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Abstract

Purpose: To develop a deep learning-based method for rapid liver proton-density fat fraction 

(PDFF) and R2* quantification with built-in uncertainty estimation using self-gated free-breathing 

stack-of-radial MRI.

Methods: This work developed an uncertainty-aware physics-driven deep learning network (UP-

Net) to (1) suppress radial streaking artifacts due to undersampling after self-gating, (2) calculate 

accurate quantitative maps, and (3) provide pixel-wise uncertainty maps. UP-Net incorporated 

a phase augmentation strategy, generative adversarial network architecture, and an MRI physics 

loss term based on a fat-water and R2* signal model. UP-Net was trained and tested using 

free-breathing multi-echo stack-of-radial MRI data from 105 subjects. UP-Net uncertainty scores 

were calibrated in a validation dataset and used to predict quantification errors for liver PDFF and 

R2* in a testing dataset.

Results: Compared with images reconstructed using compressed sensing (CS), UP-Net achieved 

structural similarity index >0.87 and normalized root mean squared error <0.18. Compared with 

reference quantitative maps generated using CS and graph-cut (GC) algorithms, UP-Net achieved 

low mean differences (MD) for liver PDFF (−0.36%) and R2* (−0.37 s−1). Compared with 

breath-holding Cartesian MRI results, UP-Net achieved low MD for liver PDFF (0.53%) and R2* 

(6.75 s−1). UP-Net uncertainty scores predicted absolute liver PDFF and R2* errors with low MD 

of 0.27% and 0.12 s−1 compared to CS+GC results. The computational time for UP-Net was 79 

ms/slice, while CS+GC required 3.2 min/slice.

Conclusion: UP-Net rapidly calculates accurate liver PDFF and R2* maps from self-gated 

free-breathing stack-of-radial MRI. The pixel-wise uncertainty maps from UP-Net predict 

quantification errors in the liver.

*Correspondence to: Holden H. Wu, Ph.D., Department of Radiological Sciences, 300 UCLA Medical Plaza, Suite B119, Los Angeles, 
CA 90095, Phone: (310) 267-6843, Fax: (310) 825-9118, HoldenWu@mednet.ucla.edu. 
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1. INTRODUCTION

Chronic liver disease is a global health burden1–3. Liver disease is characterized by 

histological changes that include hepatic steatosis, inflammation, fibrosis, and iron 

deposition4–10. Progressive liver disease is associated with cirrhosis and hepatocellular 

carcinoma, and can culminate in liver failure11. Biopsy is considered the standard technique 

for diagnosing liver diseases. However, biopsy suffers from sampling bias, is invasive, and is 

associated with complications12.

MRI evaluates hepatic steatosis and iron overload by quantifying proton-density fat 

fraction (PDFF) and R2*, using chemical-shift-encoded multi-echo Dixon techniques that 

acquire and fit data to a signal model that accounts for the multi-peak fat spectrum 

and R2* component13. Conventional Dixon techniques using a multi-echo 3D Cartesian 

sequence14 are sensitive to motion and require breath-holding (10–20 sec). The breath-

holding requirement limits the volumetric coverage and resolution, and can be challenging 

for patients15. Recently, a multi-echo 3D stack-of-radial technique16,17 has been developed 

for free-breathing liver PDFF and R2* quantification and demonstrated accurate results in 

subjects with non-alcoholic fatty liver disease (NAFLD)18. To compensate for respiratory 

motion in free-breathing radial data acquisition, self-gating is used to reconstruct images 

from a subset of data with consistent motion behavior. However, motion self-gating 

introduces radial undersampling artifacts in the images and quantitative maps. These 

artifacts can be mitigated by acquiring more radial spokes17 or using constrained 

reconstruction19, but these strategies require a longer acquisition and/or computational time.

Accurate and rapid signal fitting is another challenge in PDFF and R2* quantification. Due 

to the non-convex structure of the signal model and ambiguities in resonant frequencies 

of water/fat protons with respect to B0 field variations, signal fitting can converge to 

a local minimum solution and lead to fat-water swaps. State-of-the-art graph-cut (GC)-

based methods20,21 impose smoothness constraints on the field map and use optimization 

algorithms to reduce the occurrence of fat-water swaps. However, the GC-based algorithms 

are computationally expensive with computation time on the order of 10 sec/slice21.

Compared with iterative constrained reconstruction methods for MRI, such as compressed 

sensing (CS)22,23, deep learning (DL)-based methods can rapidly enhance or reconstruct 

images from undersampled data by leveraging datasets from prior scans. Previous 

studies have developed novel DL networks for MRI enhancement or reconstruction 

from undersampled Cartesian data24,25. Although there were DL networks developed 

for undersampled radial MRI26–29, there is a lack of investigation regarding multi-echo 

radial MRI for PDFF and R2* mapping. On the other hand, DL has also been used to 

replace the computationally expensive fat-water signal fitting process. Different network 

architectures30–33 and loss functions34 have been proposed to separate fat/water signals 
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or generate PDFF/R2* maps. However, these methods only investigated fully-sampled 

Cartesian data and did not consider radial acquisition or data undersampling.

Developing, evaluating, and translating DL-based methods for quantitative MRI parameter 

mapping can be challenging because quantification errors can be difficult to detect by 

visual inspection. Confidence levels of quantification accuracy from the DL network outputs 

were not typically characterized in previous studies30–34. Recently, there have been initial 

developments in incorporating uncertainty estimation in the DL networks for MR image 

reconstruction35–37. These works showed promise by investigating the relationships between 

estimated uncertainty scores and reconstruction errors. A recent work showed promising 

results of using uncertainty estimation for quantitative MRI PDFF maps obtained from 

DL38. The study indicated that the uncertainty scores were related to the noise levels in 

the input data. However, the relationship between the uncertainty scores and quantification 

accuracy was not established.

In this work, we developed an uncertainty-aware physics-driven deep learning network 

(UP-Net) that can rapidly calculate accurate liver PDFF and R2* maps using multi-echo 

images from undersampled self-gated free-breathing stack-of-radial MRI data. UP-Net 

simultaneously (1) suppressed radial streaking artifacts due to undersampling after self-

gating, (2) calculated accurate quantitative liver PDFF and R2* maps, and (3) provided 

pixel-wise uncertainty maps for each quantitative parameter within a rapid inference time 

<100 ms/slice. We calibrated the UP-Net uncertainty scores and demonstrated the ability to 

predict liver PDFF and R2* quantification errors using the uncertainty scores.

2. METHODS

2.1 Uncertainty-Aware Physics-Driven Deep Learning Network (UP-Net)

We proposed UP-Net (Figure 1) to generate accurate quantitative maps from undersampled 

2D multi-echo images and provide pixel-wise uncertainty maps which can be used to predict 

quantification errors. UP-Net contained two concatenated network modules for artifact 

suppression and parameter mapping. The first module took 2D multi-echo undersampled 

images x as the input and generated enhanced 2D multi-echo images m with suppressed 

undersampling artifacts. For x and m, multi-echo images, including both the real and 

imaginary components, were stacked along the channel dimension. The second module 

transformed m to quantitative parameter maps p and their corresponding uncertainty maps u. 

In our case of multi-parameter fitting, p and u are 3D tensors where different 2D quantitative 

maps are stacked along the channel dimension. UP-Net requires reference multi-echo images 

and reference quantitative maps for training. Details regarding reference data generation are 

described in section 2.5.

Convolutional neural networks (ConvNet) have been proposed to effectively suppress 

artifacts from undersampling24–29. Recently, there are works showing that generative 

adversarial networks (GAN) can improve the quality of the reconstructed images for 

radial MRI compared to conventional ConvNet39. GAN uses a discriminator to help 

generate images that closely resemble the reference images and match the intended data 

distribution, which can improve the image reconstruction or artifact suppression results. 
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We investigated a GAN architecture for the artifact suppression module and decided to 

use it for UP-Net based on results in an ablation study (see section 2.8). The generator 

was implemented using a 2D UNet architecture40, and the discriminator was implemented 

using the architecture proposed in41. To deal with image contrast variation across subjects, 

instance normalization42 was used in both the generator and the discriminator. A detailed 

diagram for the UP-Net implementation is presented in Supplementary Figure S1.

We considered the quantitative parameter output as distributions which can be characterized 

using pixel-wise means p and pixel-wise variances u from a Bayesian perspective43,44. We 

interpreted p and u as the quantitative maps and the corresponding uncertainty maps. For 

each pixel index j, a larger value of uj indicates a wider spread of the distribution and 

therefore the associated pj has higher uncertainty. By assuming a prior data distribution, the 

network can be trained to predict p and u simultaneously using the loss function introduced 

in section 2.2. In light of the deeply correlated nature of p and u, we used a “bifurcated 

UNet” architecture (Figures 1 and S1) for the parameter mapping module. This architecture 

has one shared encoder that extracts features from multi-contrast images m, and two separate 

decoders that generate parameter maps p and uncertainty maps u. Because the uncertainty 

score, or the variance of a distribution, should always be nonnegative, a softplus layer 

(Softplus(x) = log(1 + ex)) was added prior to the uncertainty map output.

2.2 Loss Function for UP-Net Training

We constructed a loss function with 5 components for supervised training of UP-Net:

LUP − Net = w1LimgMSE + w2LimgGAN + w3LmapMSE + w4Lpℎysics
+ w5Luncert

(1)

An image mean squared error (MSE) loss was used to measure the errors between enhanced 

(m) and reference (m) multi-echo images:

LimgMSE = 1
Nj

∑
j

mj − mj
2

(2)

, where j represents the pixel index and Nj is the total number of pixels in the multi-echo 

images. We trained the GAN architecture using a Wasserstein GAN loss45, which can be 

formulated as:

min
G

max
D

Em ptrain m D m − Em pG m)[D(G(m))] (3)

, where G represents the generator, D represents the discriminator. The loss for updating the 

generator G was:

LimgGAN = Em pG(m)[D(G(m))] (4)

We also used an MSE loss that measures the errors between quantitative maps from UP-Net 

(p) and reference data (p):
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LimgMSE = 1
Nj

∑
j

(pj − pj)2
(5)

To promote learning of the signal fitting process we used an MRI physics loss:

Lpℎysics = 1
Nj

m − Q p 2
(6)

where Q represents an operator that transforms the quantitative maps to multi-echo images 

based on the MRI signal equation. In this work where we investigated PDFF and R2* 

quantification, the operator Q we used was:

Q p = Q(W , F , R2*, φ, TE) = W + F · ∑
m = 1

M
am · ei2πfmTE · e−R2*TE · ei2πφTE (7)

where W, F, R2*, φ represent the quantitative water maps, fat maps, R2* maps, and B0 field 

maps. A 7-peak fat model with amplitudes am and frequencies fm were also included46.

To predict quantitative parameter outputs with corresponding uncertainty scores, we used an 

uncertainty loss:

Luncert = p − p 1
u + log u (8)

This uncertainty loss function is equivalent to performing maximum a posteriori (MAP) 

inference where a Laplace distribution43 is assumed for each quantitative parameter in each 

pixel. We can also understand this loss function from a more intuitive perspective. First, 

in regions where the p − p 1 error minimization is difficult (e.g., regions with lower signal-

to-noise ratio), increased values of u can reduce the loss, therefore capturing uncertainty. 

Second, the log u  term can serve as a regularization term to avoid unconstrained increase in 

the uncertainty score.

The relative weights for each loss component in Equation 1 can impact the results. We chose 

the weight combination that achieved the lowest PDFF and R2* quantification errors in the 

validation set: w1 = 0.2, w2 = 0.2, w3 = 0.2, w4 = 0.3, and w5 = 0.1.

2.3 Training Strategy for UP-Net

To shorten the convergence time for training UP-Net, we used a step-by-step training 

strategy.

Step 1: Pre-train the artifact suppression module using pairs of input undersampled images 

x and reference images m as the training data and using only LimgMSE and LimgGAN for the 

loss function.
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Step 2: Pre-train the parameter mapping module without the uncertainty estimation path 

using pairs of reference multi-contrast images m and reference quantitative maps p as the 

training data and using only LmapMSE and Lphysics for the loss function.

Step 3: Load the weights trained from Steps 1 and 2, and then train the entire UP-Net 

end-to-end without the uncertainty path using LimgMSE, LimgGAN, LmapMSE and Lphysics for 

the loss function (i.e., not including the uncertainty loss term yet).

Step 4: Train the entire UP-Net using training sets of undersampled images x, reference 

images m and reference quantitative maps p with the full loss function LUP–Net.

For all training steps, data augmentation for images/maps was performed by mirroring 

(no flip or horizontal flip) and rotating by n*90 degrees (n=0,1,2,3). This augmented the 

training data size to 8 times that of the original training data. In addition, we used a “phase 

augmentation” strategy to further augment training data by adding a phase offset to the 

multi-echo input images, multi-echo reference images, and reference fat and water complex 

signals at the same time (Supplementary Figure S2). The signal magnitudes were not 

changed, and the relationship between images and quantitative maps were not modified. In 

each epoch during training, we generated 3 more instances for each 2D slice in this manner 

(i.e., in addition to the original data, 3 different phase offsets were applied to generate 3 

more instances). The phase offsets were randomly selected between 0~2π. This strategy 

aimed to improve robustness to phase variations, which is important in separating fat/water 

signals.

2.4 Data Acquisition

In a HIPAA-compliant and IRB-approved study, we acquired MR images from 105 subjects, 

including healthy subjects and subjects with suspected or confirmed NAFLD, at 3T 

(MAGNETOM Skyra or Prisma, Siemens Healthineers, Erlangen, Germany). Fifty-seven 

of the subjects were adults (34 females, 23 males; age 48.16±19.01 years; body mass index 

[BMI]: 26.98±5.94kg/m2) and 48 of the subjects were children (19 females, 29 males; age 

13.06±2.99 years; BMI: 22.85±8.41kg/m2). Written informed consent, parental permission, 

and assent, if applicable, were obtained for all subjects prior to research procedures. 

We scanned using a prototype free-breathing multi-echo gradient-echo 3D stack-of-radial 

sequence with bipolar readout gradients (FB Radial, parameters in Table 1)16,17. To 

compare with standard breath-holding techniques, we acquired an additional breath-hold 

bipolar multi-echo gradient-echo 3D Cartesian sequence (BH Cartesian, parameters in 

Table 1)14. We separated the data into training (N=63), validation (N=21), and testing 

(N=21) datasets using a 3:1:1 ratio (Table 2). Subject information and data were entered into 

a secure database for management and analysis47.

We trained and tested UP-Net using only FB Radial data, while the BH Cartesian data 

served as an external reference for evaluation of PDFF and R2* quantification accuracy. For 

BH Cartesian data, images and the quantitative PDFF and R2* maps were reconstructed 

using vendor-provided software on the scanner.
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2.5 Reference Data Preparation for UP-Net Training

UP-Net was trained in a supervised approach, which demands high-quality multi-echo 

images and quantitative maps with minimal artifacts to serve as references. However, 

it is challenging to acquire fully-sampled data for reconstruction of motion-resolved 3D 

volumetric images in the abdomen. To satisfy the Nyquist sampling criteria after self-gating, 

longer acquisition time is needed, which may increase sensitivity to motion effects. Previous 

works have used CS to generate images and quantitative maps for DL network training in 

applications where a fully-sampled reference dataset is difficult to acquire48,49. Following a 

similar strategy, we acquired nominally fully-sampled stack-of-radial data before applying 

motion self-gating, and used CS to reconstruct motion self-gated images with suppressed 

undersampling artifacts.

The workflow for generating the training data for UP-Net is shown in Figure 2. Gradient 

delays were calibrated to correct the radial trajectory for FB Radial data reconstruction16. 

We extracted a projection-based self-navigator from the kx = ky = 0 line in k-space23 to 

track respiratory motion along the z dimension. A sliding window approach was applied 

along the motion dimension to bin the k-space data into 6 respiratory motion states where 

each bin contained 40% of the entire k-space data (effective data undersampling factor = 

2.5 in each state). We estimated coil sensitivity maps using a phased array beamforming 

technique50,57, which has been shown to suppress radial artifacts resulting from hardware 

imperfections (e.g., gradient non-linearity and field inhomogeneity). We formulated the 2D 

CS reconstruction problem as23:

x* = argminx FSx − y 2
2 + λ1TV motion x + λ2∑ecℎo, state W avelet xecℎo, state 1

, where F represents the non-uniform fast Fourier Transform (NUFFT) operator, S denotes 

coil sensitivity maps, x is the reconstructed multi-echo images, y is the acquired k-space 

data, and λ1 and λ2 are regularization parameters. The regularization parameters were 

chosen manually to balance between undersampling artifact reduction and image sharpness. 

After CS reconstruction, we calculated quantitative maps (including complex fat/water 

components, R2* map, and B0 field map) by fitting the CS-reconstructed multi-echo 

images to a 7-peak fat model with a single R2* component46 (same as Eq. 7) using 

GC-based algorithms20,21. Local fat-water swaps still occurred in certain slices and were 

difficult to correct using GC-based algorithms; we excluded these slices from the training 

dataset. We generated body masks from the first-echo CS-reconstructed magnitude images, 

and applied the body masks to the CS-reconstructed images and the corresponding 

quantitative maps for background artifact and noise suppression. We will refer to the 

reference CS-reconstructed self-gated free-breathing stack-of-radial images as FB+CS and 

the corresponding quantitative maps reconstructed by GC-based algorithms as FB+CS+GC.

The input images x to UP-Net were coil-combined 6-echo images using 40% of FB Radial 

data near the end-expiration state (Figure 1). The real and imaginary components from each 

echo were stacked along the channel dimension (6 echoes × real/imaginary components = 

12 channels). The output from the artifact suppression module had the same data dimensions 

as the input images (12 channels), and were fed into the parameter mapping module. The 
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output from the parameter mapping module contained (1) complex-valued fat and water 

components, R2* map, and field map stacked along the channel dimension and (2) three 

uncertainty maps for PDFF, R2*, and field map stacked along the channel dimension. PDFF 

maps were generated from complex fat/water components for calculation of LmapMSE and 

Luncert, while the complex-valued fat/water components were directly used in Lphysics.

Based on PDFF and R2* quantification accuracy in the validation dataset, the 

hyperparameters for the end-to-end UP-Net training were chosen as: batch size=32, initial 

learning rates=0.0001, and epochs=150, using the Adam optimizer.

2.6 Evaluation of UP-Net Image Quality and Quantification Accuracy

We evaluated the performance of UP-Net in terms of image quality and quantification 

accuracy of the output images and maps in the testing dataset. For image quality, we 

compared the enhanced image results from UP-Net with the reference FB+CS images using 

normalized root mean squared error (NRMSE) and structure similarity index (SSIM). For 

quantification accuracy, we calculated differences in PDFF and R2* quantification results 

using liver regions of interest (ROIs) for (1) FB+UP-Net versus FB+CS+GC and (2) 

FB+UP-Net versus BH Cartesian. ROIs with area of 5-cm2 were placed in the right lobe 

of the liver by a trained researcher while avoiding large vessels and bile ducts18. A total 

of 3 ROIs were placed in the upper, middle and lower liver (one ROI at each level) for 

each subject. Bland-Altman analysis was performed to evaluate PDFF and R2* accuracy by 

calculating the mean difference (MD) and 95% limits of agreement (LoA) between different 

methods.

2.7 Evaluation of UP-Net Uncertainty Estimation

We evaluated the performance of UP-Net uncertainty estimation in terms of its ability to 

predict quantification errors according to the following steps.

Step 1: Complete UP-Net training.

Step 2: In the validation dataset, measure (1) quantification errors (∑i ∈ ROI pi − pi ) 

between UP-Net and reference FB+CS+GC results and (2) UP-Net uncertainty scores in 

the liver ROIs. Use a linear correlation model to generate “calibration curves” between 

quantification errors and UP-Net uncertainty scores for each quantitative parameter 

separately. Calculate Spearman correlation coefficients and test for statistical significance.

Step 3: Output UP-Net uncertainty scores for liver ROIs in the testing dataset. Transform 

UP-Net uncertainty scores to predicted quantification errors using the calibration curves.

Step 4: Perform Bland-Altman analysis on predicted quantification errors versus actual 

quantification errors in the testing dataset, with respect to FB+CS+GC results, for each 

quantitative parameter separately.
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2.8 UP-Net Ablation Study

We performed an ablation study to assess the contributions of the key components used in 

UP-Net, including phase augmentation, GAN loss, MRI physics loss, uncertainty estimation, 

and joint end-to-end training strategy. After training each ablated model with the same 

training dataset, we compared the results in the testing dataset using NRMSE and SSIM for 

image quality, and absolute errors in liver PDFF and R2* for quantification accuracy. We 

used the Wilcoxon signed-rank test to evaluate if the performance of the ablated network 

models had significant difference versus the performance of UP-Net. p<0.01 was considered 

significant.

3. RESULTS

3.1 UP-Net Image Quality and Quantification Accuracy

Figure 3 shows representative first-echo magnitude and phase images from UP-Net input, 

UP-Net output results, and FB+CS results in two subjects with NAFLD (a 47-year-old male 

and a 17-year-old male). UP-Net suppressed the radial undersampling streaking artifacts in 

the liver and in the background (arrows in Figure 3), and achieved high SSIM compared 

with FB+CS. Figures 4 and 5 show representative quantitative PDFF, R2* and field map 

results in axial and coronal orientations and the corresponding uncertainty maps in two 

NAFLD subjects (same subjects as in Figure 3). UP-Net generated accurate PDFF/R2*/

field maps compared with FB+CS+GC references in the liver ROIs. Most regions show 

low quantification errors (Figures 4 and 5) in all 3 quantitative parameters. Regions 

corresponding to air usually had large quantification errors. The uncertainty maps show 

high intensities (red arrows in Figures 4 and 5) and characterize the lower confidence in 

these regions in air.

Bland-Altman plots for liver PDFF and R2* quantification accuracy are shown in Figure 6. 

For PDFF quantification, FB+UP-Net achieved MD = −0.36% compared with FB+CS+GC, 

and MD = 0.53% compared with BH Cartesian. For R2* quantification, FB+UP-Net 

achieved MD = −0.37 s−1 compared with FB+CS+GC, and MD = 6.75 s−1compared with 

BH Cartesian. LoA between FB+UP-Net versus FB+CS+GC was narrower than FB+UP-Net 

versus BH Cartesian for both PDFF and R2* quantification.

3.2 UP-Net Uncertainty Estimation

Linear correlation results comparing absolute quantification errors versus uncertainty scores 

of three quantitative parameters in liver ROIs in the validation dataset are shown in Figure 

7a. The Spearman correlation coefficients for PDFF, R2* and field map were 0.358 (p<0.05), 

0.466 (p<0.01), and 0.503 (p<0.01), respectively. These calibrated linear regression curves 

were used to convert uncertainty scores measured in the testing dataset to predicted 

quantification errors. The Bland-Altman plots for UP-Net predicted errors versus actual 

quantification errors in liver ROIs are shown in Figure 7b. MDs between UP-Net predicted 

errors versus actual absolute quantifications errors were 0.27%, 0.12 s−1, and 0.19 Hz for 

PDFF, R2*, and field map, respectively. Note that the quantification errors were all generally 

low to begin with.
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3.3 UP-Net Ablation Study Results

Table 3 shows the results of our ablation study. UP-Net achieved higher mean SSIM of 0.872 

and lower mean NRMSE of 0.173 compared with the ablated UP-Net models without phase 

augmentation or GAN loss (all p<0.01). Compared with the ablated UP-Net model without 

the MRI physics loss, UP-Net achieved lower mean PDFF error of −0.36% and lower mean 

R2* error of −0.37 s−1 (both p<0.01). UP-Net without uncertainty estimation did not have 

significant difference in image quality and quantification accuracy when compared with UP-

Net (i.e., the addition of the uncertainty path did not degrade quantification accuracy). UP-

Net without joint training achieved higher mean PDFF error of −0.46% (p<0.01) compared 

to UP-Net with joint training.

3.4 Processing/Reconstruction Time

The entire CS reconstruction was implemented in MATLAB 2021b (MathWorks, Natick, 

MA). Data preparation steps of gradient calibration, self-gating, NUFFT, and beamforming-

based coil combination (Figures 1 and 2) required a total time of 30 sec/slice. Repeated 

forward and inverse NUFFT are the bottleneck for the CS reconstruction method. To 

improve computational performance, we implemented the CS reconstruction method using 

GPU-based NUFFT packages58. CS reconstruction took 3 min/slice on an Intel Xeon E5–

2660 CPU with 128GB RAM and an NVIDIA v100 GPU with 32GB memory. We used 

the ISMRM fat-water toolbox59 and code from previous works21 for GC fitting algorithms, 

which required 15 seconds/slice on the same CPU. We implemented UP-Net using Python 

3.8.10 and Pytorch 1.12.1. UP-Net required 28 hours to train on an NVIDIA v100 GPU 

with 32GB memory. With the prepared data as input, UP-Net took 79 msec/slice for network 

inference (using same hardware as network training). A more detailed analysis of the total 

operation counts for each method was provided in Supplementary Table S1.

4. DISCUSSION

We developed an uncertainty-aware physics-driven deep learning network that accurately 

quantifies liver PDFF and R2* using undersampled self-gated free-breathing multi-echo 

stack-of-radial MRI. Compared with previous works on DL-based fat/water separation 

and/or R2* mapping30–34, our study has two main contributions. First, we investigated a 

DL approach for PDFF and R2* mapping from undersampled radial MRI data. Unlike 

previously proposed networks that learned mapping from fully-sampled Cartesian images 

to fat/water signals or quantitative maps30–34, UP-Net generates accurate quantitative 

maps from images impacted by radial undersampling artifacts. We incorporated artifact 

suppression and parameter mapping into one end-to-end network. This substantially reduced 

the computational time for image artifact suppression compared to time-intensive CS 

methods and fat-water signal fitting compared to GC algorithms. Second, our proposed 

network has built-in uncertainty estimation that generates pixel-wise uncertainty maps for 

different quantitative parameters. Uncertainty estimation to assess the confidence levels 

in DL-based MRI reconstruction and quantitative parameter mapping results is a nascent 

direction35–38. We specifically investigated the application of uncertainty estimation in DL-

based PDFF and R2* quantification and demonstrated that a calibration method for the 

UP-Net uncertainty scores can be used to predict absolute liver PDFF and R2* quantification 
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errors in UP-Net parameter maps to within 1% and 3 s−1, respectively, compared to actual 

errors with respect to reference methods.

To suppress radial undersampling streaking artifacts, we used UNet as the backbone 

architecture, which has been used in previous work for radial streaking reduction in 

2D slices26,27, dynamic 2D cardiac images29, and 2D images from different respiratory 

phases51. In this work, we adapted the input/output dimensions of UNet to accommodate 

the 2D multi-echo images. We stacked the real and imaginary components from all of 

the multi-echo images along the channel dimension to preserve the consistency of the 

magnitude and phase input information for PDFF and R2* quantification. We also adopted 

a GAN architecture and a phase augmentation strategy for image quality improvement. 

Due to limited memory on the GPU for network training, correlations between neighboring 

slices were not considered in this study. Networks that can efficiently process multi-echo 

2D+slice or multi-echo 3D volumetric data could be further investigated. Although it is 

possible to omit the artifact suppression module and use one single network to generate 

quantitative maps directly from self-gated undersampled radial images, UP-Net with a 

modular architecture can provide more accurate quantitative maps with less radial streaking 

artifacts (example in Supplementary Figure S3).

In addition to rapid computational time, another potential advantage of using UP-Net or 

other DL-based methods for fat-water separation is reducing the occurrence of fat-water 

swaps. In our datasets, there were slices with local fat-water swaps (usually around the liver 

dome) using the GC methods. These slices required manually adjusting GC parameters, such 

as constraints on B0 field map smoothness or range, to address the swaps. When training 

UP-Net, we excluded data with fat-water swaps and performed phase augmentation, which 

helped the network to learn reliable fat-water separation in the presence of B0 field map 

variations. The use of UP-Net can potentially reduce the occurrence of fat-water swaps 

(Supplementary Figures S4) and avoid the extra time/effort needed to check and fix fat-water 

swaps.

One concern of DL-based fat-water separation is whether the network could perform 

accurate mapping for datasets with liver PDFF values outside the range in the training 

dataset. UP-Net has two advantages that could allow it to generalize to these cases. First, 

we used an MRI physics loss that will constrain the output to follow the fat-water signal 

model. Second, even though the training dataset we used in this work has a maximum 

liver PDFF around 30%, UP-Net still learned from the signal characteristics in fat-dominant 

tissues (e.g., subcutaneous adipose tissue) with PDFF up to 90%. To investigate this, we 

created synthetic testing datasets with higher liver PDFF, and used UP-Net to perform PDFF 

mapping. A representative example in Supplementary Figure S5 shows that UP-Net can 

indeed quantify higher liver PDFF values (e.g., >40%) that were not included in the training 

dataset. Another concern of DL-based fat-water separation is whether the network can be 

adapted to several different body parts. Although different body parts may have different 

B0 field map ranges and variations, their signal characteristics are described by the same 

fat-water signal model. After training UP-Net on a certain dataset (e.g., liver and upper 

abdomen), the fat-water signal model is implicitly learned. Through transfer learning and 

fine tuning, UP-Net can potentially be applied to other body parts (e.g., lower abdomen).
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Fully-sampled free-breathing motion-resolved volumetric abdominal stack-of-radial MRI 

data is often impractical to acquire. We used CS to generate images and quantitative 

maps with suppressed radial streaking artifacts. CS methods have already been validated 

for PDFF quantification using undersampled Cartesian MRI52 and for PDFF and R2* 

quantification using undersampled radial MRI data19. For complete evaluation of our 

UP-Net quantification accuracy, we also compared UP-Net results with standard 3D 

BH Cartesian MRI. Many previous DL-based fat-water signal fitting methods were only 

evaluated on individual fat and water maps30–33. We evaluated our results on quantitative 

PDFF maps. Similar to a previous DL-based method for joint PDFF and R2* mapping using 

Cartesian MRI34, we also achieved low biases in PDFF, R2*, and field map values versus 

reference methods. Notably, we trained and tested our method on a larger dataset (105 

subjects). In contrast, a previous report considered 31 subjects34. Previous DL methods did 

not investigate their results in NAFLD subjects, while our UP-Net was trained and evaluated 

in a population including healthy subjects and subjects with suspected or confirmed 

NAFLD. In our Bland-Altman analysis of PDFF and R2* quantification accuracy, the MD 

between FB+UP-Net and FB+CS+GC was smaller than the MD between FB+UP-Net and 

BH Cartesian. This was expected because UP-Net was trained using reference data from the 

FB+CS+GC method. The MD and LoA of PDFF and R2* quantification comparing FB+UP-

Net versus BH Cartesian are similar to results in previous studies comparing self-gated FB 

stack-of-radial MRI with BH Cartesian18.

We carefully examined the contributions from key components in UP-Net, including phase 

augmentation, GAN loss, and MRI physics loss. Among these components, MRI physics 

loss was especially important for accurate parameter quantification. From our ablation study, 

the network without MRI physics loss generated larger biases in both PDFF and R2* 

quantification. MRI physics loss considered the relationship between multi-echo signals 

and quantitative parameters and did not require reference quantitative maps. However, the 

MRI physics loss alone may not provide sufficient information to resolve fat-water swaps. 

By adding an MSE loss for quantitative maps and training with reference non-swapped 

maps, we directed UP-Net to learn the spatial distribution of fat- or water- dominant pixels 

and reduce fat-water swaps. In applications that focus on the signal magnitude, phase 

information in DL results is often discarded or overlooked. Our use of a phase augmentation 

strategy strengthened UP-Net’s ability to learn complex-valued signal relationships by 

including images with the same magnitude but different phase. This strategy can also 

be applied in applications that need accurate phase, including temperature mapping and 

quantitative susceptibility mapping. GAN architectures for imaging tasks is an active 

research topic. In this work, we used Wasserstein loss in our GAN architecture, which 

has previously been used in Cartesian MRI reconstruction53. More complicated GAN 

architectures and loss functions designed for medical images54 could be investigated further.

The “black box” nature of DL-based methods for MRI is an important concern and 

potential barrier to clinical translation. Uncertainty estimation in DL networks35–38 

presents a promising approach to provide context and assess confidence in DL outputs 

for clinical applications that demand a high level of numerical accuracy, including the 

use of quantitative maps for diagnostic decisions. In this study, we showed that with 

calibration, UP-Net uncertainty scores predicted quantification errors in a separate testing 
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dataset. These promising results have some potential applications. For example, confidence 

masks can be generated by thresholding the uncertainty scores and then overlaid on the 

UP-Net quantitative parameter maps. Radiologists can avoid making measurements and 

decisions in areas with higher uncertainty scores and have more confidence in using DL-

generated images and quantitative maps. A recent study has demonstrated that by passing 

uncertainty information in concatenated tasks, the performance of the downstream task (e.g., 

segmentation or detection) can be improved55. The uncertainty maps generated by UP-Net 

can potentially provide information and improve subsequent automatic liver MRI analysis, 

such as DL-based liver segmentation and disease classification.

This study has limitations. First, we did not investigate the influence of different data 

undersampling factors on UP-Net performance. We used a 40% data acceptance window 

(2.5-fold undersampling) on nominally fully-sampled data, as suggested in previous 

studies17,18. Self-gating data acceptance rates can be further reduced to improve motion 

fidelity. The number of acquired radial spokes can also be reduced to investigate additional 

scan acceleration. However, higher undersampling factors pose more difficulties in both 

generating high-quality reference data and training UP-Net. Adjustments such as adding 

k-space consistency layers56 might be required for UP-Net to address higher undersampling 

factors. Second, we trained and tested UP-Net using data with specific number of echoes, 

TE, TR, and flip angle. These sequence parameters were closely related to PDFF/R2* 

accuracy in the data we used. Our current analysis on the quantification accuracy and 

uncertainty prediction may not be directly applicable in other datasets with different 

sequence parameters. Third, the calculation of the UP-Net uncertainty loss term required 

reference quantitative maps. Therefore, the UP-Net uncertainty values reflect differences 

between UP-Net results and results from reference methods. Fourth, we calibrated the PDFF 

and R2* uncertainty estimation in the validation dataset only using ROIs in the liver. This 

approach required CS and GC reference reconstruction results for calibration. In addition, 

different calibration curves may be needed to quantify DL uncertainty in other tissues, such 

as subcutaneous and visceral adipose tissues. Fifth, we used linear regression to investigate 

the relationship between UP-Net uncertainty scores and quantification errors. However, this 

approach may not be sufficient to characterize all the factors at play. PDFF measurements 

are results of relative amounts of two chemical shift species and can have different inherent 

uncertainty at different PDFF levels. R2* uncertainty depends on combinations of the 

number of echoes, the chosen echo times, and the underlying true R2* values. Because 

PDFF and R2* are incorporated together in the fat-water signal model, multi-variate models 

can also be considered to improve uncertainty characterization and calibration in the future.

5. CONCLUSION

In this study, we developed an uncertainty-aware physics-driven deep learning network that 

rapidly calculates accurate liver PDFF and R2* maps from undersampled free-breathing 

self-gated multi-echo stack-of-radial images and provides pixel-wise uncertainty maps. 

GAN architecture, phase augmentation, and MRI physics loss improved the UP-Net image 

quality and quantification accuracy for liver PDFF and R2*. We demonstrated that UP-Net 

uncertainty scores can be used to predict absolute quantification errors in liver PDFF and 

R2*.
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Figure 1. 
The proposed uncertainty-aware physics-driven deep learning network (UP-Net) for rapid 

free-breathing proton-density fat fraction (PDFF) and R2* quantification from self-gated 

multi-echo stack-of-radial MR images. The artifact suppression module used a generative 

adversarial network (GAN) architecture to reduce the radial undersampling artifacts due to 

self-gating. The parameter mapping module used a bifurcated UNet structure, which had 

a shared encoder and two decoders, to calculate parameter maps (pixel-wise means) and 

uncertainty maps (pixel-wise variances). See Supplementary Figure S1 for more details. 

NUFFT: non-uniform fast Fourier transform.
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Figure 2. 
The workflow for generating reference data (multi-echo images and quantitative maps) for 

training UP-Net. Nominally fully-sampled stack-of-radial k-space data were binned into 6 

respiratory motion states using projection-based self-navigators. A 2D compressed sensing 

(CS) framework with beamforming-based coil sensitivity maps was used to reconstruct 

multi-echo images with reduced undersampling streaking artifacts. Quantitative maps were 

generated by fitting the multi-echo images to a fat-water signal model with a single R2* 

component. Body masks were generated from the CS-reconstructed first-echo images for 

background suppression.
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Figure 3. 
Representative free-breathing (FB) stack-of-radial first-echo images from self-gated input 

images, UP-Net output results, and reference images reconstructed by compressed sensing 

(CS). (a) Results from a 47-year-old male (BMI=28.0kg/m2) in the testing set. (b) Results 

from a 17-year-old male (BMI=30.4kg/m2) in the testing set. Structural similarity index 

(SSIM) values comparing UP-Net output with reference images are shown. Arrows point 

to streaking artifacts in the self-gated images that are suppressed in the UP-Net output and 

reference images. BMI: body mass index.
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Figure 4. 
Representative free-breathing (FB) (a) proton-density fat fraction (PDFF), (b) R2* and (c) 
field maps and corresponding uncertainty maps from the same subject in Figure 3a. PDFF, 

R2* and field map errors were generally low when comparing UP-Net results with reference 

maps reconstructed using compressed sensing (CS) and graph-cut (GC) algorithms. In 

regions with larger quantification errors, higher UP-Net uncertainty scores were observed in 

all 3 quantitative maps (red arrows). Errors and higher uncertainty scores around the body 

were in regions corresponding to air.
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Figure 5. 
Representative free-breathing (FB) (a) proton-density fat fraction (PDFF), (b) R2* and (c) 
field maps and corresponding uncertainty maps from the same subject in Figure 3b. PDFF, 

R2* and field map errors were generally low when comparing UP-Net results with reference 

maps reconstructed using compressed sensing (CS) and graph-cut (GC) algorithms. In 

regions with larger quantification errors, higher UP-Net uncertainty scores were observed in 

all 3 quantitative maps (red arrows). Errors and higher uncertainty scores around the body 

were in regions corresponding to air.
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Figure 6. 
(a-b) Bland-Altman plots comparing liver proton-density fat fraction (PDFF) values from 

UP-Net output maps versus free-breathing (FB) reference maps and breath-holding (BH) 

Cartesian maps. (c-d) Bland-Altman plots comparing liver R2* values from UP-Net output 

maps versus FB reference maps and BH Cartesian maps. The dashed lines represent zero 

difference. The solid lines represent mean differences (MD) and 95% limits of agreements 

(LoA).
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Figure 7. 
(a) Correlation plots between absolute quantification errors (UP-Net outputs versus 

reference compressed sensing and graph-cut fitting results) and UP-Net uncertainty scores 

in liver regions of interest (ROIs) in the validation dataset. Linear regression was performed 

to calibrate PDFF, R2* and field map uncertainty scores with respect to the absolute errors. 

(b) Bland-Altman plots comparing the errors predicted from UP-Net uncertainty scores 

versus the actual absolute quantification errors in PDFF, R2* and field map in liver ROIs in 

the testing dataset. The black dashed lines represent zero difference. The black solid lines 

represent mean differences (MD) and 95% limits of agreements (LoA).
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Table 1.

Representative sequence parameters for free-breathing 3D stack-of-radial (FB Radial) and breath-holding 

(BH) 3D Cartesian axial MRI scans at 3T. N/A: not applicable.

Sequence parameters FB Radial BH Cartesian

TE (ms) 1.23, 2.46, 3.69, 4.92, 6.15, 7.38

TR (ms) 8.85

Flip angle (°) 5 5

Field of view 360–440 × 360–440 mm2 360–440 × 360–440 mm2

Slice thickness (mm) 5 5

Matrix size (x, y, z) 224–288, 224–288, 40–72 224–288, 224–288, 30–40

Acceleration factor N/A R=4 (parallel imaging)

Radial spokes 354–454 N/A

Scan time (min:sec) 2:28 – 4:49*
0:19

#

Retrospective undersampling R=2.5 (40% self-gating acceptance rate) N/A

*
Radial gradient calibration time was not included.

#
Prescan calibration time was not included.
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Table 2.

Dataset characteristics. NAFLD: non-alcoholic fatty liver disease. Std: standard deviation.

Datasets Total number 
of subjects

Adult subjects Pediatric subjects Total number of 
2D slices

Range of liver PDFF values

Training set 63 24 NAFLD, 11 healthy
18 NAFLD

#
, 10 healthy 2528* Min: 0.4%

Max: 33.4%
Mean: 10.5%
Std: 9.7%

Validation set 21 7 NAFLD, 4 healthy
6 NAFLD

#
, 4 healthy

812 Min: 0.9%
Max: 28.4%
Mean: 9.2%
Std: 8.8%

Testing set 21 7 NAFLD, 4 healthy
5 NAFLD

#
, 5 healthy

860 Min: 0.6%
Max: 25.2%
Mean: 9.8%
Std: 8.4%

*
Before performing data augmentation. See text in section 2.3 for details about data augmentation.

#
Suspected or confirmed NAFLD.
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Table 3.

Ablation study in the testing dataset for different components used in UP-Net. Structural similarity index 

(SSIM) and normalized root mean squared error (NRMSE) were evaluated on magnitude images, with respect 

to compressed sensing results. Proton-density fat fraction (PDFF) and R2
* quantification errors were evaluated 

in liver regions of interest, with respect to compressed sensing and graph-cut fitting results. Results are 

reported as mean ± standard deviation.

Component Metric

Network Phase 
Augmentation

GAN 
Loss

Physics 
Loss

Uncertainty 
Estimation

Joint 
Training

SSIM NRMSE PDFF 
Errors

R2
* Errors

1 ✓ ✓ ✓ ✓ 0.851±0.055* 0.182±0.048* −0.92%

±0.95%*
−0.54s−1±3.02s−1*

2 ✓ ✓ ✓ ✓ 0.858±0.067* 0.194±0.053* −0.31%
±1.05%

−0.68s−1±3.46s−1*

3 ✓ ✓ ✓ ✓ 0.870±0.049 0.178±0.050 −1.69%

±1.49%*
−2.50s−1±5.03s−1*

4 ✓ ✓ ✓ ✓ 0.877±0.048 0.176±0.042 −0.29%
±0.88%

−0.34s−1±3.81s−1

5 ✓ ✓ ✓ ✓ 0.884±0.050 0.168±0.061 −0.46%

±1.47%*
−0.41s−1±3.02s−1

UP-Net ✓ ✓ ✓ ✓ ✓ 0.872±0.053 0.173±0.059 −0.36%
±0.98%

−0.37s−1±3.56s−1

*
represents statistically significant difference (p<0.01, Wilcoxon signed-rank test) compared with UP-Net.

Magn Reson Med. Author manuscript; available in PMC 2024 April 01.


	Abstract
	INTRODUCTION
	METHODS
	Uncertainty-Aware Physics-Driven Deep Learning Network (UP-Net)
	Loss Function for UP-Net Training
	Training Strategy for UP-Net
	Step 1:
	Step 2:
	Step 3:
	Step 4:

	Data Acquisition
	Reference Data Preparation for UP-Net Training
	Evaluation of UP-Net Image Quality and Quantification Accuracy
	Evaluation of UP-Net Uncertainty Estimation
	Step 1:
	Step 2:
	Step 3:
	Step 4:

	UP-Net Ablation Study

	RESULTS
	UP-Net Image Quality and Quantification Accuracy
	UP-Net Uncertainty Estimation
	UP-Net Ablation Study Results
	Processing/Reconstruction Time

	DISCUSSION
	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.
	Table 3.



