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Estimating Relative Density
on a Metric Space

James MacQueen

University of California, Los Angeles

Abstract. Let X1,X2, . . ., be stationary and ergodic random variables
with values in a metric space M with distance d, let P (A) = P (Xn ∈ A)
and let S(x, r) = {y ∈ M : d(x, y) ≤ r}. Let M0 be the set of x for which
P (S(x, r)) > 0 if r > 0, and suppose also that for x in M0, P (S(x, r)) is
continuous in x and is differentiable in r for r ≥ 0, and with a positive
derivative for all r in a neighborhood of 0. Consider the set M∗ of pairs
(x, y) such that both x and y are in M0 and limr→0 P (S(x, r))/P (S(y, r))
exists and is a finite positive number R(x, y). Then R(x, y) is called the
relative density of P for the pair x, y.

The differentiability condition is essentially the same as required for P
to have a positive density in the Euclidean case. Note there may be pairs
of elements (x, y) such that that limr→0 P (S(x, r))/P (S(y, r)) fails to exist,
is zero, or is +∞. For example, if P on the square [0, 1]X[0, 1] concentrates
a total probability of .5 uniformly on the line x = y, 0 ≤ x, y ≤ 1, and
distributes probability uniformly on the square excepting this line, then the
line of pairs x = y is in M∗ and sois the square excepting the line. But
a pair with one element on the line and the other off gives a limit of 0 or
+∞ depending of which element appears in the numerator (or denominator).
These kinds of measures may be of considerable interest and examples where
they arise can be given.

Now let the kernelK be a non-negative, non-increasing real valued func-
tion on [0,∞), and with

∫∞
0
K(z)dz = 1. Let pn,b(x) =

∑n
1 bK(bd(x,Xi))/n

where b ≥ 0 is a parameter chosen by the user. For (x, y) inM∗, Rn,b(x, y) =
pn,b(x)/pn,b(y) is a plausible estimate of R(x, y) and it is shown that as b
and n increase without bound, Rn,b → R a.s.

It is intuitive that even when limr→0 P (S(x, r))/P (S(y, r)) is 0 or +∞,
Rn,b will converge a.s. to 0 or +∞ accordingly, but this situation will be
treated elswhere.

It is also shown that R provides a workable theory of conditional proba-
bility in the general metric space context, without the technical complexities
of the Radon-Nykodym approach. A few examples are given of the estimate
Rn,b illustrating the possible applications including application in psychology
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as a model for the development of subjective probabilities from experience.

1. Introduction. This paper develops an extension of the classical kernel
estimate of a multivariate density based on i.i.d. variables, to the metric
space context using stationary and ergodic variables. An extension of the
multivariate model for i.i.d variables to stationary variables has been devel-
oped by Rosenblatt(1971).

More specifically, letM,B be a probability space whereM is a separable
and complete metric space with distance d. Let X1,X2, . . . be stationary
and ergodic random variables taking values in M . Let P (A) = P (Xn ∈
A), A ∈ B, which is independent of n because of the stationarity. Let
S(x, r) = {y ∈ M : d(x, y) ≤ r} and let M0 be the set of x in M such that
P (S(x, r)) > 0 if r > 0. Let X be a random variable with distribution P .

The problem is to estimate P using the sample X1,X2, . . . ,Xn. This
formulation includes the problem of estimating the joint probability of Xn,
Xn+1,. . . ,Xn+k for some fixed k, since this sequence can be regarded as single
variable Zn, say, taking values in the product space Mk+1 and Z1, Z2, . . .,
itself will be stationary and ergodic. So there is little loss of generality in
focusing on the problem of estimating P .

For this problem the only tool that comes readily to mind is the sample
frequency function Pn(A), the proportion of the sample Xi in the set A. It is
well known that Pn → P a.s. in the sense of weak convergence: For bounded
continuous real valued functions g on M ,

n∑
1

g(Xi)/n→ Eg =
∫
g dP

a.s. by the ergodic theorem. So Pn(A) is a satisfactory estimate of P (A) for
many purposes.

However, there is still much room for improvement of our understanding
of this problem. The sample frequency function has little intuitive appeal
with very small samples. And perhaps more importantly for this paper,
interest in estimating probabilities in a metric space with small samples arises
in two other contexts outside of statistics per se. One is in psychology where
we ask how do humans acquire subjective probabilities from experience?
The other is philosophical: How in some fundamental sense do scientists
learn from nature on the basis of observations?

Two important and classical ideas are relevant in these contexts : One
is the “continuity of nature” whereby what is learned in one situation can
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be transferred to other similar situations, and another is “spread of effect”,
a term due to Thorndike(1911). In psychology this refers to the fact that if
a given signal is followed by a certain stimulus, some expectation is created
that if the same or a similar signal occurs again, that same or similar stimulus
is likely to follow. Similarly, if a scientist observes a certain sample element,
the likelihood of nearby elements is increased which is apparently some sort
of spread of effect also. The mind seems to demand this. The kernel estimate
responds well to both these considerations. In fact, both the continuity of
nature and the spread of effect are built into the concept of a kernel estimate
in a fundamental way.

It might well be asked, “Why study the estimation problem at the level
of generality implied by the above metric space formulation?” The answer is
that in the social sciences and in psychology in particular, complex objects
are studied which cannot be treated by conventional multivariate methods,
or if they can be so treated it is only after some data massage which often
brings its own problems, such as factor analysis or multi-dimensional scaling.
But in nearly all such cases it is possible using human judges to measure sim-
ilarities and differences in a meaningfull and reproduceble way, and which
can be converted to a numerical metric. This is because the human mind is
easibly capable of dealing with such objects including comparing them to one
another. A musical pattern, or a painting, or a culture, or a war, or a sen-
tence in the English laguage, all seem to the human mind to be recognizable
as definite objects, and they can differentiated from one another, rapidly,
quickly, and reasonably consistently by trained judges. Their understanding
is the essential stuff of these sciences.

The method provided here can be applied in these instances, to in effect,
bring them under the perview of an objective statisitical method and even to
derrive from such data empirically based predictions just as in conventional
time series analysis. The possiblity of measuring distance between such com-
plex objects in a useful and relevant way by a completely objective method
is not forclosed.

It is to be noted also, that when such data is collected over time, the
standard i.i.d. model will frequently be inapplicable, while in many such
instances the stationary model will be reasonably appropriate, although it
too will hardly ever be exactly correct.

2. The method. First, the method does not attack the estimation of P
directly. Instead the focus is on estimating the relative density R defined in
the immediately following.
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Let M0 be the set of x for which P (S(x, r)) > 0 if r > 0 and suppose
also that for x in M0, P (S(x, r)) is continuous in x and is differentiable in r
for r ≥ 0, and with a positive derivative f(x, r) for all r in a neighborhood
of 0. Consider the set M∗ of pairs (x, y), both x and y in M0, such that
limr→0 P (S(x, r))/P (S(y, r)) exists and is a finite positive number R(x, y).
Then R(x, y) is called the relative density of P for the pair (x, y). So R is
defined only on M∗.

A little consideration shows that the above conditions defining R are
just an extension to the general metric space context of the condition on
pairs x, y in the Euclidian case, with a density f , such that f(x)/f(y) exists
and is finite.

Note there may be pairs of elements x, y such that limr→0 P (S(x, r))/
P (S(y, r)) fails to exist, is zero, or is +∞. For example, if P on the square
[0, 1]×[0, 1] concentrates a total probability of .5 uniformly on the line of pairs
x = y, 0 ≤ x, y ≤ 1, and distributes probability .5 uniformly on the square
excepting this line, then the line is in M∗ and so is the square excepting
the line. But a pair with one element on the line and the other off gives
a limit of 0 or +∞ depending of which element appears in the numerator
(or denominator). These kinds of measures may be of considerable interest
and examples where they arise can be given. The main result here is an
estimate Rn,b of R based on the sample sequence X1,X2, . . . ,Xn and a user
chosen parameter b. It is shown (Theorem 1) that if the pair (x, y) is in M∗,
Rn,b(x, y) → R(x, y), a.s. as both b and n become large.

Initially, in approaching the problem of estimating a probability distri-
bution in the general metric space context, an attempt was made to define
a density for P in the usual way, that is, as a density for P with respect to
another convenient measure µ, analogous to Lebesgue measure in Euclidean
space, and then to proceed by estimating this density using a kernel method.
This attempt failed because it appears that in the general metric space con-
text, there is no natural and easily employed analog of Lebesgue measure.
Refocusing the problem on the relative density R, which can be used directly
without reference to any other measure than P , leads to a practical theory,
including asymptotics, rather easily.

In addition, the relative density provides answers to most questions that
the concept of “density” would normally answer and also permits estimates
of probabilities and conditional probabilities suitable for many applications.
In particular, the relative density offers a simple and useful approach to
conditional probabilities though the conditional odds ratio, an idea which is
explained and defined in Section 5. This notion is quite simple and offers
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an alternative to the standard approach to conditional probability using the
Radon-Nykodym derivative, which in the problem at hand, does not appear
to be operational because, as indicated above, there is no convenient density
µ analogous to Lebesgue measure which can be used in the general metric
space context.

The estimate Rn,b is defined in the following section.

3. The Estimate. Let K be a continuous, positive, non-increasing function
on [0,∞), and with

∫∞
0
K(r)dr = 1. Suppose throughout the following

the pair (x, y) is in M∗ so that R(x, y) is a finite positive number. Let
p(n, b, x) =

∑n
i=1 bK(bd(x,Xi))/n, and let

(1) Rn,b(x, y) = p(n, b, x)/p(n, b, y).

Theorem 1. Let δ, γ be arbitrary positive numbers. Then there is a number
b1 and for each b ≥ b1 a number n1 such that the probability that

| Rn,b(x, y)−R(x, y) |≤ δ

for all n ≥ n1 is at least 1− γ.

The proof is given in the Appendix.
The conclusion of Theorem 1 continues to hold under the assumption

that P concentrates on a countable discrete set D of elements xi, where
pi = P (X = xi) > 0, i = 1, 2, . . . and the definition (1) of Rn,b is unchanged.
The asymptotic behavior of Rn,b(xi, xj) appears to be almost trivial in this
situation. Nevertheless Rn,b in the small sample situation appears to be of
considerable interest, for xi and xj may be near or far, as the case may be,
from some number of elements in the training sequence. And surely this
should have some effect on the estimated relative likely hood of the xi and
xj in question. In fact, in the psychological world the spread of effect from
a small number of experiences may be of paramount importance. And it
appears that such effects are captured by Rn,b in a plausible way even with
very small samples.

Nevertheless it is desirable to know that the asymptotic condition of b
and n increasing without bound still gives the correct result in the limit.
Theorem 2 address this question affirmatively, although a mild condition
specific to the discrete situation has to be added for the convergence result.
This is just that the discrete set D is genuinely discrete, d(xi, xj), xi �= xj

exceeding some positive number for all such pairs. It could be that the xi are
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all distinct but some sub-sequence of the xi converge to some xj , as would
be the case, for example, if the elements in M were the countable set of
rationals between 0 and 1. The kernel method might work asymptotically in
this case but we do not prove any result to this effect. Instead we prove

Theorem 2. Suppose inf{d(xi, xj) : xi �= xj} > 0. Then if xi and xj are in
D, and n and b increase without bound, Rn,b (xi, xj) = p(n, b, xi)/
p(n, b, xj) → pi/pj = R(xi, xj) a.s.

The proof is also in the Appendix.
We remark that the parameter b serves the same function as the “win-

dow” in the usual kernel estimate of a density and in Euclidean space the
method reduces to the usual kernel method as it would be applied to the
relative density problem.

To illustrate how the general method operates in a familiar setting,
supposeX1,X2, . . ., are i.i.d in E1 with some unknown density h. Let b = 1/σ
and let K(z) = 2ϕ(z), 0 ≤ z < ∞, where ϕ is the standard normal density.
The factor 2 serves to make

∫∞
0
K(r)dr = 1. Then, with d(x, y) = |x− y|,

p(n, b, x) =
n∑
1

bK(bd(x,Xi))/n =
n∑

i=1

(
2√
πσ

)
exp(−(1/2)((x−Xi)/s)2)/n.

Except for the factor 2 , this is just the ordinary kernel estimate of the
density h at x, using the normal kernel and with “window” σ. So Rn,b(x, y)
= p(n, b, x)/p(n, b, y) will be an estimate of h(x)/h(y).

In view of the psychological applications b will be called the spread of
effect parameter in reference to the fact that a response to one stimulus tends
to be aroused by other similar stimuli, a central finding from psychology,
alluded to above.

While the large sample property of the estimate Rn,b given by Theorem
1 is important for the credibility of the method, much of the scientific value
of the estimate comes from small sample considerations, and from psycho-
logical and philosophical interpretations, although these too are buttressed
by the large sample result. This result shows learning by such a method will
with sufficient experience lead to good prediction in a very general station-
ary environment. So the potential domain of applications supported by the
consistency result is very large.

4. Interpretation and Application of R. From its definition R(x, y) has
the interpretation as the ratio of the probability in a small sphere of radius
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r centered at x to the probability of a small sphere, of the same radius,
centered at y. This means also that R is an estimate of the relative odds
ratio for these two events. That is, given X belongs to the sphere at x or the
sphere at y, the respective conditional probabilities of these events, say p(x)
and p(y), where p(x) + p(y) = 1, have the conditional odds ratio p(x)/p(y),
which is approximately R(x, y) just from this interpretation. The assumed
continuity of P (S(x, r)) in r insures that as the radius r of the spheres goes to
zero the odds ratio continues to make conceptual sense. In the limit R may
be interpreted as the ratio of the probability at the point x to the probability
at the point y, which is the usual interpretation of the ratio of the densities
at two points, speaking in a certain loose sense, and keeping in mind both
events have probability zero. So in this sense R provides a relative density
for P at each x, that is, R(x, y) with y fixed may be thought of as an un-
normalized density for x. But this usage fails when we attempt to use R to
calculate probabilities of larger sets by integration, as though it were truly a
density, for at present there is no theory of integration to accompany R.

Nevertheless, the above interpretation of R in terms of ratios of prob-
abilities in small spheres can be extended to estimate discrete conditional
distributions and this can be of practical interest. To illustrate, consider
selected elements x1, x2, . . . , xk and some convenient element y. Then

pi = R(xi, y)/
k∑
i

R(xi, y) ∼=
p(xi)/p(y)(∑k
i p(xi)/p(y)

) =
p(xi)∑k
i p(xi)

is evidently an estimate of the probability of xi given some one of the k
elements x1, x2, . . . , xk occurs. If g is a real valued function on M which can
be evaluated at each xi then

∑
i pig(xi) is an approximation to the expected

value of g given X falls in the set {x1, x2, . . . , xk}.
More importantly, R itself has a conditional odds ratio interpretation

previously mentioned, and this is defined just below. This can be applied
in time series and gives a practical method of calculating from R (or from
Rn,b) estimates of odds ratios for the future given the past and estimates of
expected future values of numerical variables.

5. Conditional Odds Ratio. To illustrate, interpret X1,X2, . . . , as suc-
cessive pairs from a another stationary and ergodic sequence U1, U2, . . . in
some metric space M0 with distance d0 . That is, let X1 = (U1, U2),
X2 = (U2, U3), . . ., and then each Xi is in M = M0 × M0. And in this
case it is convenient and useful to take as the metric on M the maximum
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of the distances in the two component spaces, which is the natural version
of the familiar sup norm for this context. Thus for two elements x = (r, s)
and y = (u, v) in M , let d(x, y) = max{d0(r, u), d0(s, v)}. This metric will
be called sup d. Using this distance, Rn,b is available as an estimate of R in
this context where the distribution of successive pairs is of interest.

Consider then, R(x, y), where x = (s, u) and y = (s, v). Note the first
component in each pair is the same element in M0. This special choice of
the pairs is the basis of the conditional odds ratio interpretation, which is
now established:

If r is small, then R is approximately the ratio of the probability P of
a sphere of radius r around (s, u) to the probability of a sphere of radius
r around (s, v) where now P is the distribution of Xn, that is, the pair
(Un, Un+1). Thus

R(x, y) ∼= P (Xn ∈ S(x, r))/P (Xn ∈ S(y, r))
= P ((Un, Un+1) ∈ S(x, r))/P ((Un , Un+1) ∈ S(y, r))
= P (d((s, u), (Un , Un+1)) ≤ r)/P (d((s, v), (Un , Un+1)) ≤ r)
= P (max{d0(s, Un),

d0(u,Un+1)} ≤ r)/P (max{d0(s, Un), d0(v, Un+1)} ≤ r)
= P (d0(s, Un) ≤ r and d0(u,Un+1) ≤ r)/P (d0(s, Un) ≤ r

and d0(v, Un + 1) ≤ r).

Now divide numerator and denominator of this last line by P (d0(s, Un)
≤ r). Let S0(s, r) be the sphere of radius r in M0 centered at s. After the
division, the resulting ratio is evidently just the following ratio of conditional
probabilities:

R(x, y)
= R((s, u), (s, v))
∼= P (Un+1 ∈ S0(u, r)|Un ∈ S0(s, r))/P (Un+1 ∈ S0(v, r)|Un ∈ S0(s, r)).

This may be described in words as the conditional odds ratio for the
event that Un+1 will be in the sphere centered at u relative to the event that
Un+1 will be in the sphere centered at v, given Un is in the sphere centered
at s.

Such conditional odds ratios permit a variety of applications including
rational choice problems where one of several outcomes is in view and they
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have certain relative utilities and probabilities depending on the action cho-
sen. If the probabilities can be learned from experience, reasonable actions
can be selected which maximize, approximately, at least, expected utility.

Moreover, the above interpretation extends immediately to the case

X1 = (U1, U2, . . . , Uk+1), X2 = (U2, U3, . . . , Uk+2), . . . ,

so Xn has values in the product space M1 ×M2× . . .Mk+1 where the spaces
may all be different.

Consider then R((x1 , x2, . . . , xk , x), (x1 , x2, . . . , xk, y)). Using the met-
ric sup d this becomes the conditional odds ratio for Un+k+1 being in a
sphere Sk+1, in Mk+1 centered at x, relative to Un+k+1 being in a sphere in
Mk+1, centered at y, both these spheres of radius r, given Un in S1, Un+1

in S2, . . . , Un+k in Sk, where these spheres Si all have radius r and centers
x1, x2, . . . , xk in the respective spaces M1,M2, . . . ,Mk.

If the radius r is allowed to go to zero this may be interpreted as the
conditional odds ratio for two points on occasion n + k + 1 relative to a
sequence of past points at times n, n+1, . . . , n+k, these falling in a sequence
of different spaces.

This kind of information is of interest because it extends the mathemat-
ical language for talking about the regression and prediction problem to the
general metric space situation.

While conditional relative odds based on R appear to serve well this
purpose, absolute probabilities under P cannot be calculated from R in any
obvious way as was previously noted. Nevertheless, there is one condition
under which it may be possible to show that R determines P and calculate
P from R. This is where the space M and any measurable set in M , can be
represented as a union of disjoint spheres of small radii. Then R can be used
to find the relative probability of each sphere, and so the normalized sum of
the relative probabilities of the spheres whose union is the set in question,
can in principle be calculated. But this has not been done in any interesting
instance. Moreover, the condition that unions of disjoint spheres provide all
the measurable sets and thereby support a general probability measure does
not hold in general. Davies(1971) has given an example of a compact metric
space with a Borel measure, wherein the measure cannot be captured by its
values on disjoint spheres of small radius. So, the relation between R and P
remains to be determined.
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6. Illustrative applications.
6.1. Choice of the window. Application of the kernel method in

requires choice of the window, that is, the parameter b, a problem which
is discussed in many papers in the multivariate case. It was difficult to
adopt existing methods to the general method under consideration here. So
a method had to be devised whose application required only the measure of
distance.

One such method is based on “probability concordance”, which is to
say, agreement, in a specified way, of the kernel estimate of the probabilities
of certain sets with their relative frequency in the sample. This method is
applicable and has some intuitive appeal even in very small samples. This
method is illustrated in the following paragraphs which also illustrates how
the method works in practice when applied in the multivariate time series
situation.

The method is based on p(n, b, x) and the empirical frequency of the
sets Si of elements within a distance CD of each Xi. There does not appear
to be any clear meaning to the raw magnitude of these numbers p(n, b, x),
but it seems they ought to be larger in sets of higher frequency.

Accordingly, to evaluate a given b, the average value of p(n, b,Xi) is
taken for the sampleXj in Si, that is, for each set Si the sum of the p(n, b,Xj )
for Xj in Si is divided by the number of elements in Si. Then a simple
correlation between these averages and the actual number of elements in
each set is calculated. This correlation is a raw figure of merit for the value
of b in question. Of course, it will also depend on CD. So the procedure
is do a direct search over both b and CD and choose the b for which the
correlation is a maximum.

This method is used in the following simulation experiment which illus-
trates conditional odds ratio and the method as well, as applied to a familiar
time series problem.

Let U1, U2, . . . be given by Un+1 = .5 Un + .1Un−1 + εn where the
disturbances εn are i.i.d., and εn = ±1 with probability 1/2 each. So the
conditional distribution of the next value given the past is sharply bimodal.

A sample sequence of 100 observations (n = 100) starting with U1 =
U2 = 0 were generated with this model, and from this training sequence the
estimate of R for the space of successive triples Xn = (Un, Un+1, Un+2) was
obtained using formula (1) of Section 3 above. The kernel function K was
the standard normal c exp(− 1

2 x
2) where c = 2/

√
2π is chosen to normalize

K, that is, so that
∫∞
0

K(x)dx = 1. And the distance was Sup d as applied
to the triples.
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Using the notation of Section 5 above, we let d0 be the distance in
the space of values of Un and then for the triples Xj = (Uj , Uj+1, Uj+2),
d(Xj ,Xi) = max(d0(Uj , Ui), d0(Uj+1, Ui+1), d0(Uj+2, Ui+2)).

To choose b, first the elements Si within a “critical distance” CD of each
sample triple (Ui, Ui+1, Ui+2) were found for i = 1, 2, . . . , 98. So the elements
Si where just those triples Xj = (Uj , Uj+1, Uj+2) in the sample such that
max(d0(Uj , Ui), d0(Uj+1, Ui+1), d0(Uj+2, Ui+2)) ≤ CD. The frequency fi of
elements in each of these sets was noted. Then for a given b, the average ri
of p(n, b,Xj) over Xj in Si was calculated, which is to say ri is just the sum
of such p(n, b,Xj) divided by fi. Thus from (1) of Section 3,

p(n, b,Xj ) = (bK(bd(Xj ,X1)) + bK(bd(Xj ,X2)) + · · ·+ bK(bd(Xj ,Xn)))/n

where d(Xj ,Xi) is defined just above.
So this gave n pairs of numbers, fi, ri.
It is argued then, that if b is to give a good estimate of the relative density

of P , then the fi and ri should be correlated. Accordingly the ordinary
correlation between the 98 pairs of numbers fi, ri was obtained. This is a
function of b and CD. Then an “optimal” value of b was found approximately
by a direct search over b and CD for the highest correlation. The search was
limited to a grid of values of these two parameters. CD ranged from .1 to
1.5 in steps of size .1, and b ranged from 1 to 10 in steps of size 1. A finer
grid could be used but this would not serve our illustrative purposes further.

The final choice of b was just the optimal value from this grid search
which turned out to be b = 9.0.

To illustrate the interpretation and application of this relative density
estimate Rn,b the conditional odds ratio values for a generic “next” value,
called U3, given a few selected values of the “preceding” pair, called generi-
cally U1, U2, were calculated, just as described in Section 4, using b = 9. This
was done for the range of values U3 from -2.0 to +2.0, in steps of size .2,
giving a discrete distribution of the odds ratios, which were then normalized
to estimate the distribution of U3 given the selected pair U1, U2.

Table 1
Probabilities for Values of Un+1 from Normalized Conditional Odds Ratios

Values Probabilities
-2.0 .000
-1.8 .003
-1.6 .007
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-1.4 .256
-1.2 .115
-1.0 .012
-.8 .000
-.6 .000
-.4 .000
-.2 .000
0 .000
.2 .014
.4 .074 U1 = −.727, U2 = −.289
.6 .362
.8 .091 E1 = −.302, E2 = −.255, E3 = −.392
1.0 .001
1.2 .000
1.4 .000
1.6 .000
1.8 .000
2.0 .000

This whole procedure was repeated independently several times with
different random seeds for generating the training sequence.

The estimated distribution based on the normalized odds ratios, for a
representative run, is shown in Table 1.

It was found that if the given pair U1, U2 was not close to any of the
training pairs, the predictions could be rather bad, a result which is not
surprising. After all, with a purely empirical method, without “structural
equations”, one should not hope to predict accurately for conditions rarely
experienced. For this reason the pair U1, U2 actually used in preparing Ta-
ble 1 was taken as the metric space “center” of the sample training pairs,
(Ui, Ui+1), i = 1, 2, . . . , 99. The “center” is defined as the pair U1, U2 mini-
mizing

99∑
i=1

max(d0(U1, Ui), d0(U2, Ui+1)).

So again Supd is used. This pair is shown in the table.
Notice that the bimodal property of the distribution of the next value

of the process U3 given the preceding two values U1 and U2 is very ap-
parent. The predictions can also be evaluated in terms of their mean val-
ues. These are given in the table for the following: E1, the sample av-
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erage of the scale values −2,−1.8, . . . , 1.8, 2.0 using the probability esti-
mates shown in the table. E2, the sample average of the sample values
U1, U2, U3, . . . , U100. E3, the theoretical expected value of U3 given the test
input values, U1 = −.727 and U2 = −.282 and the known formula for the
process. That is, E3 = .5U1 + .1U2 = −.392.

These are roughly what they should be. Other similar calculations gave
similar results.

No formal goodness of fit tests were attempted.

It appears also that the method of choosing b worked satisfactorily in
this instance.

6.2. A psychological example. This example illustrates the potential
application of the kernel estimate Rn,b in a simple kind of experimental
situation with a more psychological flavor. It is meant to illustrate potential
application in psychology. It is also meant to illustrate that it is possible to
analyze very small samples, and that probability concordance may work in
this context.

The sample sequence in this instance is five letter nonsense words, each
word using letters from the first nine letters of the alphabet. Distance be-
tween two words in this space is taken to be the number of letters in one word
but not the other, which is also the number of elements in the symmetric
difference between two words regarded as five element sets.

To generate the sample words, a fixed five letter word was taken as a
prototype. This word was subjected to a random transformation to produce
a new word. And this was repeated, independently, starting with the same
prototype, five times. Thus the result is five i.i.d. five letter words. The whole
procedure was repeated twice to produce the two experiments reported in
Table 2.

The random transformation was defined by taking a fixed mapping of the
set of the first nine letters onto itself. Then two of the elements in the range
of this mapping were selected randomly and the values of the map for these
two were interchanged , thus making a random map. Then this was repeated,
that is , two letters in the range of this map were selected randomly and their
values interchanged. Then this map was applied to each of the letters in the
prototype word, and the value of the map on these letters became the letters
in the new word. Two such random and independent transformations were
applied to make a single random transformation because with only one, the
new random word often differed from the prototype in only one letter because

13



Table 2

Experiment 1 Experiment 2
DCGBF ACGDE
DAGCI BAGCF
BCGEF DCGAF
HCGAF DCGBF
DIGAF CDGAF

1 2 1 2
DCAGF EFGHI DCAGF EFGHI

R(1,2)=2.06 R(1,2)=4.55

only one of the letters in the input word was among the letters actually
affected by the map.

The result finally was that the random word produced would typically
have three or four letters in common with the original word. The letters in
a word were left in the order resulting from applying the transformation.

Probability concordance was used to select b, more or less as in the
previous example based on a search over b and CD. The set of elements
Si within a distance CD of each training word Xi were found. Then the
average of p(n, b,Xj) =

∑
i bK(bd(Xj ,Xi)) over the Xj in Si is calculated.

The correlation between these 5 averages and the corresponding frequencies
in Si is then found. Then the maximal correlation over the grid of values
of CD and b is found and a value b for which this maximal correlation is
obtained is determined.

The values of CD and b in the direct search were CD = .5, 1.5, . . . , 5.5,
b = 1, 2, . . . , 9. In both experiments the optimal value of b was 3. Then
finally Rn,b for the test words 1 and 2, was calculated by using (1) in Section
3. This may be interpreted as an estimate of the ratio of the probability of
finding a word near or equal to word 1 to the probability of finding a word
near or equal to word 2.

To illustrate the psychological application imagine a subject is presented
the “training words” and then two new words, it being understood that all
the words were generated by some natural process. Then the subject is
asked judge the relative likelihood of each of the new words 1 and 2 on the
basis of this experience. In both experiments word 1 was the prototype word
DCAGF and word 2 was EFGHI. These two test words are shown in Table
1 just below the training sequences.
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The kernel estimate of the probability ratio R for the two new words
1 = DCAGF v.s. 2 = EFGHI, is called R(1, 2) and is computed from
each of the two training sequences (with b = 3) and shown at the bottom
of the two columns. In many similar test situations which were presented in
classes as demonstrations of how the kernel estimate could be interpreted,
the value of R(1, 2), as in this instance, appeared to conform qualitatively to
the intuitive judgment of the relative odds of the two words by the subjects.

What this illustrates apart from the methodology, is that our intuitive
probability appears to be based on the “association by similarity” principle
even though the long-standing idea of association by similarity is really differ-
ent from that expressed by the kernel model. In the traditional formulation,
it is “ideas” which are associated or “stimuli and responses.” The assertion
here is different in what may be a conceptually important way: it is prob-
ability of a future event that gets built up by experience. This hypothesis
become clear only in the work of few psychologists, notably in the tradi-
tion of cognitive psychology as developed by E.C. Tolman(1932). The basic
conceptual element in the work of Tolman, e.g., was called a “sign-gestalt
expectancy” and was for all the world nothing more than a conditional prob-
ability, although the details of the development of such an “expectancy” were
never worked out. The Bayesian tradition also models the development of
subjective probabilities from experience. The kernel model is quite different
and much closer to the psychological tradition of Tolman.

The similarity of the prototype word DCABG with the words in the
training sequence is clearly greater than the similarity of EFGHI to these
words. Also, the similarity measured by the number of common letters be-
tween DCABG and EFGHI is greater in Experiment 2 than in Experiment
1 which explains why R(1, 2) = 2.06 in Experiment 1 and R(1, 2) = 4.55
in Experiment 2. And these differences between the experiments are in the
right direction, it appears. Although these results all conform to intuition in
these and many other similar experiments which were done informally, only
larger and more careful experiments with a wide variety of stimulus materials
can show the usefulness of the kernel model for psychological purposes. It
is nevertheless encouraging that these psychological predictions are obtained
objectively and easily from the general kernel model.

The main alternative way of making such predictions at present is the
neural net approach. This could be applied in this instance, and would no
doubt yield similar results. But of course, this model and the kernel model
for learning associations are not competitors. The neural net approach has
potential value as leading to a neurological model.
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APPENDIX.

Proof of Theorem 1 The pair (x, y) under consideration is always in
M∗ so

lim
r→0

P (S(x, r))
P (S(y, r))

= R(x, y)

exists and is a finite positive number.

Lemma 1.
R(x, y) = lim

r→0
f(x, r)/f(y, r).

This is L’Hopital applied to the definition of R as

lim
r→0

P (S(x, r))/P (S(y, r)),

considering f(x, r) as the derivative with respect to r of P (S(x, r)). (See,
e.g., Apostle, Vol. I, p. 394.)

Consider p(b, x) = EbK(bd(x,X)), the expectation being calculated us-
ing P . Observe there is a real random variable D = d(x,X), with P (D ≤
r) = P (d(x,X) ≤ r) = P (S(x, r)). So regarded as a function of r, P (S(x, r))
is just the c.d.f. of D and its derivative f(x, r) is therefore just the density
of D. So we have
Lemma 2. p(b, x) =

∫∞
0 bK(br)f(x, r)dr.

Lemma 3. The limit as b goes to infinity of p(b, x)/p(b, y) exists and is
equal to R(x, y).

Consider p(b, x)/p(b, y) =
∫∞
0 bK(br)f(x, r)dr/

∫ ∞
0 bK(br)f(y, r)dr.

This is equal to ∫ ∞

0

K(r)f(x, r/b)dr
/ ∫ ∞

0

K(r)f(y, r/b)dr

by a change of variable.
And from this there is a finite number c such that

(2)
∫ c

0

K(r)f(x, r/b)dr
/∫ c

0

K(r)f(y, r/b)dr ≥ p(b, x)/p(b, y) − ε
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for arbitrary ε > 0.

From Lemma 1 there is for an arbitrary δ > 0, a number s such that
f(x, r)/f(y, r) ≤ R(x, y)+δ for r ≤ s. Then if b ≥ c/s, f(x, r/b)/f(y, r/b) ≤
R(x, y) + δ for r ≤ c, since r/b ≤ s in this case. So f(x, r/b) ≤ f(y, r/b)
(R(x, y) + δ) for r ≤ c. Thus using this inequality in the numerator of (2),
valid over the range of integration, shows R(x, y) + δ ≥ p(b, x)/p(b, y) − ε.
In other words for b greater than c/s, R(x, y) + ε + δ ≥ p(b, x)/p(b, y). A
similar argument gives R(x, y) − ε − δ ≤ p(b, x)/p(b, y) for b ≥ c/s. Since ε
and d are arbitrary the proof of Lemma 3 is complete.

To complete the proof of Theorem 1 let ε be an arbitrary positive num-
ber. Note that by Lemma 3, there is a number b1 such that

(3)
∣∣∣∣p(b, x)p(b, y)

−R(x, y)
∣∣∣∣ ≤ ε

for b > b1.

By the strong law, p(n, b, x) → p(b, x) and p(n, b, y) → p(b, y) a.s. as
n → ∞. And being strictly positive, since f(x, r) is positive for r in a
neighborhood of r = 0,

Rn,b(x, y) =
p(n, b, x)
p(n, b, y)

→ p(b, x)
p(b, y)

a.s. as n→ ∞ by an elementary argument. In other words, just interpreting
the meaning of a.s. convergence, there is, for any b and arbitrary positive
numbers δ0 and γ, a number n1(δ0, b, γ) such that with probability at least
1− γ,

(4)
∣∣∣∣p(n, b, x)p(n, b, y)

− p(b, x)
p(b, y)

∣∣∣∣ < δ0

for all n ≥ n1(δ0, b, γ). Applying this with b = b1 where b1 is chosen as above
to satisfy (3) and combining (3) with (4) shows that for all n ≥ n1(δ0, b1, γ),

(5)
∣∣∣∣ p(n, b1, x)p(n, b1), y)

−R(x, y)
∣∣∣∣ ≤ δ0 + ε

with probability at least 1 − γ. Taking δ0 + ε ≤ δ, the numbers b1 and n1

required in Theorem 1 are provided and the proof is complete.
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Proof of Theorem 2. From (1) of Section 3,

Rn,b(xj , xk) =

(
n∑

i=1

K(bd(xj ,Xi))/n

)/( n∑
i=1

K(bd(xk ,Xi))/n

)
,

≤ (fj + (1 − fj)K(bd1))/(fk + (1− fk)K(bd2))

where fj and fk are, respectively, the relative frequency of Xi = xj and
Xi = xk, in the first n steps of the process, and d1 is the smallest value
of d(xj ,Xi) among the Xi not equal to xj , and d2 is the largest value of
d(xj ,Xi) among the Xi not equal to xk. The number b in front of K in
both numerator and denominator has been canceled. Recall K is monotone
decreasing.

Similarly we have

Rn,b(xj , xk) ≥
(fj + (1− fj)K(bd2))
(fk + (1− fk)K(bd1))

.

As n become large fj and fk approach pj and pk respectively by the strong
law, and as b becomes large K(bd1) and K(bd2) both go to zero consider-
ing

∫∞
0 K(r)dr = 1 and that d1 and d2 are positive by hypothesis. This

completes the proof.
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