitting regression models of some form or another is by far the most

common uses of statistics in the sciences (crossref).

Statistical theory tells us to assume that the observed outcomesyi are real-

izations ofn random variablesy
i
. We model the conditional expectation of

y
i

givenxi , or, to put it differently, we model the expected value ofy
i

as a

function ofxi

E(y
i
| xi ) = F(xi ),

where the functionF must be estimated from the data. Often the functionF

is known except for a small number of parameters. This defines parametric
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regression. SometimesF is unknown, except for the fact that we know

that has a certain degree of continuity or smoothness. This defines non-

parametric regression.

In this entry we are specifically concerned with the situation in which the

number of predictors is large. Through the years the meaning of ”large” has

changed. In the early 1900’s three was a large number, in the 1980’s 100

was large, and at the moment we sometimes have to deal with situations in

which there are 10,000 predictors. This means, in the regression context,

that we have to estimate a functionF of 10,000 variables. Modern data

collection techniques in, for example, genetics, environmental monitoring,

and consumer research lead to these huge datasets, and it is becoming clear

that classical statistical techniques are useless for such data. Entirely dif-

ferent methods, sometimes discussed under the labels of ”data mining” or

”machine learning” are needed [5].

Until recently multiple linear regression, in whichF is linear, was the only

practical alternative to deal with a large number of predictors. Thus we

specialize our model to

E(y
i
| xi ) =

p∑
s=1

βsxis.

It became clear rather soon that linear regression with a large number of

predictors has many problems. The main ones are multicollinearity, often
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even singularity, and the resulting numerical instability of the estimated

regression coefficients (crossref).

An early attempt to improve this situation is using variable selection. We fit

the model

E(y
i
| xi ) =

p∑
s=1

βsδsxis + εi .

whereδs is either zero or one. In fitting this model we select a subset of

the variables and then do a linear regression. Although variable selection

methods appeared relatively early in the standard statistical packages, and

became quite popular, they have the major handicap that they must solve

the combinatorial problem of finding the optimum selection from among

the 2p possible ones. Since this rapidly becomes unsolvable in any rea-

sonable amount of time, various heuristics have been devised. Because of

the instability of high dimensional linear regression problems the various

heuristics often lead to very different solutions.

Two ways out of the dilemma, which both stay quite close to linear regres-

sion, have been proposed around 1980. The first isprincipal component

regressionor PCR , in which we have

E(y
i
| xi ) =

q∑
t=1

βt

[ p∑
s=1

αtsxis

]
+ εi .



FROM
JA

N’S
DESK

FROM
JA

N’S
DESK

4 JAN DE LEEUW

Here we replace thep predictor byq < p principal components and then

perform the linear regression. This tackles the multicollinearity problem di-

rectly, but it inherits some of the problems of principal component analysis.

How many components do we keep ? And how do we scale our variables

for the component analysis ?

The second, somewhat more radical, solution is to use thegeneralized ad-

ditive modelor GAM discussed by Hastie and Tibshirani [6] . This means

E(y
i
| xi ) =

p∑
s=1

βsφs(xis) + εi ,

where we optimize the regression fit over bothθ and the functions (transfor-

mations)φ. Usually we requireφ ∈ 8 where8 is some finite dimensional

subspace of fucntions, such as polynomials or splines with a given knot se-

quence. Best fits for such models are easily computed these days by using

alternating least algorithms that iteratively alternate fittingθ for fixedφ and

fitting φ for fixed θ [2]. Although generalized additive models add a great

deal of flexibility to the regression situation, they do not directly deal with

the instability and multicollinearity that comes from the very large number

of predictors. They do not address the data reduction problem, they just add

more parameters to obtain a better fit.
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A next step is to combine the ideas of PCR and GAM intoprojection pursuit

regressionor PPR [4]. The model now is

E(y
i
| xi ) =

q∑
t=1

φt

[ p∑
s=1

αtsxis

]
.

This is very much like GAM, but the transformations are applied to a pre-

sumably small number of linear combinations of the original variables. PPR

regression models are closely related to neural networks, in which the linear

combinations are the single hidden layer and the nonlinear transformations

are sigmoids or other squashers (crossref). PPR models can be fit by general

neural network algorithms.

PPR regression is generalized in Li’s Slicing Inverse Regression or SIR [7,

8], in which the model is

E(y
i
| xi ) = F

[ p∑
s=1

α1sxis, · · · ,

p∑
s=1

αqsxis

]
.

For details on the SIR and PHD algorithms, we refer to (crossref).

Another common, and very general approach, is to use a finite basis of

functionshst, with t = 1, · · · , qs, for each of the predictorsxs. The basis

functions can be polynomials, piecewise polynomials or splines, or radical

basis functions. We then approximate the multivariate functionF by a sum
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of products of these basis functions. Thus we obtain the model

E(y
i
| xi ) =

q1∑
t1=1

· · ·

qp∑
tp=1

θt1···tph1t1(xi 1) × · · · × hptp(xi p)

This approach is used in Multivariate Adaptive Regression Splines, or MARS,

by Friedman [3]. The basis functions are splines, and they adapt to the data

by locating the knots of the splines.

A different strategy is to use the fact that any multivariate function can be

approximated by a multivariate step function. This fits into the product

model, if we realize that multivariate functions constant on rectangles are

products of univariate functions constant on intervals. In general, we fit

E(y
i
| xi ) =

q∑
t=1

θt I (xi ∈ Rt).

Here theRt define a partitioning of thep-dimensional space of predictors,

and theI () are indicator functions of theq regions. In each of the regions

the regression function is a constant. The problem, of course, is how to de-

fine the regions. The most popular solution is to use a recursive partitioning

algorithm such as Classification and Regression Trees, or by the algorithm

CART [1], which defines the regions as rectangles in variable space. Parti-

tionings are refined by splitting along a variable, and by finding the variable

and the split which minimize the residual sum of squares. If the variable is

categorical, we split into two arbitrary subsets of categories. If the variable
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is quantitative, we split an interval into two pieces. This recursive parti-

tioning builds up a binary tree, in which leaves are refined in each stage by

spliting the rectangles into two parts.

It is difficult, at the moment, to suggest a best technique for high-dimensional

regression. Formal statistical sensitivity analysis, in the form of standard

errors and confidence intervals, is largely missing. Decision procedures, in

the form of tests, are also in their infancy. The emphasis is on exploration

and on computation. Since the data sets are often enormous, we do not re-

ally have to worry too much about significance, we just have to worry about

predictive performance and about finding (mining) interesting aspects of the

data.
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