
UC Riverside
UC Riverside Previously Published Works

Title
BLINC: Multilevel traffic classification in the dark

Permalink
https://escholarship.org/uc/item/1wn9n8kt

Journal
ACM SIGCOMM, 35(4)

ISSN
0146-4833

Authors
Karagiannis, T
Papagiannaki, K
Faloutsos, M

Publication Date
2005-10-01

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1wn9n8kt
https://escholarship.org
http://www.cdlib.org/

BLINC: Multilevel Traffic Classification in the Dark

Thomas Karagiannis

UC Riverside
tkarag@cs.ucr.edu

Konstantina
Papagiannaki

Intel Research, Cambridge
dina.papagiannaki@intel.com

Michalis Faloutsos

UC Riverside
michalis@cs.ucr.edu

ABSTRACT
We present a fundamentally different approach to classify-
ing traffic flows according to the applications that gener-
ate them. In contrast to previous methods, our approach is
based on observing and identifying patterns of host behavior
at the transport layer. We analyze these patterns at three
levels of increasing detail (i) the social, (ii) the functional
and (iii) the application level. This multilevel approach of
looking at traffic flow is probably the most important con-
tribution of this paper. Furthermore, our approach has two
important features. First, it operates in the dark, having
(a) no access to packet payload, (b) no knowledge of port
numbers and (c) no additional information other than what
current flow collectors provide. These restrictions respect
privacy, technological and practical constraints. Second, it
can be tuned to balance the accuracy of the classification
versus the number of successfully classified traffic flows. We
demonstrate the effectiveness of our approach on three real
traces. Our results show that we are able to classify 80%-
90% of the traffic with more than 95% accuracy.

Categories and Subject Descriptors: C.2.3 [Computer-
Communication Networks]: Network Operations

General Terms: Measurement, Algorithms

Keywords: Traffic classification, host behavior, transport
layer.

1. INTRODUCTION
Classifying traffic flows according to the applications that

generate them is an important task for (a) effective network
planning and design, and (b) monitoring the trends of the
applications in operational networks. However, an accurate
method that can reliably identify the generating application
of a flow is still to be developed. In this work, we address
the problem of traffic classification; the ultimate goal is to
offer a tool to network operators that will provide a mean-
ingful classification per application, and if this is infeasible,
with useful insight into the traffic behavior. The latter may

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’05,August 21–26, 2005, Philadelphia, Pennsylvania, USA.
Copyright 2005 ACM 1-59593-009-4/05/0008 ...$5.00.

facilitate detection of abnormalities in the traffic, malicious
behavior or identification of novel applications.

Currently, application classification practices rely to a large
extent on the use of transport-layer port numbers. While
this practice may have been effective in the early days of
the Internet, port numbers currently provide limited infor-
mation. Often, applications and users are not cooperative
and intentionally or not use inconsistent ports. Thus, “re-
liable” traffic classification requires the packet-payload ex-
amination, which is scarcely an option due to: (a) hardware
and complexity limitations, (b) privacy and legal issues, (c)
payload encryption by the applications.

Taking into account empirical application trends [8, 20]
and the increasing use of encryption, we conjecture that
traffic classifiers of the future will need to classify traffic “in
the dark”. In other words, we need to address the traffic
classification problem with the following constraints: (i) no
access to user payload is possible, (ii) well-known port num-
bers cannot be assumed to indicate the application reliably,
and (iii) we can only use the information that current flow
collectors provide. Clearly, there may be cases where these
constraints may not apply, which would make the classifica-
tion easier. However, we would like to develop an approach
that would be applicable and deployable in most practical
settings.

Recently, some novel approaches treat the problem of ap-
plication classification as a statistical problem. These ap-
proaches develop discriminating criteria based on statistical
observations and distributions of various flow properties in
the packet traces. Typically, such discriminating criteria re-
fer to the packet size distribution per flow, the inter-arrival
times between packets etc. However, for the most part, these
methods do not exploit network-related properties and char-
acteristics, that we believe contain a lot of valuable informa-
tion. In addition, the validation of a classification method
is a challenge. The effectiveness of most of the current ap-
proaches has not been validated in a large scale, since there
does not exist a reference point or a benchmark trace with
known application consistency.

In this work, we propose a novel approach for the flow clas-
sification problem as defined above, which we call BLINd
Classification or BLINC for short. The novelty of our ap-
proach is twofold. First, we shift the focus from classifying
individual flows to associating Internet hosts with applica-
tions, and then classifying their flows accordingly. We argue
that observing the activity of a host provides more informa-
tion and can reveal the nature of the applications of the host.
Second, BLINC follows a different philosophy from previous

methods attempting to capture the inherent behavior of a
host at three different levels: (a) social level, (b) network
level, and (c) the application level.

Combining these two key novelties, we classify the behav-
ior of hosts at three different levels. While each level of
classification provides increasing knowledge of host behav-
ior, identifying specific applications depends on the unveiled
“cross-level” characteristics (i.e., a single level cannot reveal
the generating application by itself).

• At the social level, we capture the behavior of a host as
indicated by its interactions with other hosts. First, we
examine the popularity of a host. Second, we identify
communities of nodes, which may correspond to clients
with similar interests or members of a collaborative
application.

• At the functional level, we capture the behavior of the
host in terms of its functional role in the network,
namely whether it acts as a provider or consumer of a
service, or both, in case of a collaborative application.
For example, hosts that use a single port for the ma-
jority of their interactions with other hosts are likely
to be providers of the service offered on that port.

• At the application level, we capture the transport layer
interactions between particular hosts on specific ports
with the intent to identify the application of origin.
First, we provide a classification using only 4-tuples
(source address, destination address, source port, and
destination port). Then, we refine the classification
further by exploiting other flow characteristics such as
the transport protocol or the average packet size.

Tunability. A key feature of our methodology is that
it provides results at various levels of detail and accuracy.
First, BLINC analyzes traffic at the aforementioned three
levels. Second, the classification criteria are controlled by
thresholds, that when relaxed or tightened, achieve the de-
sired balance between an aggressive and a conservative clas-
sification. The level of accuracy and detail may be chosen
according to: (a) the goal of the study, and (b) the amount
of exogenous information (e.g., application specifications).

The highlights of our work can be summarized in the fol-
lowing points:

• Developing a classification benchmark. We provide a
comparison benchmark for flow classification. We col-
lect full payload packet traces, and we develop a pay-
load classification methodology. While this methodol-
ogy could be of independent interest, we use it here to
evaluate BLINC, which is the focus of this work.

• Identifying patterns of behavior. We identify “signa-
ture” communication patterns, which can help us iden-
tify the applications that a host is engaged in. Using
these patterns, we develop a systematic methodology
to implement our multilevel approach.

• Highly accurate classification. We successfully apply
our approach to several real traces. While training was
based on one of our datasets, our approach manages to
classify successfully 80%-90% of the total traffic with
more than 95% accuracy in all our traces.

• Detecting the “unknown”. We show how our approach
can help us detect: (a) unknown applications, such
as a new p2p protocol, and (b) malicious flows, which

emerge as deviations from the expected behavior. Note
that these cases cannot be identified by payload or
port-based analysis.

Our work in perspective. To the best of our knowledge, this
is the first work to advocate the shift from characterizing
flows by application to associating hosts with applications.
Our methodology is a first attempt at exploring the benefits
and limitations of such an approach. Given the quality of
our results, we feel that our approach shows great promise
and opens interesting new directions for future research.

The remainder of the paper is structured as follows. In
Section 2, we motivate the problem and describe related
work. In Section 3, we present our payload-based classi-
fication technique. BLINC is presented in Section 4 and
its performance results are shown in Section 5. Section 6
discusses implementation details, limitations and future ex-
tensions to BLINC. Finally, section 7 concludes our paper.

2. BACKGROUND
Analysis of the application traffic mix has always been one

of the major interests for network operators. Collection of
traffic statistics is currently performed either by flow mon-
itors, such as Cisco NetFlow, or by sophisticated network
monitoring equipment, that captures one record for each
(sampled) packet seen on a link. The former produces a
list of flow records capturing the number of bytes and pack-
ets seen, while the latter produces a list of packet records
that can also be aggregated into 5-tuple flows (e.g., with
the same source, destination IP address, source, destination
port, and protocol). The subsequent mapping of flows, how-
ever, to application classes is not as straightforward and has
recently attracted attention in the research community.

While port numbers were always an approximate yet suf-
ficient methodology to classify traffic, port-based estimates
are currently significantly misleading due to the increase of
applications tunneled through HTTP (e.g., chat, stream-
ing), the constant emergence of new protocols and the dom-
ination of peer-to-peer (p2p) networking. Indeed, studies
have confirmed the failure of port-based classification [14].

To address the inefficiency of port-based classification,
recent studies have employed statistical classification tech-
niques to probabilistically assign flows to classes, e.g., ma-
chine learning [12] or statistical clustering [18, 15]. In such
approaches, flows are grouped in a predetermined number
of clusters according to a set of discriminants, that usually
includes the average packet size of a flow, the average flow
duration, and the inter-arrival times between packets (or the
variability thereof). Studies have also examined how the ex-
act timing and sequence of packet sizes can describe specific
applications in the slightly different context of generating
realistic application workloads [7].

One of the most challenging application types is p2p traf-
fic. Quantifying p2p traffic is problematic both due to the
large number of proprietary p2p protocols, but also because
of the intentional use of random port numbers for communi-
cation. Payload-based classification approaches tailored to
p2p traffic have been presented in [19, 9], while identification
of p2p traffic through transport layer characteristics is pro-
posed in [8]. In the same spirit, Dewes et al. [5] look into the
problem of identifying and characterizing chat traffic. Our
work goes beyond previous efforts aiming at classifying most
of the applications that generate the majority of today’s In-
ternet traffic by describing their underlying behavior. Par-

Table 1: General workload dimensions of our traces.
Set Date Day Start Dur Direc. Src.IP Dst.IP Packets Bytes Aver.Util. Aver. Flows.

GN 2003-08-19 Tue 17:20 43.9 h Bi-dir. 1455 K 14869 K 1000M 495 G 25 Mbps 105 K
UN1 2004-01-20 Tue 16:50 24.6 h Bi-dir. 2709 K 2626 K 2308 M 1223 G 110.5 Mbps 596 K
UN2 2004-04-23 Fri 15:40 33.6 h Bi-dir. 4502 K 5742 K 3402 M 1652 G 109.4 Mbps 570 K

Table 2: Application specific bit-strings at the beginning of

the payload.“0x” implies Hex characters.
Application String Trans. prot.

eDonkey2000 0xe319010000 TCP/UDP
MSN messenger “PNG”0x0d0a TCP

IRC “USERHOST” TCP
nntp “ARTICLE” TCP
ssh “SSH” TCP

allel to our work, profiling of end-host communications in
backbone Internet traffic has been proposed in [23].

3. PAYLOAD-BASED CLASSIFICATION
This section describes our payload classifier. Our data

feature the unique property of allowing for accurate classifi-
cation; our monitors capture the full payload of each packet
instead of just the header as is commonly the case. Thus, we
can move beyond simple port-based application classifica-
tion and establish a comparison benchmark. To achieve effi-
cient payload classification, we develop a signature-matching
classifier able to classify the majority of current Internet
traffic. While gathering payload data is not directly related
to the design of BLINC, payload-based classification guides
our analysis in profiling host behavior and establishes a com-
parison reference point to evaluate BLINC ’s performance.

3.1 Payload packet traces
We use packet traces collected using a high speed moni-

toring box [13] installed on the Internet link of two access
networks. We capture every packet seen on each direction
of the link along with its full payload.

Table 1 lists general workload dimensions of our data sets:
counts of distinct source and destination IP addresses, the
numbers of packets, and bytes observed, the average utiliza-
tion and the average number of flows per 5-minute interval.
Throughout the paper, flows are defined according to their
5-tuple (source and destination IP address, source and des-
tination port, protocol) and expire if they are idle for 64
seconds [4]. We processed traces with CAIDA’s Coral Reef
suite [11]. The monitored networks are the following:
Genome campus: Our traces (GN in table 1) reflect traffic of
several biology-related facilities. There are three institutions
on-site that employ about 1,000 researchers, administrators
and technical staff.
Residential university : We monitor numerous academic, re-
search and residential complexes on-site (UN1 and UN2
traces in table 1). Collectively we estimate a user popu-
lation of approximately 20,000. The residential nature of
the university reflects traffic covering a wider cross-section
of applications.

The two sites and time-of-capture of the analyzed traces
were selected so that our methodology could be tested against
a variety of different conditions and a diverse set of applica-
tions. Indeed, the selected links reflect significantly different
network “types”, evident from the application mix as ana-
lyzed in the following section. In addition, the two university
traces were collected both during weekdays (UN1) and also
beginning of weekend (UN2) to capture possible weekday to
weekend variation in application usage and network traffic

patterns. Finally, the traces were captured several months
apart from each other to minimize potential similarities in
the offered services and client interactions.

3.2 Payload classification
Even with access to full packet payload, classification of

traffic is far from trivial. The main complication lies in the
fact that payload classification of traffic requires a priori
knowledge of application protocol signatures, protocol in-
teractions and packet formats. While some of the analyzed
applications are well-known and documented in detail, oth-
ers operate on top of nonstandard, usually custom-designed
proprietary protocols. To classify such diverse types of traf-
fic, we develop a signature-based classifier in order to avoid
manual intervention, automate the analysis and speed-up
the procedure.

Our classifier is based on identifying characteristic bit
strings in the packet payload that potentially represent the
initial protocol handshake in most applications (e.g., HTTP
requests). Protocol signatures were identified either from
RFCs and public documents in case of well-documented pro-
tocols, or by reverse-engineering and empirically deriving a
set of distinctive bit strings by monitoring both TCP and
UDP traffic using tcpdump [22]. Table 2 lists a small sub-
set of such signature (bit) strings for TCP and UDP. The
complete list of bit strings we used is presented in [10].

Our payload technique operates on two different time scales
and traffic granularities. The short time scale operates on a
per packet basis upon each packet arrival. The coarse time
scale essentially summarizes the results of the classification
process during the preceding time interval (we use intervals
of 5 minutes throughout the paper) and assists in the identi-
fication of flows that potentially have remained unclassified
during payload analysis.

Both operations make use of an {IP, port} pair table that
contains records of the IP-port pairs that have already been
classified based on past flows. These {IP, port} pairs asso-
ciate a particular IP address and a specific port with a code
reflecting its causal application. The {IP, port} table is up-
dated upon every successful classification and consulted at
the end of each time interval for evidence that could lead
to the classification of unknown flows or the correction of
flows mis-classified under the packet level operation. Since
the service reflected at a specific port number for a specific
IP does not change at the time-scales of interest, we use this
heuristic to reduce processing overhead. To avoid increas-
ing memory requirements by storing an immense number of
{IP, port} pairs, we only keep {IP, port} pairs that reflect
known services such as those described in table 3. Lastly,
to further identify data transfer flows, such as passive ftp,
we parse the control stream to acquire the context regarding
the upcoming data transfer, i.e. the host and port number
where the follow-up data connection is going to take place.

The per-packet operation simply examines the contents of
each packet against our array of strings, and classifies the
corresponding flow with an application-specific tag in case of
a match. Successful classification of a flow on one direction
leads to the subsequent classification of the respective flow in

Table 3: Categories, applications analyzed and their average traffic percentages in flows (bytes).
Category Application/protocol GN UN1 UN2

web www 32% (14.0%) 31.8% (37.5%) 24.7% (33.5%)
FastTrack, eDonkey2000, BitTorrent, Gnutella

p2p WinMx, OpenNap, Soulseek, Ares, MP2P 0.3% (1.2%) 25.5% (31.9%) 18.6% (31.3%)
Dirrect Connect, GoBoogy, Soribada, PeerEnabler

data (ftp) ftp, databases (MySQL) 1.1% (67.4%) 0.3% (7.6%) 0.2% (5.4%)
Network management (NM) dns, netbios, smb, snmp, ntp, spamassasin, GoToMyPc 12.5% (0.1%) 9% (0.5%) 9.4% (0.2%)

mail mail (smtp, pop, imap, identd) 3.1% (3.4%) 1.8% (1.4%) 2.5% (0.9%)
news news (nntp) 0.1% (4.0%) 0% (0.3%) 0% (0.2%)

chat/irc (chtirc) IRC, msn messenger, yahoo messenger, AIM 3.7% (0.0%) 1.8% (0.2%) 5.8% (0.7%)
streaming (strm) mms (wmp), real, quicktime, shoutcast 0.1% (0.8%) 0.2% (6%) 0.2% (6.8%)

vbrick streaming, logitech Video IM
gaming (gam) HalfLife, Age of Empires, etc. – 0.3% (0.1%) 0.3% (0.3%)
Nonpayload – 45.3% (2.2%) 24.9% (0.5%) 30.9% (1.0%)
Unknown – 1.3% (6.6%) 4.3% (11.9%) 7.3% (16.9%)

the reverse direction, if it exists. Previously classified flows
are not examined, unless they have been classified as HTTP.
This further examination allows identification of non-web
traffic relayed over HTTP (e.g., streaming, p2p, web-chat).

At the end of each time interval, we compare all flows
against our list of known {IP, port} pairs, to classify possible
unknown flows or correct misclassifications (e.g., a p2p flow
that was classified under web, because the only packet so far
was an HTTP request or response).

3.3 Application breakdown
We classify flows in eleven distinct application-type cat-

egories. Table 3 lists these categories, the specific applica-
tions and their share of traffic as percentage of the total
number of flows and bytes in the link. The nonpayload cat-
egory includes flows that transfer only headers and no user-
data throughout their lifetime, while the unknown category
lists the amount of traffic that could not be classified.

As expected, the two types of network (GN vs UN) ap-
pear significantly different. The UN network is mostly dom-
inated by web and p2p traffic, whereas GN contains a large
portion of ftp traffic reflecting large data transfers of Genome
sequences. Despite the difference in the day of capture and
the large interval between the two UN traces, their traf-
fic mix is roughly similar, while encrypted flows (SSH/SSL)
correspond to 1%-2% of the traffic in all traces. Other in-
teresting observations from these traces are:
Nonpayload flows account almost for one third of all flows in
both links! Examination of these flows suggests that the vast
majority corresponds to failed TCP connections on ports of
well-known exploits or worms (e.g., 135). Large percentage
of address space scans is also implied by the large number
of destination IPs especially in the GN trace (table 1).
Unknown flows: The existence of user payload data does
not guarantee that all flows in our traces will be classified.
Our analysis of the most popular applications cannot possi-
bly guarantee identification of all applications contributing
traffic to the Internet. For example, 4%-7% of all flows (10%
in bytes) of the UN traffic cannot be identified. Note that a
fraction of this unknown traffic is due to experimental traf-
fic originating from PlanetLab (three PlanetLab nodes exist
behind our monitoring point).

4. TRANSPORT LAYER CLASSIFICATION
This section describes our multi-level methodology, BLINC,

for the classification of flows into applications without the
use of the payload or “well-known” port numbers. BLINC
realizes a rather different philosophy compared to other ap-

proaches proposed in the area of traffic classification. The
main differences are the following:

• We do not treat each flow as a distinct entity; instead,
we focus on the source and destination hosts of the
flows. We advocate that when the focus of the classi-
fication approach is shifted from the flow to the host,
one can then accumulate sufficient information to dis-
ambiguate the roles of each host across different flows,
and thus identify specific applications.

• Our approach operates on flow records and requires no
information about the timing or the size of individual
packets. Consequently, the input to our methodology
may potentially be flow record statistics collected by
currently deployed equipment.

• Our approach is insensitive to network dynamics such
as congestion or path changes, that can potentially
affect statistical methodologies which rely heavily on
inter-arrival times between the packets in a flow.

4.1 The Overview of BLINC
BLINC operates on flow records. Initially, we parse all

flows and gather host-related information reflecting trans-
port layer behavior. We then associate the host behavior
with one or more application types and thus indirectly clas-
sify the flows. The host behavior is studied across three
different levels:

• At the social level, we capture the behavior of a host
in terms of the number of other hosts it communicates
with, which we refer to as popularity. Intuitively, this
level focuses on the diversity of the interactions of a
host in terms of its destination IPs and the existence of
user communities. As a result, we only need access to
the source and destination IP addresses at this level.

• At the functional level, we capture the behavior of the
host in terms of its functional role in the network, that
is, whether it is a provider or consumer of a service,
or whether it participates in collaborative communi-
cations. For example, hosts that use a single source
port for the majority of their interactions are likely
to be providers of a service offered on that port. At
this level, we analyze characteristics of the source and
destination IP address, and the source port.

• At the application level, we capture the transport layer
interactions between hosts with the intent to identify
the application of origin. We first provide a classifica-
tion using only the 4-tuple (IP addresses and ports),

and then we refine the final classification, by devel-
oping heuristics that exploit additional flow informa-
tion, such as the number of packets or bytes trans-
ferred as well as the transport protocol. For each ap-
plication, we capture host behavior using empirically
derived patterns. We represent these patterns using
graphs, which we call graphlets. Having a library of
these graphlets, we then seek for a match in the be-
havior of a host under examination.

We want to stress that throughout our approach, we treat
the port numbers as indexes without any application-related
information. For example, we count the number of distinct
ports a host uses, but we do not assume in any way that the
use of port 80 signifies web traffic.

While the preceding levels are presented in order of in-
creasing detail, they are equally significant. Not only anal-
ysis at each level will benefit from the knowledge acquired
in the previous level, but also the classification depends on
the unveiled “cross-level” characteristics. However, the final
classification of flows into applications cannot be achieved
without examination of the application level characteristics.

A key advantage of the proposed approach is its tunability.
The strictness of the classification criteria can be tailored to
the goal of the measurement study. These criteria can be
relaxed or tightened to provide results at different points in
the trade off between the completeness of the classification
versus its accuracy.

BLINC provides two types of output. First, it reports
aggregate per-class statistics, such as the total number of
packets, flows and bytes. Second, it produces a list of all
flows (5-tuple) tagged with the corresponding application
for every time interval. Furthermore, BLINC can detect
unknown or non-conformant hosts and flows (section 5).

Throughout the remaining of this section, we will present
characteristic samples of behaviors at each level as seen in
our traces. For the sake of presentation, we will only demon-
strate examples for a limited time-interval of one of the
traces (5 or 15 minutes); however, these observations were
typical for all our traces.

4.2 Classification at the social level
We identify the social role of each host in two ways. First,

we focus on its popularity, namely the number of distinct
hosts it communicates with. Second, we detect communities
of hosts by identifying and grouping hosts that interact with
the same set of hosts. A community may signify a set of
hosts that participate in a collaborative application, or offer
a service to the same set of hosts.

Examining the social behavior of single hosts. The
social behavior of a host refers to the number of hosts this
particular host communicates with. To examine variations
in host social behavior, Fig. 1 presents the complementary
cumulative distribution function (CCDF) of the host popu-
larity. Based on payload classification from section 3, we dis-
play four different CCDFs corresponding to different types
of traffic, namely web, p2p, malware (e.g., failed nonpay-
load connections on known malware ports), and mail. In all
cases, the majority of sources appear to communicate with
a small set of destination IPs.

In general, the distribution of the host popularity cannot
reveal specific rules in order to discriminate specific applica-
tions, since it is highly dependent upon the type of network,
link or even the specific IPs. However, this distribution al-

100 101 102 103 10410-5

10-3

100

P[
X>

x]

Number of Destination IPs
100 101 102 103 10410-5

10-3

100

P[
X>

x]

Number of Destination IPs

100 101 102 103 10410-5

10-3

100

P[
X>

x]

Number of Destination IPs
100 101 102 103 10410-5

10-3

100

P[
X>

x]

Number of Destination IPs

mailmalw

webp2p

Figure 1: Complementary cumulative distribution function

of destination IP addresses per source IP for 15 minutes of

the UN1 trace for four different applications.

lows us to distinguish significant differences among applica-
tions. For example, hosts interacting with a large number
of other hosts in a short time period appear to either par-
ticipate in a p2p network or constitute malicious behavior.
In fact, the malware curve, appears flat below 100 destina-
tion IPs, denoting the presence of a large number of possible
address-space scans, where a number of sources has the same
number of destination IPs during a specific time interval.

Detecting communities of hosts. Social behavior of
hosts is also expressed through the formation of communities
or clusters between sets of IP addresses. Communities will
appear as bipartite cliques in our traces, like the one shown
in Fig. 2. The bipartite graph is a consequence of the single
observation point. Interactions between hosts from the same
side of the link are not visible, since they do not cross the
monitored link. Communities in our bipartite graph can be
either exact cliques where a set of source IPs communicates
with the exact same set of destination IPs, or approximate
cliques where a number of the links that would appear in a
perfect clique is missing. Communities of interest have also
been studied in [1], where a community is defined by either
the popularity of a host or frequency of communications
between hosts. Our definition of community is targeted to
groups of hosts per application type.

D
es

tin
at

io
n

So
ur

ce

Figure 2: An example of a community in our traces: the

graph appears as an approximate bipartite clique.

Identifying the communities is far from trivial, since iden-
tifying maximal cliques in bipartite graphs is an NP-Complete
problem. However, there exist polynomial algorithms for
identifying the cross-associations in the data mining con-
text [3]. Cross-association is a joint decomposition of a bi-
nary matrix into disjoint row and column groups such that
the rectangular intersections of groups are homogeneous or
formally approximate a bipartite clique. In our case, this bi-

nary matrix corresponds to the interaction matrix between
the source and destination IP addresses in our traces.

Figure 3: Communities of on-line game players appear as

highly connected clusters in the interaction matrix after ap-

plying the cross-associations algorithm (UN1 trace, 5mins).

To showcase how communities can provide interesting fea-
tures of host behavior, we apply the cross association algo-
rithm to gaming traffic for a small time period in one of
our traces (a 5-minute interval of the UN1 trace) and we
successfully identify communities of gamers. Specifically,
Fig. 3 presents the interaction matrix after the execution of
the cross-association algorithm. The axes present source (x-
axis) and destination (y-axis) IPs (350 total IPs), while the
matrix is essentially the original interaction matrix shifted
in such a way so that strongly connected components appear
clustered in the same area. The horizontal and vertical lines
display the boundaries of the different clusters. Specifically,
we observe two major clusters: First, three source IPs com-
municating with a large number of destination IP addresses
although not an exact clique (at the bottom of Fig. 3, x-
axis:0-280, y-axis:347-350). Second, an exact clique of five
hosts communicating with the exact same 17 destination IPs
(x-axis:280-285, y-axis:300-317).

In general, we study three different types of communities,
according to their deviation from a perfect clique:

“Perfect” cliques: a hint for malicious flows. While the pre-
vious example displays a perfect clique in gaming traffic, we
find that perfect cliques are mostly signs of malicious behav-
ior. In our analysis, we identify a number of hosts commu-
nicating with the exact same list of IP addresses (approxi-
mately 250 destination IPs in 15 minutes). Further analysis
revealed that these cases represented malicious traffic, such
as flows for the Windows RPC exploit and Sasser worm.

Partial overlap: collaborative communities or common in-
terest groups. In numerous cases, only a moderate number
of common IP addresses appear in the destination lists for
different source IPs. These cases correspond to peer-to-peer
sources, gaming and also clients that appear to connect to
the same services at the same time (e.g., browsing the same
web pages, or streaming).

Partial overlap within the same domain: service “farms”.
Closer investigation of partial overlap revealed hosts inter-
acting with a number of IP addresses within the same do-
main, e.g., IP addresses that differ only in the least signif-
icant bits. Payload analysis of these IPs revealed that this
behavior is consistent with service “farms”: multi-machine
servers that load-balance requests of a host to servers within
the same domain. We find that service “farms” were used
to offer web, mail, streaming, or even dns services.

Figure 4: Number of source ports versus number of flows

per source IP address in the UN1 trace for a 15-minute in-

terval for four different applications. In client-server appli-

cations (web,ftp,mail), most points fall on the diagonal or on

horizontal lines for small values in the y-axis (number of used

ports). In p2p, points are clustered in-between the diagonal

and the x-axis.

The richness of the information that we discover at this
level and the social role of a host is an interesting topic in
its own sake. However, further analysis of social behavior
and its implications is out of the scope of this work.

Conclusion and Rules: Based on the above analysis,
we can infer the following regarding the social behavior of
network hosts. First, “neighboring” IPs may offer the same
service (e.g., server farms). Thus, identifying a server might
be sufficient to classify such “neighboring” IPs under the
same service (if they use the same service port). Second, ex-
act communities may indicate attacks. Third, partial com-
munities may signify p2p or gaming applications. Finally,
most IPs act as clients having a minimum number of desti-
nation IPs. Thus, focusing on the identification of the small
number of servers can retrospectively pinpoint the clients,
and lead to the classification of a large portion of the traffic,
while limiting the amount of associated overhead. Identifi-
cation of server hosts is accomplished through the analysis
of the functional role of the various hosts.

4.3 Classification at the functional level
At this level, we identify the functional role of a host:

hosts may primarily offer services, use services, or both.
Most applications operate with the server-client paradigm.
However, several applications interact in a collaborative way,
with p2p networks being the prominent example.

We attempt to capture the functional role by using the
number of source ports a particular host uses for communi-
cation. For example, let us assume that host A provides a
specific service (e.g., web server) and we examine the flows
where A appears as a source. Then, A is likely to use a sin-
gle source port in the vast majority of its flows. In contrast,
if A were a client to many servers, its source port would
vary across different flows. Clearly, a host that participates
in only one or a few flows would be difficult to classify.

To quantify how the number of used source ports may dis-
tinguish client from server behavior, we examine the distri-
bution of the source ports a host uses in our traces. In Fig. 4,
we plot the number of flows (x-axis) versus the number of

source ports (y-axis) each source IP uses for 15 minutes of
our UN1 trace1. Each subplot of Fig. 4 presents traffic from
a different application as identified by payload analysis. We
identify three distinct behaviors:

Typical client-server behavior: Client-server behav-
ior is most evident for web traffic (Fig. 4, top-right), where
most points fall either on the diagonal or on horizontal lines
parallel to the x-axis for small values of y (less or equal to
two). The first case (where the number of ports is equal to
the number of distinct flows) represents clients that connect
to web servers using as many ephemeral source ports as the
connections they establish. The latter case reflects the ac-
tual servers that use one (y = 1, port 80, HTTP) or two
(y = 2, port 80, HTTP and 443, HTTPS) source ports for
all of their flows.

Typical collaborative behavior: In this case, points
are clustered between the x-axis and the diagonal, as shown
in the p2p case in Fig. 4 (top-left), where discrimination
between client and server hosts is not possible.

Obscure client-server behavior: In Fig. 4, we plot the
behavior for the case of mail and ftp. While mail and ftp
fall under the client-server paradigm, the behavior is not as
clear as in the web case for two reasons:

• The existence of multiple application protocols support-
ing a particular application, such as mail. Mail is
supported by a number of application protocols, i.e.,
SMTP, POP, IMAP, IMAP over SSL, etc., each of
which uses a different service port number. Further-
more, mail servers often connect to Razor [17] databases
through SpamAssassin to report spam. This practice
generates a vast number of small flows destined to Ra-
zor servers, where the source port is ephemeral and the
destination port reflects the SpamAssassin service. As
a result, mail servers may use a large number of dif-
ferent source ports.

• Applications supporting control and data streams, such
as ftp. Discriminating client-server behavior is fur-
ther complicated in cases of separate control and data
streams. For example, passive ftp, where the ftp server
uses as source ports a large number of ephemeral ports
different than the service ports (20,21), will conceal the
ftp server.

Conclusion and Rules: If a host uses a small num-
ber of source ports, typically less or equal to two, for every
flow, then this host is likely providing a service. Our mea-
surements suggest that if a host uses only one source port
number, then this host reflects a web, a chat or a SpamAs-
sassin server in case of TCP, or falls under the Network
Management category in case of UDP.

4.4 Classification at the application level
In this level, we combine knowledge from the two previ-

ous levels coupled with transport layer interactions between
hosts in order to identify the application of origin. The ba-
sic insight exploited by our methodology is that interactions
between network hosts display diverse patterns across the
various application types. We first provide a classification
using only the 4-tuple (IP addresses and ports), and then,
we refine it using further information regarding a specific
flow, such as the the protocol or the average packet size.

1The source {IP, port} pair is used without loss of generality.
Observations are the same in the destination {IP, port} case.

We model each application by capturing its interactions
through empirically derived signatures. We visually capture
these signatures using graphlets that reflect the “most com-
mon” behavior for a particular application. A sample of
application-specific graphlets is presented in Fig. 5. Each
graphlet captures the relationship between the use of source
and destination ports, the relative cardinality of the sets of
unique destination ports and IPs as well as the magnitude
of these sets.

Having a library of these graphlets, allows us to classify
a host by identifying the closest matching behavior. Since
unknown behavior may match several graphlets, the success
of the classification will then have to rely on operator-defined
thresholds to control the strictness of the match.

In more detail, each graphlet has four columns correspond-
ing to the 4-tuple source IP, destination IP, source port
and destination port. We also show some graphlets with
5 columns, where the second column corresponds to the
transport protocol (TCP or UDP) of the flow. Each node2

presents a distinct entry to the set represented by the cor-
responding column, e.g., 135 in graphlet 5(a) is an entry in
the set of destination ports. The lines connecting nodes im-
ply that there exists at least one flow whose packets contain
the specific nodes (field values). Dashed lines indicate links
that may or may not exist and are not crucial to the iden-
tification of the specific application. Note that while some
of the graphlets display port numbers, the classification and
the formation of graphlets do not associate in any way
a specific port number with an application.

The order of the columns in our visual representation of
each graphlet mirrors the steps of our multilevel approach.
Our starting field, the source IP address, focuses on the be-
havior of a particular host. Its social behavior is captured
in the fanout of the second column which corresponds to
all destination IPs this particular source IP communicates
with. The functional role is portrayed by the set of source
port numbers. For example, if there is a “knot” at this level
the source IP is likely to be a server as mentioned before.
Finally, application types are distinguished using the rela-
tionship of all four different fields. Capturing application-
specific interactions in this manner can distinguish diverse
behaviors in a rather straightforward and intuitive manner
as shown in Fig. 5.

Let us highlight some interesting cases of graphlets. The
top row of Fig. 5 displays three types of attacks (graphlets
(a)(b)(c)). Fig. 5(a) displays a typical attack where a host
scans the address space to identify vulnerability at a partic-
ular destination port. In such cases, the source host may or
may not use different source ports, but such attacks can be
identified by the large number of flows destined to a given
destination port. A similar but slightly more complicated
type of attack common in our traces involves hosts attempt-
ing to connect to several vulnerable ports at the same des-
tination host (Fig. 5(b)). Similarly, we show the graphlet of
typical port scan of a certain destination IP in Fig. 5(c).

The power of our method lies in the fact that we do not
need to know the particular port number ahead of time. The
surprising number of flows at the specific port will raise the
suspicion of the network operator. Such behaviors are also
identifiable by tools like AutoFocus [6], which however do
not target traffic classification.

2The term node indicates the components of a graphlet,
while the term host indicates an end-point in a flow.

srcIP dstIP srcPort dstPort

135

ATTACK

srcIP dstIP srcPort dstPort

135

6129

2745

1025

ATTACK

srcIP dstIP srcPort dstPort

ATTACK

srcIP dstIP srcPort dstPort

80

WEB (TCP)
GAMES (UDP)

(a) (b) (c) (d)
srcIP dstIP srcPort dstPort

4661

P2P (TCP, UDP)
CHAT (TCP)

srcIP dstIP srcPort dstPort

GAMES/UDP

4821

srcIP dstIP srcPort dstPort

DNS/UDP

53 53

srcIP dstIP srcPort dstPort

20

21

FTP
(e) (f) (g) (h)

srcIP dstIP srcPort dstPort

6970

STREAMING/REAL

554

srcIP dstIP srcPort dstPort

MAIL

113

2525

srcIP

P2P

dstIP srcPort dstPort

6346

Proto

6

17

srcIP dstIP srcPort dstPortProto

6

17

143

110

25

53

113

with DNS
MAIL server

(i) (j) (k) (l)

Figure 5: Visual representation of transport-layer interactions for various applications: port numbers are provided for com-

pleteness but are not used in the classification.

In some cases, hosts offering services on certain ports ex-
hibit similar behavior. For instance, p2p (the server side),
web, and games all result in the same type of graphlet : a sin-
gle source IP communicates with multiple destinations using
the same source port (the service port) on several different
destination ports. In such cases, we need further analysis to
distinguish between applications. First, we can use quan-
titative criteria such as the relative cardinality of the sets
of destination ports versus destination IPs. As we will de-
scribe later in the section, the use of the transport protocol,
TCP versus UDP, can further help to discriminate between
applications with similar or complicated graphlets.

Applications such as ftp, streaming or mail present more
complicated graphlets, exhibiting “cris-cross” flow interac-
tions (Fig. 5(h)(i)(j)). These graphlets have more than one
service ports, or have both source and destination service
ports. In the case of ftp, the source host provides the ser-
vice at two main ports (control and data channel), whereas
other source ports represent the case of passive ftp. Stream-
ing on the other hand uses specific port numbers both at the
source and the destination side. Streaming users (destina-
tion IPs in our case) connect at the service port (TCP) of the
streaming server (control channel), while the actual stream-
ing is initiated by the server using an ephemeral random
source port to connect to a pre-determined UDP user port.
Similarly mail uses specific port numbers at the source and
destination side, yet all mail flows are TCP. Mail servers may
further use port 25 both as source or destination port across
different flows while connecting to other mail servers to for-
ward mail. As previously noted, the specific port numbers
are only listed to help with the description of these graphlets
and they are in no way considered in our algorithm.

Lastly, graphlets become even more complex when ser-
vices are offered through multiple application and/or trans-
port protocols. As an example, Fig. 5(l) presents a mail
server supporting IMAP, POP, SMTP, and ident, while also
acting as a DNS server. Knowledge of the role of the host
may assist as corroborative evidence on other services of-
fered by the same host. For instance identifying a host as
an SMTP server suggests that the same host may be offering
POP, IMAP, DNS (over UDP) or even communicate with
SpamAssassin servers.

4.5 Heuristics
Here, we present a set of final heuristics that we use to

refine our classification and discriminate complex or simi-
lar cases of graphlets. This set of heuristics has been de-
rived empirically through inspection of interactions present
in various applications in our traces.

Heuristic 1. Using the transport layer protocol.
One criterion for such a distinction is the transport layer
protocol used by the flow. The protocol information can
distinguish similar graphlets into three groups using: (a)
TCP, which includes p2p, web, chat, ftp and mail, (b) UDP,
which includes Network Management traffic and games and
(c) both protocols, which includes p2p, streaming. For ex-
ample, while graphlets for mail and streaming appear sim-
ilar, mail interactions occur only on top of TCP. Another
interesting case is shown in Fig. 5(k), where p2p protocols
may use both TCP and UDP with a single source port for
both transport protocols (e.g., Gnutella, Kazaa, eDonkey
etc.). With the exception of dns, our traces suggest that
this behavior is unique to p2p protocols.

Figure 6: Relationship between the number of destination

IP addresses and ports for specific applications per source

IP. The cardinality of the set of destination ports is larger

than the one of destination IPs reflected in points above the

diagonal for web. On the contrary, points in the p2p case fall

either on top or below the diagonal.

Heuristic 2. Using the cardinality of sets. As dis-
cussed earlier, the relative cardinality of destination sets
(ports vs IPs) is able to discriminate different behaviors.
Such behaviors may be web versus p2p and chat, or Network
Management versus gaming. Fig. 6 presents the number of
distinct destination IPs versus the number of distinct des-
tination ports for each source IP in 15 minutes of our UN2
trace, for web and p2p. In the web case, most points concen-
trate above the diagonal representing parallel connections of
mainly simultaneous downloads of web objects (many desti-
nation ports correspond to one destination IP). On the con-
trary, most points in the p2p case are clustered either close
to the diagonal (the number of destination ports is equal to
the number of destination IPs) or below (which is common
for UDP p2p communications, where the destination port
number is constant for some networks).

Heuristic 3. Using the per-flow average packet
size. A number of applications displays unique behavior
regarding packet sizes. For instance, the majority of gam-
ing, malware or SpamAssassin flows are characterized by a
series of packets of constant size. Thus, constant packet size
can discriminate certain applications. Note that it is not
the actual size that is the distinctive feature, but instead
the fact that packets have the same size across all flows; in
other words, we simply need to examine whether the aver-
age packet size per flow (e.g. the fraction of total bytes over
the number of packets) remains constant across flows.

Heuristic 4. Community heuristic. As discussed in
the social behavior of network hosts, communities offer sig-
nificant knowledge regarding interacting hosts. Thus, ex-
amining IP addresses within a domain may facilitate clas-
sification for certain applications. We apply the commu-
nity heuristic to identify “farms” of services by examining
whether “neighboring” IPs exhibit server behavior at the
source port in question.

Heuristic 5. Recursive detection. Hosts offering
specific types of services can be recursively identified by
the interactions among them (variation of the community
heuristic). For example mail or dns servers communicate
with other such servers and use the same service port both
as source or destination port across different flows. Also,
SpamAssassin servers should only communicate with mail
servers.

Heuristic 6. Nonpayload flows. Nonpayload or failed
flows usually point to attacks or even p2p networks (clients
often try to connect to IPs that have disconnected from the
p2p network). The magnitude of failed flows can hint toward
types of applications.

As previously mentioned, the strictness of classification
depends on operator-defined thresholds. These thresholds,
which implicitly originate from the structure of the graphlets
and the heuristics, include:
a) The minimum number of distinct destination IPs ob-
served for a particular host (Td) required for graphlet match-
ing (e.g., at least Td IPs are needed for a host to match the
p2p graphlet).
b) The relative cardinality of the sets of destination IPs and
ports (Tc) (e.g., for the p2p graphlet, it will define the max-
imum difference between the cardinalities of the two sets so
that the graphlet is allowed to match - Tc = 0 indicates that
the cardinalities must be equal).
c) The number of distinct packet sizes observed (Ts) (de-
fines the maximum number of distinct average packet sizes
per flow below which Heuristic 3 is considered).
d) The number of payload versus nonpayload flows (Tp) (de-
fines the maximum ratio for Heuristic 6 to be considered).
Note that these thresholds may be specific to the graphlet.

5. CLASSIFICATION RESULTS
Here, we demonstrate the performance of our approach

when applied to the traces described in section 3. Overall,
we find that BLINC is very successful at classifying accu-
rately the majority of the flows in all our traces.

We use two metrics to evaluate the success of the classifi-
cation method. The completeness measures the percent-
age of the traffic classified by our approach. In more detail,
completeness is defined as the ratio of the number of classi-
fied flows (bytes) by BLINC over the total number of flows
(bytes) indicated by payload analysis. The accuracy mea-
sures the percentage of the classified traffic by BLINC that
is correctly labeled. In other words, accuracy captures the
probability that a classified flow belongs to the class (accord-
ing to payload) that BLINC indicates. Note that both these
metrics are defined for a given time interval, which could be
either in the time scales of minutes or the whole trace, and
can be applied to each application class separately or to the
entire traffic.

The challenge for any method is to maximize both met-
rics, which however exhibit a trade-off relationship. The
number of misclassifications will increase depending on how
aggressive the classification criteria are. These criteria re-
fer to the thresholds discussed in the previous section and
can be tuned accordingly depending on the purpose of the
measurement study. In this work, the thresholds have been
tuned in the UN1 trace and applied as such in the rest of the
traces. We examine the sensitivity of our approach relative
to the classification thresholds in section 5.2.

We use the payload classification as a reference point (sec-
tion 3) to evaluate BLINC ’s performance. Given that the
payload classifier has no information to classify nonpayload
flows, such flows need to be excluded from the comparison
to level the field. Further, we have no way of characteriz-
ing “unknown” flows according to payload analysis. Conse-
quently, the total amount of traffic used to evaluate BLINC
for each trace, does not include nonpayload and unknown
(according to payload) flows, which are discussed separately

GN UN1 UN2
0

10

20

30

40

50

60

70

80

90

100

Pe
rce

nta
ge

 of
 flo

ws

Completeness
Accuracy

Figure 7: Accuracy and completeness of all classified flows.

For UN traces more than 90% of the flows are classified with

approximately 95% accuracy. In GN trace, we classify ap-

proximately 80% of the flows with 99% accuracy.

16:50 00:10 08:40 17:00
0

100

200

300

400

500

600

Time

16:50 00:10 08:40 17:00
0

1

2

3

4

5

6

7

Time

Fl
ow

s
(x

10
00

)

G
by

te
s

UN1 UN1

BLINC
BLINC

accurate

Payload
Payload

BLINC

BLINC
accurate

Figure 8: Accuracy and completeness of BLINC in UN1

trace in time (5-min intervals). The top line presents flows

(bytes) classified using the payload, the middle line flows

(bytes) classified by BLINC, and the bottom line presents

flows (bytes) classified correctly by BLINC. The three lines

coincide visually indicating high completeness and accuracy.

at the end of this section. However, our approach is even
able to characterize flows where payload analysis fails.

5.1 Overall completeness and accuracy
BLINC classifies the majority of the traffic with high ac-

curacy. In Fig. 7, we plot the completeness and accuracy
for the entire duration of each trace. In the UN traces,
BLINC classifies more than 90% of the flows with approxi-
mately 95% accuracy. For the GN trace, BLINC classifies
approximately 80% flows with 99% accuracy.

BLINC closely follows traffic variation and patterns in
time. To stress test our approach, we examine the classifica-
tion performance across smaller time intervals. In Fig. 8, we
plot flows (left) and bytes (right) classified with BLINC ver-
sus the payload classifier, computed over 5-minute intervals
for the UN1 dataset. The top line presents all classified flows
as identified by the payload classifier, the middle line repre-
sents flows classified by BLINC, and the bottom line flows
classified correctly. The performance seems consistently ro-
bust over time. In terms of bytes, completeness ranges from
70%-85% for the UN traces and 95% for the GN trace with
more than 90% accuracy. It is interesting to note that the
difference between BLINC and payload in terms of bytes is
due to a small number of large volume flows. In these flows,
both source and destination hosts do not present sufficient
number of flows in the whole trace and thus cannot be clas-
sified with BLINC without compromising the accuracy.

W M FT NM
0

10

20

30

40

50

60

70

80

90

100

Pe
rce

nta
ge

 of
 flo

ws

GN UN2UN1

W P M NM
0

10

20

30

40

50

60

70

80

90

100

W P CH NM
0

10

20

30

40

50

60

70

80

90

100

Completeness
Accuracy

Figure 9: Completeness and accuracy per application type.

For each trace, we show the four most dominant applications,

which contribute more than 90% of the flows. W:web, P:p2p,

FT:ftp, M:mail, CH:chat, NM: network management.

P2P (Td = 4) P2P (Td = 1) All (Td = 4) All (Td = 1)
0

10

20

30

40

50

60

70

80

90

100

Pe
rce

nta
ge

 of
 flo

ws

Completeness
Accuracy

Figure 10: Trade-off of accuracy versus completeness for

p2p and the total number of flows. Decreasing the number of

samples required to detect p2p behavior increases complete-

ness but decreases accuracy.

High per-application accuracy. Fig. 9 presents the accu-
racy and completeness for each of the four dominant ap-
plications of each trace, collectively representing more than
90% of all the flows. In all cases, accuracy is approximately
80% or more and completeness in most cases exceeds 80%.
Note that per-class accuracy and completeness depends on
the total amount of traffic in each class. For example, web-
related metrics always exceed 90% in UN traces since web
is approximately one third of all traffic. In GN where web
is approximately 15% of the total bytes, completeness is ap-
proximately 70% (99% accuracy).

5.2 Fine-tuning BLINC
The trade-off between accuracy and completeness directly

relates to the “strictness” of the classification criteria as dis-
cussed in section 4. Here, we study the effect of one of the
thresholds we use in our approach. In classifying a host as a
p2p candidate, we require that the host participates in flows
with at least Td distinct destination IPs. Setting Td to a low
value will increase completeness since BLINC will classify
more hosts and their flows as p2p. However, the accuracy of
the classification may decrease.

In Figure 10, we plot the accuracy and completeness for
p2p flows (left columns) and the total number of classified
flows (right columns) for two different values of Td: Td = 1
and Td = 4. We observe that by reducing the threshold, the
fraction of classified flows increases, whereas the fraction of
correctly identified flows drops from 99% to 82%. Note that
the total accuracy is also affected (as previously “unknown”
flows are now (mis)classified) but the decrease for total ac-
curacy is much smaller than in the p2p case dropping from
approximately 98% to 93%. In all previous examples, we
have used a value of Td = 4 opting for accuracy.

Figure 11: Histogram of destination ports for flows classi-

fied under address space scans for GN and UN2 traces. BLINC

successfully discriminates major address space scans at ports

of “well-known” worms or exploits.

This flexibility is a key advantage of our approach. We
claim that, for a network operator, it may be more beneficial
if BLINC opts for accuracy. Misclassified flows are harder
to detect within a class of thousands of flows, whereas un-
known flows can potentially be examined separately by the
operator by using additional external information such as
BLINC ’s social and functional role reports, or application
specifications and consultations with other operators.

5.3 Characterizing “unknown” flows
In some cases, our approach goes beyond the capabilities

of the payload classification. Although we unavoidably use
payload analysis as benchmark, payload classification fails in
two cases: a) it cannot characterize nonpayload flows (zero
payload packets), and b) it cannot profile traffic originating
from applications that are not analyzed a priori. In contrast,
BLINC has the ability to uncover transport layer behavior
that may allow for the classification of flows originating from
previously unknown applications that fall under our graphlet
modeled types (e.g., a new p2p protocol).

Nonpayload flows: The multilevel analysis of BLINC
highlighted that the vast majority of nonpayload flows were
due to IP address scans and port scans. Fig. 11 presents the
histogram of destination ports in the flows that were clas-
sified as address space scans for two different traces using
the attack graphlets (fig. 5 (a),(b),(c)). Inspecting the peaks
of this histogram shows that BLINC successfully identified
destination ports of well-known worms or exploits, some of
which are highlighted in the plot for visualization purposes.
In total, BLINC classified approximately 26M flows as ad-
dress space scans in our UN2 trace. In addition, we clas-
sified approximately 100K flows as port scanning on 90 IP
addresses in the same trace. Note that we did not need to
use the port number of the exploits or any other external
information. On the contrary, BLINC helped us identify
the vulnerable ports by showing ports with unusually high
traffic targeted at many different destinations IPs. However,
our approach cannot in any way replace IDS systems such as
SNORT [21] or Bro [2]. BLINC can only provide hints to-
ward malicious behavior by detecting destination ports with
high activity of failed flows.

Unknown applications: BLINC has the ability to iden-
tify previously “unknown” protocols and applications, since
it captures the underlying behavior of application protocols.
Indeed, during our analysis, BLINC identified a new p2p
protocol (classified as unknown with payload analysis) run-
ning on the PlanetLab network (three PlanetLab nodes are
behind our monitoring point). This p2p application corre-

sponded to the Pastry project [16], which we identified after
inspecting the payload, while we were examining our false
positives. BLINC also identified a large number of gaming
flows which were classified as unknown by payload analysis.

6. DISCUSSION
Implementing BLINC is not as straightforward as the

presentation may have let us believe. We now present the
implementation challenges and issues and discuss BLINC ’s
properties and limitations.

6.1 Implementation issues
We highlight here two major functions of the implementa-

tion: (a) the generation of graphlets, and (b) the matching
process of an unclassified host against the graphlets.

A. Creating the graphlets. In developing the graphlets, we
used all possible means available: public documents, empiri-
cal observations, trial and error. An automated way of defin-
ing new graphlets is an interesting and challenging problem
that is left for future work. We typically followed the steps
below to create the majority of our graphlets: (i) detection
of the existence of a new application (which could be trig-
gered from unusual amounts of unknown traffic), (ii) manual
identification of the hosts involved in the unknown activity,
(iii) derivation of the graphlet according to the interactions
observed, and (iv) verification using human supervision and
partially BLINC. Graphlet generation should be executed
periodically in an off-line fashion.

B. The matching process among different graphlets. To
classify unknown behavior, we attempt to match graphlets
starting from the more specific to the more general ones.
This matching policy resolves conflicts originating from sim-
ilar graphlets efficiently and speeds up the classification.

C. Extensibility: adding new graphlets. As mentioned in
previous sections, BLINC is extensible by design. How-
ever, the addition of a graphlet requires careful considera-
tion, since one needs to eliminate race conditions or over-
laps between new and existing graphlets. First, the graphlet
matching order must be carefully examined before inserting
a new graphlet. Second, if the new graphlet presents signif-
icant similarities with existing graphlets, additional distin-
guishing features need to be derived.

Currently, our implementation of BLINC utilizes three
special purpose data structures that capture the diverse ap-
plication behavior across the graphlets in the library. Due
to space limitations, we describe the data structures along
with the pseudocode that performs the actual mapping of
flows into applications in the technical report [10].

Computational Performance. Our first version of BLINC
appears sufficiently efficient to allow for a real-time imple-
mentation alongside currently available flow collectors. De-
spite the fact that the current C++ implementation has
hardly been optimized, BLINC classified our largest and
longest (34-hour) UN2 trace in less than 8 hours (flow ta-
bles were computed over 5 minute intervals); processing took
place on a DELL PE2850 with a Xeon 3.4GHz processor and
2GB of memory, of which maximum memory usage did not
surpass 40%.

6.2 Limitations
Classifying traffic “in the dark” has several limitations.

Note that many of those limitations are not specific to our
approach, but are inherent to the problem.

BLINC cannot identify specific application sub-types: Our
technique is capable of identifying the type of an application
but may not be able to identify distinct applications. For
instance, we can identify p2p flows, but it is unlikely that
we can identify the specific p2p protocol (e.g., eMule versus
Gnutella) with packet header information alone. Naturally,
this limitation could be easily addressed, if we had addi-
tional information, such as the specifications of the different
protocols, or in the presence of distinctive behavior at the
transport layer. We believe that for many types of studies
and network management functions, this finer classification
may not be needed. For example, the different instances
of the same application type may impose the same require-
ments on the network infrastructure.

Encrypted transport layer headers: Our entire approach is
based on relationships among the fields of the packet header.
Consequently, our technique has the ability to characterize
encrypted traffic as long as, the encryption is limited to the
transport layer payload. Should layer-3 packet headers be
also encrypted, our methodology cannot function. However,
this is probably true for most classification methods.

Handling NATs: BLINC may require modification to clas-
sify traffic crossing Network Address Translators (NATs).
Since classification in BLINC is mostly based on identify-
ing the servers (profiling the flow patterns on the server
port in graphlets), NATs should not affect the classification
as long as the server is not behind the NAT. Even in this
case, BLINC should be able to differentiate between multi-
ple services behind NATs through the service port number.
A particularly challenging scenario is when NATed hosts of-
fer simultaneously more than one services with control and
data streams (e.g., ftp and streaming service). Further anal-
ysis of BLINC ’s performance when NATs are present would
be an interesting extension of this work.

Point of observation: In this work, BLINC is evaluated
in traces collected at the edge of the network. Intuitively,
BLINC is designed to describe generic protocol behavior
and should not be affected by the monitoring point. Never-
theless, applying BLINC at other points of the network, e.g.,
the backbone, may present different challenges, advantages
and complications. For example, larger traffic sample per
host will facilitate accurate classification of servers, popular
hosts and large communities. On the other hand, individ-
ual user behavior might be harder to discern, while back-
bone data may reveal complex behavior not seen towards
the edge. To evaluate BLINC ’s performance under such
conditions we would require publicly available payload data
from multiple points on the Internet. Since no such data is
currently available, we leave this task for future work.

7. CONCLUSIONS
In this paper, we propose BLINC, a traffic classification

approach with significantly different philosophy compared to
existing efforts. The novelty of BLINC lies in two key fea-
tures: First, we classify hosts by capturing the fundamental
patterns of their behavior at the transport layer. Second,
our methodology defines and operates at three levels of host
behavior: (i) the social level, (ii) the functional level, and
(iii) the application level. Additionally, BLINC is tunable
striking the desired point of balance in the trade-off between
the percentage of classified traffic and its accuracy.

We applied BLINC on three real traces with very promis-
ing results. BLINC classified approximately 80%-90% of

the total number of flows in each trace with 95% accuracy.
In terms of individual application types, BLINC classified
correctly more than 80% of the flows of each dominant ap-
plication in our traces with an accuracy of at least 80%.
Finally, BLINC identified malicious behavior or previously
“unknown” applications without having a priori knowledge
or port specific information.

Practical impact and the grand vision. We envision our
approach as a flexible tool that can provide useful infor-
mation for research or operational purposes in an evolving
network with dynamic application behavior. By focusing
on the fundamental communication behavior, our approach
provides the first step towards obtaining understanding of
traffic traces that transcends the technical specifications of
the applications.

Acknowledgments
The authors are thankful to Dr. Andrew Moore for facili-
tating this study and Dr. Petros Faloutsos for his valuable
suggestions and constructive criticism.

8. REFERENCES
[1] B. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck,

and J. Van der Merwe. Analysis of Communities Of Interest in
Data Networks. In PAM, 2005.

[2] Bro. http://bro-ids.org/.

[3] D. Chakrabarti, S. Papadimitriou, D. Modha, and C. Faloutsos.
Fully Automatic Cross-associations. In KDD, August 2004.

[4] K. Claffy, H.-W. Braun, and G. Polyzos. A Parametrizable
methodology for Internet traffic flow profiling. In JSAC, 1995.

[5] C. Dewes, A. Wichmann, and A. Feldmann. An analysis of
Internet chat systems. In ACM/SIGCOMM IMC, 2003.

[6] C. Estan, S. Savage, and G. Varghese. Automatically Inferring
Patterns of Resource Consumption in Network Traffic. In
SIGCOMM, 2003.

[7] F. Hernandez-Campos, A. B. Nobel, F. D. Smith, and
K. Jeffay. Statistical Clustering of Internet Communication
Patterns. Computing Science and Statistics, 35, July 2003.

[8] T. Karagiannis, A.Broido, M. Faloutsos, and kc claffy.
Transport layer identification of P2P traffic. In
ACM/SIGCOMM IMC, 2004.

[9] T. Karagiannis, A.Broido, N.Brownlee, kc claffy, and
M.Faloutsos. Is P2P dying or just hiding? In IEEE Globecom
2004, GI.

[10] T. Karagiannis, D. Papagiannaki, and M. Faloutsos. BLINC:
Multilevel Traffic Classification in the Dark. Technical report,
2005. http://www.cs.ucr.edu/∼tkarag/papers/BLINC TR.pdf.

[11] K. Keys, D. Moore, R. Koga, E. Lagache, M. Tesch, and
k. claffy. The architecture of the CoralReef: Internet Traffic
monitoring software suite. In PAM, 2001.

[12] A. McGregor, M. Hall, P. Lorier, and J. Brunskill. Flow
Clustering Using Machine Learning Techniques. In PAM, 2004.

[13] A. Moore, J. Hall, C. Kreibich, E. Harris, and I. Pratt.
Architecture of a Network Monitor. In PAM, 2003.

[14] A. Moore and K. Papagiannaki. Toward the Accurate
Identification of Network Applications. In PAM, March 2005.

[15] A. W. Moore and D. Zuev. Internet Traffic Classification Using
Bayesian Analysis Techniques. In ACM SIGMETRICS, 2005.

[16] Pastry. http://research.microsoft.com/∼antr/Pastry/.

[17] Razor. http://razor.sourceforge.net/.

[18] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.
Class-of-Service Mapping for QoS: A Statistical
Signature-based Approach to IP Traffic Classification. In
ACM/SIGCOMM IMC, November 2004.

[19] S. Sen, O. Spatscheck, and D. Wang. Accurate, Scalable
In-Network Identification of P2P Traffic Using Application
Signatures. In WWW, 2004.

[20] S. Sen and J. Wang. Analyzing Peer-to-Peer Traffic Across
Large Networks. In ACM/SIGCOMM IMW, 2002.

[21] SNORT. http://www.snort.org/.

[22] tcpdump. http://www.tcpdump.org/.

[23] K. Xu, Z. Zhang, and S. Bhattacharya. Profiling Internet
Backbone Traffic: Behavior Models and Applications. In
SIGCOMM, 2005.

