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Decades of research have revealed the remarkable complexity of the midbrain dopamine
(DA) system, which comprises cells principally located in the ventral tegmental area (VTA)
and substantia nigra pars compacta (SNc). Neither homogenous nor serving a singular
function, the midbrain DA system is instead composed of distinct cell populations that
(1) receive different sets of inputs, (2) project to separate forebrain sites, and (3) are
characterized by unique transcriptional and physiological signatures. To appreciate how
these differences relate to circuit function, we first need to understand the anatomical
connectivity of unique DA pathways and how this connectivity relates to DA-dependent
motivated behavior. We and others have provided detailed maps of the input-output
relationships of several subpopulations of midbrain DA cells and explored the roles of
these different cell populations in directing behavioral output. In this study, we analyze
VTA inputs and outputs as a high dimensional dataset (10 outputs, 22 inputs), deploying
computational techniques well-suited to finding interpretable patterns in such data.
In addition to reinforcing our previous conclusion that the connectivity in the VTA is
dependent on spatial organization, our analysis also uncovered a set of inputs elevated
onto each projection-defined VTADA cell type. For example, VTADA

→NAcLat cells
receive preferential innervation from inputs in the basal ganglia, while VTADA

→Amygdala
cells preferentially receive inputs from populations sending a distributed input across
the VTA, which happen to be regions associated with the brain’s stress circuitry. In
addition, VTADA

→NAcMed cells receive ventromedially biased inputs including from the
preoptic area, ventral pallidum, and laterodorsal tegmentum, while VTADA

→mPFC cells
are defined by dominant inputs from the habenula and dorsal raphe. We also go on to
show that the biased input logic to the VTADA cells can be recapitulated using projection
architecture in the ventral midbrain, reinforcing our finding that most input differences
identified using rabies-based (RABV) circuit mapping reflect projection archetypes within
the VTA.

Keywords: VTA (ventral tegmental area), rabies, circuit mapping, dopamine, inputs and outputs, high dimension
datasets, spatial patterning
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INTRODUCTION

The VTA plays a central role in a variety of both adaptive and
pathological motivated behaviors, principally through cells that
release the neurotransmitter DA (Morales and Margolis, 2017).
These cells direct motivated behaviors by release of DA into
downstream brain structures such as the nucleus accumbens
(NAc), dorsal striatum (DStr), and medial prefrontal cortex
(mPFC) (Beier et al., 2015). Activation of DA cells as a population
is highly reinforcing, as animals will robustly self-administer
stimulation of DA neurons (Olds and Milner, 1954). DA cells
have also been implicated in reward-prediction error (RPE), or
the difference between the received and anticipated value of an
outcome (Schultz, 1998). While much of the data fit the RPE
model, some do not. For example, an aversive stressful experience
or a painful stimulus such as a foot pinch triggers DA release into
forebrain structures (Navratilova et al., 2015). One recent study
suggested that physiological DA release in the NAc only relates to
outcomes predicted by RPE within a limited number of scenarios
and instead broadly signals perceived salience (Kutlu et al., 2021).
Other studies pointed to the existence of subsets of DA cells that
not only project to different forebrain sites, but also have unique
transcriptional, electrophysiological, and response properties to
various stimuli (Lammel et al., 2008, 2011; Kim et al., 2016).
We now know that the VTA is comprised of heterogenous cell
types: DA cells comprise roughly 50% of VTA cells in the rat,
fewer than the >70% previously estimated (Margolis et al., 2006);
another∼40% of cells in the VTA are GABAergic. Many of these
GABAergic cells inhibit VTADA neurons, and their activation has
the opposite effect of DA cell stimulation (Bouarab et al., 2019).
In addition to locally inhibiting DA cells, VTAGABA neurons also
project to a variety of forebrain sites, including the NAc and
lateral habenula (LHb). Many VTAGABA cells can also co-transmit
glutamate (Root et al., 2014). Additionally, many NAc-projecting
midbrain DA cells co-transmit glutamate, and some can also
synthesize and transmit GABA through a non-canonical pathway
(Tritsch et al., 2012; Kim et al., 2015). This complexity makes it
difficult to definitively disentangle the roles that various cells play
in adaptive and maladaptive behaviors.

To date, DA cells have typically been differentiated based
on output site. For example, Lammel et al. (2008) injected
fluorescent microspheres into different forebrain sites and
showed that the DA cells in the midbrain that took up the
microspheres were largely distinct, as these cell populations
differed in their expression of dopamine transporter, DAT, and
in their electrophysiological properties. They later showed that
these cells were differentially modulated by experience, as the
synapses onto some cells and not others were modulated by
either a cocaine (rewarding) or formalin (aversive) experience
(Lammel et al., 2011). These results suggested that these cells are
integrated into separate circuits that are differentially involved in
either reward or aversion learning. The same investigators then
showed that VTADA cells projecting to the NAc preferentially
received inputs from the laterodorsal tegmentum (LDT) and
signaled reward, whereas VTADA cells projecting to the mPFC
preferentially received inputs from the LHb and signaled aversion
(Lammel et al., 2012). These studies provided a simplified

framework through which VTADA neurons could encode both
reward and aversion-related signals through separate forebrain
projections. Subsequent studies have largely supported this
framework, with some modifications. We, therefore, wanted to
explore the global anatomical organization of these cells and
examine how connectivity logic may help to explain the roles
different DA cells play in behavior. As midbrain DA cells have
been shown to receive direct monosynaptic inputs from over
100 anatomically defined brain regions (Watabe-Uchida et al.,
2012), our goal has been to create comprehensive input-output
connectivity maps of discrete DA populations to compare the
inputs and outputs of these cells.

To unambiguously define input-output relationships of
midbrain DA cells, we developed an intersectional viral-genetic
method to tag cells defined by both gene expression and output
site, termed cell type-specific Tracing the Relationship of Inputs
and Outputs (cTRIO) (Beier et al., 2015; Schwarz et al., 2015). In
our initial study, we characterized the input-output relationships
of VTADA cells projecting to the nucleus accumbens (NAcMed
and NAcLat), medial prefrontal cortex (mPFC), and Amygdala
(Beier et al., 2015). cTRIO revealed separate sub-circuits centered
on midbrain DA cells that had biased inputs and discrete outputs.
We then performed a more detailed characterization of the
connectivity relationships of these populations (Beier et al., 2019),
finding that the spatial location of starter cells in the VTA
was the main determinant of the inputs that each population
received while the neurotransmitters that the cells released did
not strongly influence input patterns. However, relating the
center of mass (COM) of “starter” neurons that initiate RABV
tracing to input fraction using a simple linear regression only
explained significant variance for about half of the input sites
examined, suggesting that this level of analysis was not sufficient
to explain the full complexity of input patterning to the VTA.
Quantitative techniques have been adopted in other fields to
reveal patterns in high dimensional data. In this study we aim to
introduce such techniques to neural circuit mapping. We revisit
previously published datasets describing the inputs and outputs
of VTADA cells and find new patterns and rules underlying
their connectivity.

RESULTS

VTADA Neurons Segregate by Projection
Condition With Characteristic Output
Patterns
Lammel et al. (2008) first used retrobead injections into different
forebrain regions in the mouse to show that DA cells projecting
to different forebrain sites were physically located in different
domains of the VTA or SNc. These results suggested that DA cells
largely project to one forebrain site and not others. Recently, we
used a more sensitive method that enabled brain-wide analysis
of the entire axonal arbor of each DA cell subpopulation to
show that each cell population in fact does send collaterals to
other brain sites, but that the collateralization patterns are largely
unique for each subpopulation, and thus the overall projection
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pattern of each population is largely distinct (Beier et al., 2015,
2019). We also were the first to perform brain-wide input
mapping analysis from projection-defined DA populations in the
VTA and the adjacent SNc (Beier et al., 2015, 2019; Lerner et al.,
2015; Menegas et al., 2015). In contrast to the largely discrete
output patterns of these cells, we and others observed that
midbrain DA cells receive quantitatively similar inputs from most
brain regions, with several biases in the contributions of these
inputs onto defined DA cell types. These input biases between
conditions may influence the differential role these cells play
in subsequent behavioral output, for example in reinforcement
behavior (Beier et al., 2015). Given that we have collected
whole-brain quantitative datasets of the inputs and outputs
of VTADA

→NAcMed, VTADA
→NAcLat, VTADA

→mPFC, and
VTADA

→Amygdala cells, we wanted to perform a more in-
depth analysis to identify factors that differentiated the inputs
and outputs of different DA cell types. We previously performed
hierarchical clustering on bootstrapped data and demonstrated
that VTADA cells projecting to NAcMed, NAcLat, mPFC, or
Amygdala clustered separately based on their output projections
to 10 forebrain sites (Beier et al., 2019), indicating that their
global output patterns were distinct. We also demonstrated
the existence of four groups of output sites with high levels
of covariance in our dataset, suggesting that each set of
output regions may be preferentially targeted by one DA cell
population. However, we did not rigorously identify how these
conditions differed and which output sites most contributed to
differentiating the projection pattern of each DA cell population.

To explore this dataset in greater detail, we first used Principal
Component Analysis (PCA) to dimensionally reduce the output
data (Figures 1A,B). The output data consist of 18 brain samples
from 4 different output-defined conditions (n = 5 for NAcMed
and mPFC; n = 4 for NAcLat and Amygdala). Each sample has
10 measurements, one for each of the output regions quantified.
PCA is a linear dimensionality reduction technique that finds
a lower dimensional representation of the data that maximizes
variance for each principal component (PC). The first PC is
a linear combination of the feature space that leads to the
highest degree of variance in the data. Each component after
makes the same optimization with the remaining dimensions.
We found that three components are sufficient to explain ∼70%
of the variance in the output data, indicating that these data
have a relatively simple structure (Figure 1C). PC1 separates
VTADA

→NAcLat cells, PC2 separates VTADA
→NAcMed cells,

PC3 separates VTADA
→Amygdala cells, and a combination of

PC2 and PC3 separates VTADA
→mPFC cells (Figures 1D,E).

Thus, three PCs were sufficient to separate each condition.
Next, we wanted to explore how each output region

contributed to each PC. For example, PC1, which separated
VTADA

→NAcLat cells, is driven by NAcLat, nucleus accumbens
core (NAcCore), dorsomedial striatum (DMS), and dorsolateral
striatum (DLS; Figure 1F). The finding that the NAcLat as
an output site helps to differentiate VTADA

→NAcLat cells is
consistent with the biased projections of each midbrain DA cell
population. Additionally, the contribution of other regions in
the striatum (except for NAcMed) is consistent with the overall
arborization pattern of these cells (Beier et al., 2015). This cell

population had the most distinct overall arborization pattern
and thus positive weights of these four regions were sufficient
to differentiate it. PC2, which separates VTADA

→NAcMed
cells, is primarily made up of the NAcMed, with smaller
contributions from the NAcCore and negative contributions
from the mPFC, bed nucleus of the stria terminalis (BNST),
and central amygdala (CeA). These negative contributions
mean that VTADA

→NAcMed cells do not prominently project
to the mPFC, BNST, or CeA. Lastly, PC3, which separated
VTADA

→Amygdala cells, is made up of positive contributions
from the ventral pallidum (VP), BNST, and CeA, and negative
contributions from the mPFC and septum. The overall
arborization patterns of NAcMed-, mPFC-, and Amygdala-
projecting VTADA cells are more similar to one another than
to NAcLat-projecting VTADA cells (Beier et al., 2019); thus in
PC2, the negative contributions from the mPFC, CeA, and BNST
differentiate NAcMed-projectors from Amygdala- and mPFC-
projectors, and in PC3, the negative contributions from the
mPFC and septum, which are the brain regions most enhanced
in the output targets of VTADA

→mPFC cells, differentiate
VTADA

→mPFC and VTADA
→Amygdala cells.

While PCA is useful due to its interpretability, Uniform
Manifold Approximation and Projection (UMAP) is better
optimized for finding clusters in high dimensional data. Indeed,
we find it is much more effective at clustering conditions by
output site (Figure 1G; McInnes et al., 2018). As UMAP uses non-
linear transformations to achieve clustering, it does not provide
us the same detailed information about which output regions
are differentiating these clusters. However, we can compute the
transpose of the output data and take the z-score to look at
how output scores per region vary across samples. Z-scoring
normalizes the data such that high and low count regions that
have the same variance will have similar values. We used UMAP
on these z-scores and found two clusters of output sites with
similar variance (Figure 1H). The bottom left cluster contains
the four regions that show up in PC1: NAcLat, NAcCore, DMS,
and DLS. These data provide confirmation that these four regions
vary as a module across these four conditions and serve as a
common set of brain sites targeted by the same cell population
(VTADA

→NAcLat) whereas the other three cell populations
share more overlap in their overall projection patterns. This
visualization serves as a complement to previous analysis of
these data, where hierarchical clustering of the output regions’
covariances found the same organization, highlighting both the
robustness of this result and these methods.

To ensure these results were not biased by outputs to the
injected projection sites, we removed the projection sites from
the output counts and performed the same analysis as before on
just the collaterals. We largely see the same clustering behaviors
as before (Supplementary Figure 1). The main difference is
that the VTADA

→NAcMed and VTADA
→mPFC brains are

harder to separate (Supplementary Figures 1B,C,E). Previously,
PC2–now PC3–separated these two conditions the strongest
(Figure 1D). This principal component previously had large
contributions from three of the projection targets, so it is not
surprising that the differences between these conditions are
weakened along with the principal component (Figure 1F and
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FIGURE 1 | VTADA outputs are organized by four core projections. (A) Schematic for axonal arborization experiments. Viral injections were performed in DAT-Cre
mice to label collaterals to VTADA neurons projecting to a specified target. (B) Collaterals of VTA projections to the NAcMed, NAcLat, mPFC, and Amygdala were
quantified in 10 brain regions across 18 mice. The NAcLat and its major collaterals are highlighted. (C) Cumulative explained variance from each principal
component. (D) Brains are plotted in PCA space for the 1st and 2nd components, colored by projection. (E) Brains are plotted in PCA space for the 2nd and 3rd
components, colored by projection. (F) Heatmap of each output region’s contribution to the first three principal components. (G) Brains are plotted in UMAP space,
colored by projection. (H) Output regions are plotted in UMAP space, embedded with respect to z-scores across mouse brains. Clusters represent outputs with
similar patterns of variation across the cohort.

Frontiers in Neural Circuits | www.frontiersin.org 4 January 2022 | Volume 15 | Article 799688

https://www.frontiersin.org/journals/neural-circuits
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neural-circuits#articles


fncir-15-799688 January 28, 2022 Time: 11:10 # 5

Derdeyn et al. Connectivity Logic of the VTA

Supplementary Figure 1D). Altogether, this analysis confirms
that the clustering of projection conditions does not completely
depend on including the main projection targets.

VTADA Neuron Inputs Do Not Cluster as
Cleanly by Projection Site
We and others used intersectional viral-genetic methods to map
global inputs to output-defined DA cells (Beier et al., 2015; Lerner
et al., 2015; Menegas et al., 2015). While the exact relationships
of inputs and outputs varied slightly between different studies,
the common finding was that different DA cell populations
largely shared common input patterns, with some quantitative
differences. We more recently performed a comprehensive
mapping of input-output relationships of different cell types in
the VTA and reported that (1) the spatial location of cells in
the VTA explained a significant amount of variation between
conditions for about half of the input sites, (2) cell type did not
explain much variation in the inputs between cell populations,
and (3) the projection site explained about as much input
variation as did spatial position of starter cells in the VTA (Beier
et al., 2019). To account for neurons that co-release multiple
neurotransmitters, for example glutamate and dopamine, we
included the percentage of starter cell immunostaining for
tyrosine hydroxylase (TH), a marker of DA neurons, in our
linear regression analysis and found it had very little predictive
value compared to spatial location (Beier et al., 2019). These
observations suggested that the quantitative contribution of
inputs a given population of cells receives depends heavily on the
physical location of the starter cells in the brain, but not on the
identify of what neurotransmitters (e.g., DA, GABA, glutamate)
these starter cells release.

Here we used PCA and UMAP to dimensionally reduce and
explore patterns in the input data. These data consist of 76 brains
with counts across 22 input regions (Beier et al., 2019). These
brains cover a variety of cTRIO and TRIO conditions as well as
non-output-defined tracing, resulting in a mix of output and cell-
type specifications (Figures 2A,B). A PCA analysis of these data
found that three components explained only about 40% of the
variance (Figure 2C). This is rather low compared to the output
data, even considering the difference in dimensionality, and
implies that this dataset is more complex. In the PCA embedding,
cell types defined by Cre expression (DAT-Cre, GAD2-Cre,
vGluT2-Cre, no Cre) mix together but cells projecting to a
common output target do show some organization (Figures 2D,E
and Supplementary Figure 2). For example, VTA→NAcLat cells
have more positive values in the 1st PC and more negative values
in the 2nd PC (Figure 2E). These coordinates reflect higher
contributions from brain regions in the basal ganglia which
include the NAc, dorsal striatum (DStr), and global pallidus
external segment (GPe), as well as lower contributions from
the VP and preoptic area (PO) (Figure 2F). Notably, the non-
output-defined condition is most similar to the VTA→NAcLat
condition, which is expected given that VTA→NAcLat cells
comprise the majority of cells in the VTA (Beier et al., 2015).

We next used UMAP to look for any additional clustering
behavior between the inputs mapped in different brains in order

to assess the similarities and differences between conditions
(Figures 2G,H). When defining conditions by Cre expression
(DAT-Cre, GAD2-Cre, vGluT2-Cre, no Cre), there are some local
neighborhoods within the same conditions, but none are very
well-separated into clusters. However, when defining conditions
based on output site, the VTA→NAcLat conditions segregate
relatively well (Figure 2H). These results are consistent with
our previously published analysis (Beier et al., 2019). We then
performed a UMAP analysis on the input region z-scores
to identify regions with similar variation across conditions
(Figure 2I). We found one cluster (cluster 1) made up of
inputs from the NAc, DStr, GPe, and cortex. Almost all these
regions follow a pattern of contributing positively to the 1st PC
and negatively to the 2nd PC (Figure 2F). Thus, these regions
provide a stronger fractional innervation to VTA→NAcLat cells
than other VTA cells, as observed previously (Beier et al.,
2015, 2019). In addition to cluster 1, we observed two other
clusters of inputs; one included the CeA, parabrachial nucleus
(PBN), zona incerta (ZI), entopeduncular nucleus (EP), and deep
cerebellar nuclei (DCN; cluster 2), while the other included all
the other regions: VP, PO, LDT, BNST, dorsal raphe (DR), medial
habenula (MHb), lateral habenula (LHb), paraventricular nucleus
of the hypothalamus (PVH), extended amygdala (EAM), lateral
hypothalamus (LH), and septum (cluster 3). These clusters were
not readily apparent in our previous analyses of our RABV
tracing data, suggesting that there may be additional organization
in the input patterns that we had overlooked previously.

Lateral or Medial Biases of Starter Cells
Accounts for Some but Not All VTADA

Input-Output Variation
We previously analyzed the spatial influence of starter neurons
in the VTA on the fractional contribution of inputs by using a
linear regression test with the medial-lateral and dorsal-ventral
coordinates of the starter cell center of mass (COM) (Beier et al.,
2019). Since the cells were counted on coronal slices, we do not
have nearly as good resolution for the anterior-posterior axis as
the ML and DV axes, and for the most part we focus our analyses
on these axes. We observed that the medial-lateral coordinate
of the COM explained a significant level of variance for about
one half of the brain regions across conditions, about the same
contribution as the output site and significantly more than the
Cre line used to mark starter cells. These results suggested that
many inputs to the VTA are biased along the medial/lateral axis
in their projections to the VTA, and that the location of the
starter cells, as defined by a single point in space, was significantly
linked to the fraction of inputs from various brain regions
those cells received.

To further explore the spatial organization of VTA inputs,
we plotted each sample according to the starter cell COM
and colored them according to their PC values, as calculated
in Figure 2 (Figures 3A–E). PC1 has an increasing spatial
gradient from the medial to the lateral VTA (Figure 3B). This
principal component in general is made up of input populations
that project more laterally in the VTA, or to the adjacent
SNc/substantia nigra pars reticulata (SNr) (Oh et al., 2014;
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FIGURE 2 | Clusters of VTA inputs revealed by dimensional reduction. (A) Schematic for RABV input labeling experiments. DAT-, GAD-, vGlut2-Cre, and
non-Cre-expressing mice were used to identify specific (or non-specific) VTA cell types. Injections of CAV were used to define output sites. (B) Input labeling
experiments provided maps of inputs to VTA cells for a combination of different cell-type and projection specifications. Cohort includes 76 brains and 22 input
regions counted. (C) Cumulative explained variance from each principal component. (D) Brains are plotted in PCA space for the 1st and 2nd components, colored
by cell type. (E) Brains are plotted in PCA space for the 1st and 2nd components, colored by projection. (F) Heatmap of each input region’s contribution to the first
five principal components. (G) Brains are plotted in UMAP space, colored by cell type. (H) Brains are plotted in UMAP space, colored by projection. (I) Input regions
are plotted in UMAP space, embedded with respect to z-scores across mouse brains. Clusters represent inputs with similar patterns of variation across the cohort.
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Beier et al., 2019). This result agrees with the previous finding
that the medial-lateral coordinate is related to the fractional
contribution from about one half of the input sites examined
(Beier et al., 2019). Furthermore, we can compare this spatial
organization with the location of VTA→NAcLat starter cells
(Figure 3F). The VTA→NAcLat cells are biased toward the
lateral side of the VTA, same as the +PC1 cell populations. As
PC1 captures the most variation across the data, this means that
the primary axis of variation in VTA inputs is whether or not the
inputs are biased onto VTA→NAcLat cells, and hence whether
the starter cells are located laterally within the VTA or not. PC2
has a mild spatial gradient that increases in the dorsal direction
(Figure 3C). PC3, on the other hand, does not have much of
a clear spatial bias in the medial-lateral or dorsal-ventral axes
(Figure 3D). Rather, starter cell populations with +PC3 span
the VTA across the two axes, suggesting that a lack of clear
spatial bias in the VTA characterizes this PC. A linear regression
analysis confirmed these observations: PC1 was found to have a
significant slope in the lateral direction and PC2 in the dorsal
direction, while other slopes were not found to be significant after
correction for multiple comparisons (Table 1).

Our analysis with PCA and UMAP separated VTA→NAcLat
cells by inputs, but largely failed to differentiate VTA→NAcMed,
VTA→mPFC, or VTA→Amygdala cells from one another.
To explore the input-output features most specific to each
VTA cell type, we stitched together the average input and
output counts for each region. We then took the z-score of
these values to see how enriched or diminished connections
are for that region compared to the other conditions. For
each projection condition, we found a unique set of enriched
inputs and outputs (Figure 3G and Supplementary Figure 3).
Many of these were found significant, even when corrected for
multiple comparisons (Table 2). We observed some evidence
for reciprocal connectivity: for example, inputs from NAcLat
are enriched onto VTA→NAcLat cells, and inputs from the
Amygdala and BNST are enriched onto VTA→Amygdala cells
that collateralize principally to the BNST, both of which were
found to be significant. However, this was not equally clear for
all populations, as the NAcMed input was approximately equal
onto VTADA

→NAcLat and VTADA
→NAcMed cells, and we did

not observe a preference for cortical inputs onto VTADA
→mPFC

cells (Beier et al., 2019), suggesting that while some reciprocal
connections may exist in the VTA, they may not be universal for
all brain regions (Figure 3G).

The input and output sites enriched onto VTADA
→NAcLat

cells consist of those previously identified (Beier et al., 2015,
2019) and shown in Figures 1, 2. However, we also found a
number of brain sites enriched as inputs to or outputs from
VTADA

→Amygdala cells that we did not previously identify.
These outputs include preferential projections to the Amygdala
and BNST, as previously described (Beier et al., 2019), as
well as inputs from the CeA, PBN, ZI, PVH, BNST, EAM,
DCN, LH, and MHb. Many of these brain regions, including
the CeA, PBN, PVH, BNST, and EAM, are in the extended
amygdala and are principally involved in stress and anxiety-
related behaviors (Bernard and Besson, 1988; Han et al., 2015;
Chou et al., 2018; Zhou et al., 2018; Chiang et al., 2019). These

same regions are also the strongest positive contributors to PC3
(Figure 2F). Furthermore, the location of starter cell COM with
a +PC3 (Figure 3D) most closely mirrored the distribution of
VTA→Amygdala cells, which are distributed broadly throughout
the VTA with a centroid in approximately the middle of the
structure (Figure 3F). These visualizations therefore provide
further evidence of the spatial organization of inputs on the VTA
that we reported previously, and they also suggest the existence of
subpopulations of VTA cells that receive preferential inputs from
key brain regions involved in the brain’s stress response.

To explore how starter cell COM and RABV input cells
distinguish the various projection conditions, we trained logistic
regression models to predict each condition. Logistic regression
can be used for multiclass classification, in which a logistic
regression model is trained for each condition, and the condition
with the highest probability is assigned to a given observation. We
used the first five principal components as features representing
the inputs to the VTA, to reduce overfitting our dataset and
to simplify the model to increase the model’s interpretability.
We trained models on the principal components and the starter
cell COMs separately, and on both combined. Unsurprisingly,
projection conditions already grouped together in the PCA plots
were well-predicted by the principal components, for example
the VTA→NAcLat and VTA→Amygdala cell populations
(Table 3). Additionally, projection conditions that appeared
to have a spatial bias achieved higher scores when predicted
by COMs, for example the VTA→NAcLat and VTA→mPFC.
VTA→NAcMed was predicted greater than chance across
each individual set of features. It also ends up with one
of the highest prediction scores when both PCs and COMs
are considered. This result suggests that a combination of
input features and spatial location is needed to encode the
identity of this population. Logistic regression models are highly
interpretable, as each feature is assigned a coefficient which
models the increased or decreased likelihood of a label given a
higher or lower value of the feature. These coefficients largely
recapitulate observations we have already made. For example,
PC1 is useful for predicting VTA→NAcLat, PC3 is useful
for predicting VTA→Amygdala (Supplementary Figure 4A),
and the medial-lateral coordinate is useful for predicting
VTA→NAcLat and VTA→mPFC populations (Supplementary
Figure 4B). In the model incorporating both PCs and COMs,
we found that a combination of PC1 with the dorsal and
anterior coordinates can predict the VTA→NAcMed condition
(Supplementary Figure 4C). These analyses imply that while the
most striking aspect of VTA input connectivity is the presence
of spatial gradients, there may be some interesting connectivity
relationships that are not uniquely delineated by a medial-lateral
or dorsal-ventral gradient.

Spatial Analysis of Allen Mouse
Connectivity Atlas Data Finds Archetypal
Projection Patterns to the Ventral
Tegmental Area
Using publicly available data from the Allen Mouse Brain
Connectivity Atlas, we had previously investigated the spatial
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FIGURE 3 | Spatial location of targeted cells in the VTA influences both inputs and outputs. (A) Context for coronal slice of VTA used in analysis is shown. (B) Brains
are plotted by starter cell center of mass (COM), colored by PC1 value. (C) Brains are plotted by starter cell COM, colored by PC2 value. (D) Brains are plotted by
starter cell COM, colored by PC3 value. (E) Brains are plotted by starter cell COM, colored by PC4 value. (F) Brains are plotted by starter cell COM, colored by
projection specification. Ellipsoids are drawn for each condition and have radii of five standard deviations for both dorsoventral and lateromedial axes. (G) Z-scores of
average input and output counts for each projection condition. Inputs are marked with a green down arrow and outputs with a red up arrow. All inputs and outputs
quantified are shown. Inputs and outputs are sorted according to the projection in which they receive the highest z-score. Samples include inputs to and outputs
from DA cells only. p-values are listed in Table 2.

TABLE 1 | Linear regression scores predicting starter cell location from principal components.

PC# Score Lateral slope Significance Corrected p Dorsal slope Significance Corrected p

PC1 0.359 8.08 1e-3 1e-2 –2.06 0.175 0.617

PC2 0.299 –2.29 0.031 0.172 –5.36 1e-3 1e-2

PC3 0.0759 0.26 0.81 0.963 –3.08 0.018 0.119

PC4 0.0102 0.04 0.97 0.97 –1.05 0.401 0.871

PC5 0.122 0.4 0.634 0.951 2.9 0.005 0.039

Corrected p-value < 0.05

Uncorrected p-value < 0.05

Slope and p-value for lateral and dorsal coefficients in linear regression models predicting each principal component. p-value is the probability of the coefficient being 0
given the observed data.

organization of projections to the VTA. We had found that
the relative projection ratio across some inputs varied across
the lateral-medial axis and that was related to the relative
ratio of inputs received by different VTADA cell populations,
linking the density of projections from a given input site
to RABV-labeled inputs (Beier et al., 2019). However, this
analysis was done with a limited set of brain regions, focused
only on the medial-lateral gradient along the VTA, and only
explored the link between input density and DA neurons
in the VTA. Here we wanted to explore this question with
a broader perspective and assess the relationship between
projections throughout the ventral midbrain from each of
the input sites that we quantified in our previous studies.
We wanted to assess globally how closely spatial projection
patterns throughout the ventral midbrain relate to RABV input
mapping datasets.

For each input region, we selected three experiments from
the Allen Mouse Brain Connectivity Atlas and took the average

projection into the ventral midbrain. The NAcLat was excluded
as an input site, as the Atlas does not contain injections into this
site. We also used injections in the infralimbic/prelimbic (IL/PL)
and orbitofrontal cortex (Orb) to represent two distinct regions
of the anterior cortex. We then mapped these projections onto
a coronal slice of the ventral midbrain to facilitate visualization.
We used an extended spatial domain that allowed us to assess
projections within the VTA as well as to adjacent structures.
As before, we used PCA to reduce the dimensions of this
space. The first principal component is a weighted combination
of the projections from the 22 input sites that maximizes
variance across the ventral midbrain window. This weighted
combination can then be visualized in the original spatial
dimensions. By comparing the PC projection patterns with the
region contributions to the PCs (Figure 4A), we can see what
the archetypal projection patterns are and how input region
projections are similar or dissimilar. For example, we computed
and plotted the archetypal projection of four regions that provide
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TABLE 2 | Sample mean comparison tests for input and output z-scores.

Enriched projection Region p-value Corrected p-value

NAcMed NAcMed output 3.31E-09 1.06E-07

NAcMed VP output 4.93E-02 5.31E-01

NAcMed PO input 1.50E-01 8.80E-01

NAcMed LHb input 1.55E-01 8.80E-01

NAcMed VP input 2.25E-01 8.99E-01

NAcMed LDT input 6.07E-01 9.74E-01

NAcLat DLS output 7.43E-07 2.23E-05

NAcLat NAcLat output 2.57E-05 6.94E-04

NAcLat NAcLat input 3.00E-04 7.76E-03

NAcLat DMS output 4.69E-04 1.17E-02

NAcLat NAcCore input 2.47E-03 5.54E-02

NAcLat Cortex input 6.15E-03 1.27E-01

NAcLat NAcCore output 6.09E-02 5.85E-01

NAcLat DStr input 1.57E-01 8.80E-01

NAcLat GPe input 2.69E-01 9.19E-01

NAcLat NAcMed input 2.78E-01 9.19E-01

NAcLat Septum input 3.64E-01 9.34E-01

mPFC mPFC output 8.87E-06 2.48E-04

mPFC DR input 9.29E-03 1.62E-01

mPFC Septum output 1.51E-02 2.28E-01

mPFC EP input 5.19E-01 9.74E-01

Amygdala BNST output 3.35E-08 1.04E-06

Amygdala CeA output 2.93E-06 8.50E-05

Amygdala CeA input 1.23E-03 2.91E-02

Amygdala PBN input 6.24E-03 1.27E-01

Amygdala ZI input 7.06E-03 1.32E-01

Amygdala PVH input 1.14E-02 1.86E-01

Amygdala BNST input 2.15E-02 2.93E-01

Amygdala EAM input 1.97E-01 8.89E-01

Amygdala DCN input 5.69E-01 9.74E-01

Amygdala LH input 7.01E-01 9.74E-01

Amygdala MHb input 8.77E-01 9.74E-01

Corrected p-value < 0.05

Uncorrected p-value < 0.05

Significance tests comparing projections for each input and output. For each input
and output, the sample mean of the most enriched projection was compared
against the remaining projections with a T-test. p-values are corrected for multiple
comparisons using a Bonferroni correction.

preferential inputs onto VTA→NAcLat cells: The NAcMed,
NAcCore, DStr, and GPe. This archetype shows a projection to
the lateral VTA, where the VTA→NAcLat cells are located, as
expected (Figure 4B).

PC1 includes projections that relatively uniformly innervate
the entire VTA, with little bias (Figures 4C–E). This marks
the +PC1 pixels, and thus we would expect the regions with
positive contributions to this PC to have higher projections over
this space. Some example input sites with this pattern include the
PO, BNST, EAM, PVH, and LH (Figure 4C). Interestingly, these
regions all fall within cluster 3 of our RABV data (Figure 2I)
and have inputs that are enriched onto VTA→Amygdala cells
(Figure 3G). Another characteristic of PC1 is that its negative
values are ventral and lateral to the VTA. We therefore expect

TABLE 3 | Logistic regression scores predicting projection conditions from starter
cell location and principal components.

Projection 3 PCs 5 PCs COMs 5 PCs + COMs

NAcLat 0.8125 0.875 0.6875 0.8125

NAcMed 0.5 0.333333 0.5 0.75

mPFC 0.375 0.4375 0.625 0.625

Amygdala 0.625 0.625 0.4375 0.75

None 0.5625 0.4375 0.125 0.6875

Score > 0.8

Score > 6

Score > 0.4

Logistic regression model scores predicting each condition using RABV input
principal components and/or starter cell location, using multi-class classification.

-PC1 pixels to have higher projections from the -PC1 regions and
lower projections from the+PC1 regions. The DStr and GPe both
do not project much to the VTA directly, but they do have strong
projections lateral to the VTA (Figure 4E). Likewise, the +PC1
regions – PO, BNST, EAM, PVH, and LH – tend not to project at
all to this area lateral and ventral to the VTA, but rather project
broadly throughout the VTA. Thus, the primary axis of variation
that PC1 seems to capture contains the regions that are projecting
with little bias to the VTA, and those that are projecting lateral
and ventral to the VTA (Figures 4D,F). This projection primarily
innervates VTA→Amygdala cells that are distributed throughout
the VTA (Figure 3F).
+PC2 receives the strongest weights from the septum, LDT,

PO, MHb, and LHb, while -PC2 is composed primarily of
the VP, GPe, CeA, PBN, and DCN (Figure 4C). This PC
appears to have a medial/ventral bias, as the brain regions
with the strongest weights project primarily to the medial
and ventral portion of the VTA, while the GPe, CeA, PBN,
and DCN all project laterally/dorsally (Figures 4G–H). Given
that the VTA→NAcMed cells are located the furthest in the
ventromedial portion of the VTA (Figure 3F), we would expect
that VTADA

→NAcMed cells receive preferential input from
these brain regions. Indeed, the PO, LHb, and LDT preferentially
connect to VTADA

→NAcMed cells, while the septum connects
approximately equally to VTA→NAcMed and VTA→NAcLat
cells (Figure 3G). Notably, -PC2 receives a relatively strong
negative weight from the DR (Figure 4C).
+PC3 is primarily composed of inputs from the basal ganglia

(NAcMed, NAcCore, DStr, GPe), and the two cortical regions,
IL/PL and Orb, while –PC3 is composed primarily of the EP, ZI,
and DCN (Figure 4C). +PC3 corresponds to inputs that project
ventrolateral to the VTA (Figures 4I,J), and primarily innervate
VTA→NAcLat cells (Figures 2H, 3G). The brain regions that
contribute to -PC3 project dorsal to the VTA.
+PC4 has strong contributions from the LHb, MHb, and

DR, while -PC4 is primarily composed of the septum, PVH,
and ZI (Figure 4C). Of the positive contributors, the LHb
and MHb are also present in +PC2 as they broadly project
to the medial VTA, which also is where VTADA

→NAcMed
cells are located. In contrast, the DR contributes mostly to
+PC4 and +PC1. This combination of PCs describes the DR’s
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FIGURE 4 | PCA of data from the Allen Mouse Brain Connectivity Atlas reveals projection archetypes across different input groups. (A) Schematic of analysis.
Sample projections to the VTA were pulled from the Allen Mouse Connectivity Atlas for 22 input regions. Pixel values representing projection density were pulled from
the coronal slice for each region to generate a table of 2,058 pixel coordinates x 22 regions. PCA found a linear combination of input regions that maximizes variation
across the pixels. Each pixel is then visualized on a coronal slice of the VTA with its PC value, revealing the most common projection portrait. (B) Brain regions that
preferentially provide inputs to VTA→NAcLat cells were selected as a test case to see if they might have a common projection pattern. Sample projections from
these regions to the VTA are shown from the Allen data, along with their average projection portrait. (C) Heatmap of each input region’s contribution to the first four
principal components. (D) Positive and negative contributing regions to each principal component are summed according to their sign in order to generate the
principal component projection portrait. (E–L) Example projection portraits are shown for the major positive and negative contributing regions for each of the first four
principal components. The projection archetypes corresponding with these principal components are shown in panels (F,H,J,L).

broad projection to the dorsal VTA with a strong bias to
the dorsomedial VTA. +PC4’s archetypal projection is also
to the dorsomedial VTA (Figures 4K,L), a region that most
prominently includes VTADA

→mPFC neurons (Figure 3F).
Accordingly, the DR preferentially innervates VTADA

→mPFC
cells (Figure 3G) and thus is the main input brain region that
differentiates VTADA

→NAcMed from VTADA
→mPFC cells.

These data demonstrate that the first four PCs using data
from the Allen Mouse Brain Connectivity Atlas correspond to
the input biases of the four VTA populations that we examined
here. Therefore, our conclusion is that we can recapitulate the
principal differences in inputs to different cell populations in the
VTA solely by identifying the archetypal projections into the VTA
using open-source data from the Allen Institute.

Patterns of Input Innervation Are
Conserved Between RABV Mapping and
Allen Projection Data
Our analysis of the Allen’s projection data suggests that we
can recapitulate the variance in RABV mapping experiments
by decomposing the Allen’s projection data into principal
components. As we previously mentioned, UMAP is better
optimized for identifying the relationship between variables
in high-dimensional space. We therefore wanted to assess the

relationship between input sites to the VTA, defined either
through their covariance in our RABV mapping data or
spatial similarity in Allen projection data. We demonstrated
earlier that the input sites in RABV mapping experiments
segregate into three clusters (Figures 2H, 5A). As UMAP
embeddings can be somewhat stochastic because they rely on
initial seeding conditions, we computed the distance between
points relative to the maximum distance between any two points
in each embedding, over 20 embeddings, then averaged across
all embeddings (Figures 5A–D). In both cases, we identified
three clusters of brain regions. Cluster 1 contained perfect
correspondence between RABV and Allen datasets, and included
regions in the frontal cortex (either anterior cortex or both the
IL/PL and Orb), NAcMed, NAcCore, DStr, and GPe (the NAcLat
was not included in the Allen dataset). While clusters 2 and 3
in the RABV and Allen datasets did not perfectly align, they did
have similar structures. RABV cluster 2 included the CeA, EP, ZI,
PBN, and DCN. These regions also clustered together in the Allen
data, but were joined by the VP, EAM, LHb, MHb, and DR that
split from cluster 3. The remainder of the brain regions (septum,
BNST, PO, PVH, LH, LDT) are in cluster 3 for both datasets.
Notably, the distance between clusters 2 and 3 in the Allen data
is much smaller than to cluster 1 and thus, Allen clusters 2 and 3
have a more similar projection profile to each other than to cluster
1. Overall, we observed substantial similarity between RABV and
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FIGURE 5 | UMAP dimensional reduction of RABV and Allen data reveal common clusters of VTA inputs. (A) Input regions are plotted in UMAP space, embedded
with respect to z-scores from the RABV input mapping data. Clusters represent inputs with similar patterns of variation across the cohort. (B) Input regions are
plotted in UMAP space, embedded with respect to z-scores across pixels in the Allen data. (C) Heatmap of pairwise distances (averaged across 20 UMAP
embeddings) for the RABV input data. Regions are grouped according to hierarchical clusters. Clusters are highlighted to match the clusters above in the UMAP
plot; they are also annotated according to which principal components to which the regions contribute. Regions are grouped to line up with the Allen clusters.
(D) Heatmap of pairwise distances (averaged across 20 UMAP embeddings) for the Allen input data. (E–H) Same plots as panels (A–D), but UMAP was run on
scrambled data. For each region, z-score values were scrambled across mouse brains for RABV data, or pixel coordinate for the Allen data.

Allen datasets, suggesting that the covariance in input labeling
using RABV mapping can be largely attributed to differences in
axonal innervation from input sites and thus, the information

can be gleaned through parsing open-source projection datasets.
To demonstrate that these associations were not attributed to
chance, we scrambled the association of the COM with fraction
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of inputs labeled in the RABV dataset, or the order of z-scores for
pixel intensity for each input site. UMAP was unable to identify
clusters or significant levels of co-variance in either scrambled
dataset (Figures 5E–H), demonstrating that the high covariance
between selected input brain sites is highly significant and similar
between both RABV and Allen datasets.

DISCUSSION

Our detailed observations of input and output datasets of VTA
cells revealed several interesting findings. The largest contributor
to variance in our input tracing dataset is the medial-lateral
gradient in the VTA, which differentiates the VTADA

→NAcLat
cells from the other three subpopulations. The VTADA

→NAcLat
cells also had the most distinct collateralization pattern of the
four VTADA subpopulations studied. These results confirm our
previous analyses (Beier et al., 2015, 2019). However, here

we were able to further differentiate the VTADA projections
to the NAcMed, mPFC, and Amygdala by inputs as well as
outputs with an integrated spatial analysis of several high
dimensional datasets. By exploring the z-scores of input counts
in different brain regions, we found that the PO, LHb, VP,
and LDT inputs were elevated for VTADA

→NAcMed cells,
DR and EP inputs are elevated for VTADA

→mPFC cells,
and CeA, PBN, ZI, PVH, BNST, EAM, DCN, LH, and MHb
inputs are elevated for VTADA

→Amygdala cells (Figure 6).
The z-score normalization allowed us to find elevations in
inputs and outputs whose fractional counts were smaller
in magnitude than other regions. Logistic regression models
demonstrated how RABV inputs and starter cell location
contributed to differentiating these conditions. Investigation of
the projection patterns of inputs to the VTA revealed that VTA
input populations can be differentiated into several projection
archetypes—projections to the VTA broadly, projections to
regions around but not including the VTA, and projections to

FIGURE 6 | Summary of findings. (A) All inputs and outputs we mapped in our experiments are shown, grouped in their clusters from UMAP analysis. (B–E) For
each projection, elevated inputs and outputs are shown (according to Figure 3G). (F) Inputs or outputs significantly elevated in any projection condition are shown
grouped by projection. p-values are corrected for multiple comparisons using a Bonferroni correction.
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subdomains of the VTA. Lastly, we showed that the patterns
of these projection archetypes mirror input differences to
VTA subpopulations. These data together demonstrate that
the location of different DA cell populations determines the
quantitative contribution from different inputs and, thus, the
signals that these cells receive.

Comprehensive Quantitative Analysis
Enables Differentiation of Four VTADA

Cell Populations
Our goal in this study was to identify input and output
factors that differentiate VTADA neurons. Previous studies
have shown that subpopulations of VTADA cells differ in
their forebrain projections, electrophysiological properties, and
behavioral functions (Lammel et al., 2008, 2011; Kim et al.,
2016). Comprehensive input-output mapping studies from us
and several other groups suggested that DA cell populations
received inputs from the same brain regions in quantitatively
similar proportions, with some biases. Of note, we previously
found that VTADA cells projecting to the NAcLat received
more inputs from the striatum and globus pallidus external
segment than the other VTADA cells that we examined (Beier
et al., 2015, 2019). This is likely because the VTADA

→NAcLat
cells are located the most laterally within the VTA, and
most of the basal ganglia inputs project most strongly to
the adjacent SNr (Beier et al., 2015, 2019). While our previous
analyses comparing the fractional contribution from 22 input
sites to 4 different VTADA cell populations were able to
differentiate VTADA

→NAcLat cells, VTADA cells projecting to
the NAcMed, mPFC, or Amygdala appeared highly similar. Here,
by exploring the z-scored input and output data, we identified
sets of inputs and outputs elevated for each cell type.

First, we observed that some VTADA cell types may be
preferentially reciprocally connected, including the predominant
VTADA

→NAcLat subpopulation. While this was not the case
for all our observed cell populations, as VTADA

→mPFC cells
received fewer mPFC inputs than did VTADA

→NAcLat cells
(Beier et al., 2019), it does suggest that the hypothesis of
reciprocal connectivity cannot entirely be discarded. A model
of reciprocal connectivity was proposed long ago (Swanson,
1982; Alheid and Heimer, 1988; Zahm, 2006; Yetnikoff et al.,
2014), but a recent viral-genetic mapping study failed to find
evidence for this reciprocal connectivity in the VTA (Menegas
et al., 2015). By comparing the average percent of inputs arising
from individual identified brain regions across animals, we also
failed to observe statistically significant evidence of reciprocity
(Beier et al., 2015, 2019). However, our z-scored analysis gave
better visualizations of the lower fractional inputs, supporting
the possibility that some preferential reciprocal connectivity
may exist in the VTA. This observation argues that a detailed
and higher powered investigation into reciprocal connections
in RABV mapping datasets may be necessary to reveal the true
connectivity relationships in the brain. It is also possible that
reciprocal connections may be more present in certain structures
and projections than others. It is however noteworthy that in
order for these analyses to achieve significance, comparatively

larger datasets like ours may be needed, whereas the majority of
RABV mapping studies use only a handful of animals (typically 6
or fewer) per condition.

Second, input regions that are integrated into common circuits
and have been implicated in common behavioral functions
tend to provide preferential innervation onto one particular
VTADA cell type. For example, striatal and globus pallidus
inputs that comprise key components of the basal ganglia
preferentially provide input to VTADA

→NAcLat cells that
project back into the striatum. We also found that several
regions in the extended amygdala that have been implicated
in stress-related behaviors preferentially provide input onto
VTADA

→Amygdala cells. Several studies have been published
in the past few years about the role of VTADA

→Amygdala
cells in reward and aversion learning, fear learning, as well
as anxiety (Lutas et al., 2019; Lin et al., 2020; Tang et al.,
2020). The CeA, PBN, ZI, PVH, BNST, and EAM all play key
roles in aversion and anxiety behaviors (Bernard and Besson,
1988; Han et al., 2015; Chou et al., 2018; Zhou et al., 2018;
Chiang et al., 2019), and interestingly, all contain neurons
that express CRF, a neuropeptide that modulates DA cells
in the midbrain and DA responses in downstream structures
(Ungless et al., 2003; Wanat et al., 2008; Lemos et al., 2012).
While each of these brain regions participates in behaviors
other than fear learning and anxiety, it is interesting that each
of these regions, which are distributed throughout the brain,
has a similar projection pattern in the VTA. This suggests
that these regions may work in concert to facilitate behavioral
outcomes associated with stress and aversion/fear learning
through VTADA

→Amygdala cells. The preferential inputs from
basal ganglia regions to VTADA

→NAcLat cells and stress-related
inputs to VTADA

→Amygdala cells is likely due to the fact
that inputs with common functions form particular projection
archetypes. This means that inputs with a similar function may
share a set of factors that govern their connectivity, an idea that
we explore further below.

Third, variance in our input and output data can be explained
by differences in the location of starter cells within the VTA. The
input regions that provided preferential innervation to particular
VTADA cell populations preferentially innervated regions of the
VTA that matched the spatial location or distribution of the
corresponding VTADA cell type. These results reinforce our
previous conclusion that organization within the VTA is largely
spatial, with cell type providing little influence on the inputs
that those cells receive (Beier et al., 2019). However, they also
highlight that additional dimensions of spatial pattern exist
within the VTA beyond the medial-lateral gradient that we
identified earlier and that these patterns underlie differences in
inputs that each cell population receives. For example, we found
that while VTADA

→NAcMed and VTADA
→mPFC cells were

both located medially in the VTA, inputs that were ventrally
biased in the medial VTA preferred VTADA

→NAcMed cells, and
inputs that were dorsally biased preferred VTADA

→mPFC cells.
These results indicate that these spatial preferences matched the
relative ventral or dorsal bias of these VTADA subpopulations,
respectively (Figure 3). We also found that VTADA

→Amygdala
cells had the broadest medial-lateral distribution and were
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located the most centrally in the VTA. Inputs to these cells also
lacked clear medial-lateral biases. Altogether, our conclusions in
this study are entirely consistent with our previous conclusions,
while also extending them by identifying more subtle differences
in the location of DA cells within the VTA as well as the location
of input projections throughout the VTA.

Specificity of RABV Transmission and
Implications for Rules Governing
Connectivity
As we noted above, comparing the averages between the
percentage of inputs received from different brain regions
across animals was sufficient only to reveal the largest
differences between conditions. In our dataset, this was sufficient
to differentiate VTADA

→NAcLat cells from the rest, but
insufficient to parse apart VTADA

→NAcMed, VTADA
→mPFC,

and VTADA
→Amygdala cells from one another. Notably, the

method of comparing averages across animals is the standard
method of analysis of RABV mapping datasets. Beyond being
the simplest approach to analyzing these data, most mapping
datasets likely contain too few samples to effectively perform
PCA or UMAP analyses of their data. This is likely because
RABV mapping experiments are labor intensive and typically
not performed on the scale that ours was. In the case of
our 76-brain dataset, it took years of viral generation, mouse
breeding, stereotaxic injection, brain sectioning, imaging, and
manual quantification to obtain it. That it is currently a one-
of-a-kind dataset has provided a unique opportunity to explore
connectivity within the VTA as well as assess the merit of different
analyses of RABV mapping datasets.

It is also worth assessing what RABV mapping studies can
tell us and what they cannot. The prevailing viewpoint among
those who use RABV circuit mapping is that RABV transmits
between neurons in a synapse-specific fashion. We have argued
that the evidence for synaptic-exclusive transmission of RABV
is weak (Beier, 2019, 2021; Rogers and Beier, 2021). The fact
that the results from RABV mapping experiments such as we
conducted in the VTA can be largely recapitulated only from
anterograde mapping experiments such as those from the Allen
Brain Institute, notably ones that do not differentiate axons of
passage from axons that functionally innervate cells in the VTA,
could be an additional argument that RABV can spread non-
specifically. However, we previously performed an experiment
in the VTA that showed that RABV transmission from one
cell to another is quite different from direct injection of RABV
(Beier et al., 2019). This result was also seen in a similar set of
experiments carried out in the DMS (Wall et al., 2013). That a
quantitatively different set of inputs was obtained from tracing
experiments utilizing different modes of RABV administration
provides a strong argument that one-step RABV mapping is not
equivalent to directly administering RABV into the brain.

Our observation thus is that RABV mapping does not
reveal cell type-specific connectivity, as defined by spatially
intermingled cells defined by neurochemical identity. In assessing
the implications of this finding, it is worthwhile to consider our
state of knowledge regarding spatial patterning and mechanisms

that govern connectivity between neurons in the brain. Spatial
patterning within the brain during development has been
extensively studied, and the roles of families of patterning
molecules such as ephrins, netrins, slits, and semaphorins have
been well documented (Yu and Bargmann, 2001; Bashaw and
Klein, 2010). Other surface proteins such as Teneurins, Tolls,
DIPs, and Dprs may play roles in regulating connectivity at the
cellular level (Hong et al., 2012; Ward et al., 2015; Barish et al.,
2018). However, our understanding of the exact roles that these
surface proteins play in dictating whether or not two neurons
form connections, particularly in the rodent brain, is limited.
It is important to note that we do not know the biases that
RABV may have for spread to particular cell types in the brain,
and it is possible that these biases are similar for all cell types
and outweigh any actual differences in connectivity. Advances
in RABV mapping technology, for example the development
of a genetically barcoded RABV, may enable the exploration of
the role that classes of surface proteins may play in defining
connections between neurons (Saunders et al., 2021). However,
it is also possible that the lack of cell type-specific connectivity
revealed by RABV may be biologically meaningful. Such random
connectivity patterns would then have implications for how
connections at both the macro and micro-scales influence circuit
output and animal behavior.

FUTURE DIRECTIONS

We and others have extensively mapped inputs and outputs
of cells in the ventral midbrain and have detailed the role of
spatial location in determining input patterns between different
cell types (Beier et al., 2015, 2019; Lerner et al., 2015; Menegas
et al., 2015). Our analysis in this study extends our previous
observations. One next step is to determine if this finding
applies to brain regions outside of the VTA. The observation
that spatially intermingled cell populations tend to receive
inputs from the same brain regions in quantitatively similar
proportions supports the hypothesis that spatial location is the
major determinant of global input patterns, at least as measured
by one-step RABV mapping. However, the sources of spatial
patterning of inputs and projection archetypes remain unknown.
That brain regions sharing a common behavioral role have
a similar projection pattern throughout the ventral midbrain
suggests that these regions likely follow similar rules of patterning
in the ventral midbrain, and this patterning in turn guides
their preferential connectivity into particular cell types within
the ventral midbrain. The identification of patterning molecules
expressed during development and synapse formation through
single cell RNA sequencing, for example, would help to elucidate
what molecular pathways dictate projection patterns. It would
also be interesting to test how ubiquitous this phenomenon
of projection archetypes is throughout the brain and if it
relates to projection-defined cells in a similar way as in the
VTA. If so, the definition of projection archetypes during
development along with spatial localization of projection-defined
cell types may be one important generator of specificity in circuit
connectivity in the brain.
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MATERIALS AND METHODS

RABV Input and Axonal Arborization
Output Tracing
Input and output mapping from VTA cells was described
previously (Beier et al., 2015, 2019). Briefly, DAT-Cre, GAD2-
Cre, vGluT2-Cre, and wild type C57Bl/6 mice were obtained
and housed with 12 hour light/dark cycles and food and water
ad libitum (Beier et al., 2019). Viral vectors were prepared
as previously described (Schwarz et al., 2015). For TRIO
experiments, CAV-Cre was injected into an output site, and Cre-
dependent AAVs expressing the avian TVA protein as well as
the rabies glycoprotein, RABV-G, were injected into the VTA.
Two weeks later, EnvA-pseudotyped rabies virus (RABV) was
injected into the VTA. These TRIO experiments thus labeled
the inputs to VTA neurons with a specified output. We also
performed cell-type specific TRIO (cTRIO) experiments. This
included injecting a CAV-FLExloxP-Flp into a target output site
and Flp-dependent AAVs expressing TVA and RABV-G into the
VTA, and EnvA-pseudotyped RABV 2 weeks later. These cTRIO
experiments labeled inputs to VTA neurons of a specific cell-type
with a specified output. Rabies labeling experiments were also
performed to cover conditions without an output target specified.

Axonal arborization experiments labeled the axons of VTA
neurons with projections to a specified target. We performed
similar CAV and AAV injections to the above, but rather than
TVA and RABV-G we expressed a membrane-targeted GFP in
targeted cells. This allowed us to view the entire axonal arbor
of these cells. After 2 months, animals were perfused with PBS
and 4% formaldehyde. For inputs, cells were counted manually
using preselected regions. For both inputs and outputs, data
were normalized by the total counts in each brain, accounting
for differing levels of viral infection. Detailed protocols for
input tracing and axon arborization can be found in previous
publications (Beier et al., 2015, 2019).

Region Selection
Regions were selected for RABV input and axonal arborization
output tracing according to previous publications (Beier et al.,
2015, 2019). Notably, for VTA inputs we subdivided the
global pallidus into the global pallidus external (GPe) and the
entopeduncular nucleus (EP), the rodent equivalent of the GPi.
For outputs, we subdivided the dorsal striatum into the dorsal
lateral striatum (DLS) and dorsal medial striatum (DMS). Since
the DLS does not substantially project to the VTA, and since
the divide between the DMS and DLS is somewhat arbitrary, we
did not subdivide the DStr for inputs. Here and previously we
binned the anterior cortex into a single region. We previously
subdivided the cortex into its composite regions, but did not
find biased projections onto VTA cells according to cell type or
projection (Beier et al., 2019). We did explore some substructures
in the Allen Mouse Brain Connectivity Atlas analysis, including
the orbital cortex, and the combined infralimbic and prelimbic
cortical regions. For the amygdalar regions, we analyzed the
central amygdala as an input site. For the projection site, we
targeted the CeA, but we were not confident that our injections

were completely restricted to this site, and hence we call these
amygdala-projecting cells. It is likely that our VTA injections
did not substantially induce DA cells located in the retrorubal
field (RRF), where some have detected projections to amygdalar
structures (Zahm et al., 2011).

Groupings of brain regions are listed below, in alphabetical
order:

CeA–central amygdala lateral, medial, and capsular nuclei
Cortex–anterior cingulate cortex (ACC); infralimbic cortex
(IL); insular cortex (Ins); motor cortex (MO; anterior portion);
orbital cortex (Orb); prelimbic cortex (PL); somatosensory
cortex (SS, anterior portion). This is the same composite
structure as called the anterior cortex in Beier et al. (2015,
2019).
DR–as defined in Weissbourd et al. (2014).
EAM–anterior amygdaloid area, basomedial amygdala,
anterior cortical amygdaloid nucleus, cortex-amygdala
transition zone
LDT–laterodorsal tegmental area, dorsomedial tegmental
area, dorsal tegmental nucleus, Barrington’s nucleus, ventral
tegmental nucleus, subpeduncular tegmental nucleus
PO–medial preoptic area, lateral preoptic area, lateral
anterior hypothalamic area, anterior hypothalamic area,
striohypothalamic nucleus
Septum–triangular septal nucleus, lateral septum,
dorsal fornix, septofimbrial nucleus, medial septum,
septohypothalamic nucleus, septohippocampal nucleus,
lambdoid septal zone
VP–interstitial nucleus of posterior limb of anterior
commissure (IPAC), substantia innominata, horizontal
diagonal band, nucleus of the vertical diagonal band

Abbreviations for brain regions made throughout the paper
are listed below, in alphabetical order:

BNST–bed nucleus of the stria terminalis
CeA–central amygdala
DCN–deep cerebellar nucleus
DR–dorsal raphe
DStr–dorsal striatum
EAM–extended amygdala
EP–entopeduncular nucleus (GPi)
GPe–globus pallidus (GPe)
LDT–laterodorsal tegmentum
LH–lateral hypothalamus
LHb–lateral habenula
MHb–medial habenula
NAcCore- nucleus accumbens, core
NAcMed–nucleus accumbens, medial shell
NAcLat–nucleus accumbens, lateral shell
PBN–parabrachial nucleus
PO–pre-optic area
PVH–paraventricular hypothalamus
VP–ventral pallidum
VTA–ventral tegmental area
ZI–zona incerta
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Dimensional Reduction of Output and
RABV Input Data
Principal Component Analysis (PCA) was used to dimensionally
reduce both axon arborization output and RABV input data.
PCA is a linear dimensional reduction technique that finds
the maximal axes of variation through a dataset. Once a
PCA embedding is found, each principal component can be
unpacked to find out what linear combination of features
(output sites or input sites), or weights, comprise it. Input
and output counts per brain region were converted to
fraction data to account for variation in total number of
cells across brains. Fraction data were scaled so that variations
in larger regions do not provide oversized contributions
to PCA, compared to smaller regions. Analyses were
performed in Python using Scikit-learn’s PCA implementation
(Pedregosa et al., 2011).

Uniform Manifold Approximation and Projection (UMAP)
was used as a non-linear dimensional reduction technique on
output and input data. UMAP is better optimized for finding
local and global structures in high dimensional data than PCA,
but it is far less interpretable. Analyses were performed using
the official UMAP library (McInnes et al., 2018). The fractional
counts data were z-scored to compare variation in output and
input sites across regions with different magnitudes of counts.
Z-scored data were dimensionally reduced with UMAP to find
clusters of output and input sites with similar patterns of
variation. UMAP parameters were tuned manually to optimize
stability of clusters.

Regression Analysis of RABV Input Data
Linear regression was used to quantify the relationship of
starter cell COM with the RABV input principal components.
Slopes returned from the analysis reflect to what degree lateral
and dorsal location increase, decrease, or have no effect on
principal components. p-values give the probability of these
slopes being 0 given the observed data. The statsmodels Python
library was used to train these models and examine the slopes
(Seabold and Perktold, 2010).

Logistic regression was used to classify the different projection
conditions based on the RABV starter cell COMs and the
RABV input principal components. To build a model for
multiclass classification, we trained a separate logistic regression
model to classify each projection condition. When evaluated
against a given brain, the model prediction with the highest
probability was used. Logistic regression coefficients represent
the increased or decreased likelihood of the model prediction
given a higher or lower value of a given feature. For example,
a positive coefficient for Feature A means the model prediction
increases in likelihood for higher values of Feature A and
decreases for lower values. A negative coefficient has the opposite
relationship; the model prediction increases in likelihood for
lower values and decreases for higher values. The higher
magnitude of the coefficient, the higher the importance of
that feature on the prediction. The Scikit-learn implementation

of logistic regression in Python was used for our analysis
(Pedregosa et al., 2011).

Principal Component Analysis of Allen
Mouse Brain Connectivity Data
For each of the input regions considered in the RABV
experiments, we manually selected corresponding samples from
the Allen Mouse Brain Connectivity Data. Experiments were
selected based on whether or not the experiment contained
labeled projections to the ventral midbrain. NAcLat was not
included as an input site, as there were no samples that contained
injections that were specific to NAcLat that also projected to
the ventral midbrain. Cortex was subdivided into the orbital
area and the combined infralimbic and prelimbic areas since
our original quantification of RABV inputs included a broad
spatial domain not encompassed by any single set of injections.
The ID and hyperlink of each sample selected is provided
in Supplementary Table 1. For each input region, the sample
projections to the VTA were averaged together. Projections
were sliced into a 42 pixel x 49 pixel rectangle to capture the
largest coronal section of the VTA along with some of the
surrounding area. PCA was used to find linear combinations
of input regions that maximize variation across the pixels of
this rectangle. PC values for each pixel were visualized on
the original rectangular space to see how this variation is
organized spatially within and around the VTA. These spatial
projection “archetypes,” revealed by each principal component’s
visualization, were compared to the primary regions that
comprise them. Allen samples were accessed using the allensdk
python library,1 and PCA was performed using Scikit-learn
(Pedregosa et al., 2011).

Allen and RABV Input Clustering
Comparison
Clustering of input regions was compared between the RABV
input data and the Allen Mouse Brain Connectivity Data (Figures
5C,D,G,H). Z-scoring was performed as before on the input data,
capturing variation for each input across the samples. Z-scored
data were dimensionally reduced with UMAP to find clusters of
inputs with similar variations in each dataset. To account for
variability in embeddings, we ran these embeddings 20 times
for each dataset and took the average relative pairwise distance
between each region. These pairwise distances were computed
relative to the maximum distance between any two points in each
embedding. Regions were hierarchically clustered based on this
distance matrix and compared across datasets.

In order to assess how much clustering we might expect
in a random dataset with a similar distribution, we shuffled
both RABV and Allen datasets. The z-scored input values
were shuffled independently for each region across samples.
This eliminated any association between input values for each
sample across regions. The clustering comparison analysis was
repeated as above.

1https://github.com/AllenInstitute/AllenSDK
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Supplementary Figure 1 | VTADA outputs without the four targeted projection
sites. (A) Cumulative explained variance from each principal component. (B)
Samples are plotted in PCA space for the 1st and 2nd components, colored by
projection. (C) Samples are plotted in PCA space for the 1st and 3rd components,
colored by projection. (D) Heatmap of each output region’s contribution to the first
three principal components. (E) Brains are plotted in UMAP space, colored by
projection. (F) Output regions are plotted in UMAP space, embedded with respect
to z-scores across mouse brains. Clusters represent outputs with similar patterns
of variation across the cohort.

Supplementary Figure 2 | VTA input dimensional reduction without non-Cre and
projection-undefined conditions. (A) Brains are plotted in PCA space for the 1st
and 2nd components, colored by cell type. (B) Brains are plotted in PCA space
for the 1st and 2nd components, colored by projection. (C) Brains are plotted in
UMAP space, colored by cell type. (D) Brains are plotted in UMAP space,
colored by projection.

Supplementary Figure 3 | Input and output z-scores stitched together for all cell
types. (A) Z-scores of average input and output counts for each projection
condition. Inputs are marked with a green down arrow and outputs with a red up
arrow. Regions are sorted according to the projection in which they receive
the highest rank.

Supplementary Figure 4 | Revealing RABV input PCs and starter cell locations
that predict projection conditions. (A) Logistic regression coefficients for five
principal components. Positive coefficients predict this condition when the feature
is higher. Negative coefficients predict this condition when the feature is lower.
Model scores are provided in Table 3. (B) Logistic regression coefficients for
starter cell location. (C) Logistic regression coefficients for five principal
components and starter cell location.

Supplementary Figure 5 | Projection portraits for all inputs from the Allen Brain
Connectivity Atlas. All regions are in the same order as index from Figure 4C.
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