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ABSTRACT

Selective genotyping and phenotyping strategies can reduce the cost of QTL (quantitative trait
loci) experiments. We analyze selective genotyping and phenotyping strategies in the context
of multi-locus models, and non-normal phenotypes. Our approach is based on calculations of
the expected information of the experiment under different strategies. Our central conclusions
are the following. (1) Selective genotyping is effective for detecting linked and epistatic QTL as
long as no locus has a large effect. When one or more loci have large effects, the effectiveness of
selective genotyping is unpredictable – it may be heightened or diminished relative to the small
effects case. (2) Selective phenotyping efficiency decreases as the number of unlinked loci used for
selection increases, and approaches random selection in the limit. However, when phenotyping is
expensive, and a small fraction can be phenotyped, the efficiency of selective phenotyping is high
compared to random sampling, evenwhen over 10 loci are used for selection. (3) For time-to-event
phenotypes such as lifetimes, which have a long right tail, right-tail selective genotyping is more
effective than two-tail selective genotyping. For heavy-tailed phenotype distributions, such as the
Cauchy distribution, the most extreme phenotypic individuals are not the most informative. (4)
When the phenotype distribution is exponential, and a right-tail selective genotyping strategy is
used, the optimal selection fraction (proportion genotyped) is less than 20% or 100% depending on
genotyping cost. (5) For time-to-event phenotypeswhere followup cost increases with the lifetime
of the individual, we derive the optimal followup time that maximizes the information content of
the experiment relative to its cost. For example, when the cost of following up an individual for
the average lifetime in the population is approximately equal to the fixed costs of genotyping and
breeding, the optimal strategy is to follow up approximately 70% of the population.

INTRODUCTION

Quantitative trait locus (QTL) experiments provide valuable clues for finding elements respon-
sible for quantitative trait variation (LANDER AND BOTSTEIN, 1989; LYNCH AND WALSH, 1998;
RAPP, 2000). For best results, QTL experiments require large numbers of individuals that need
to be genotyped as well as phenotyped for the quantitative trait of interest. Because this can be a
costly endeavor, investigators can employ cost-saving strategies such as selective genotyping, in
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which a selected portion of the phenotyped individuals are genotyped (LEBOWITZ ET AL., 1987;
LANDER AND BOTSTEIN, 1989; DARVASI AND SOLLER, 1992), and selective phenotyping, in which
a selected portion of the genotyped individuals are phenotyped (JIN ET AL., 2004). The efficacy
of these strategies has been evaluated in simplified settings where a single locus contributes to
the phenotype, and when the phenotype (conditional on genotype) is normally distributed. It is
therefore unclear how effective these strategies would be in the broader context of complex trait
genetic analyses. In such settings, we suspect that multiple loci, possibly linked and epistatic,
contribute to the trait, and the trait distribution may be non-normal.

SEN ET AL. (2005) examined the effectiveness of selective genotypingwhen two unlinked additive
QTL contribute to a normally-distributed trait. Because epistasis appears to be a common and im-
portant feature of many complex traits (FRANKEL AND SCHORK, 1996), it is crucial to investigate
whether epistasis can also be detected in selectively genotyped samples. Experimental studies ap-
pear to be divided over this issue, with some studies reporting epistasis in selectively genotyped
samples (OHNO ET AL., 2000; ABASHT AND LAMONT, 2007) while others failed to detect it (CARR

ET AL., 2006) and cited concerns about loss of power. Thus, the generality of these experimental
observations require further theoretical exploration.

The potential value of selective genotyping has also been recognized in human association studies,
and is currently being actively researched (CHEN ET AL., 2005; WALLACE ET AL., 2006; HUANG

AND LIN, 2007). Interest in this application is primarily motivated by the fact that these studies re-
quire dense high-throughput genotyping which can be expensive. However, similar to QTL stud-
ies in experimental crosses, the theoretical results have focused primarily on normally-distributed
phenotypes. In this context, GALLAIS ET AL. (2007) compared one-tail and two-tail selective geno-
typing and showed that the latter is superior. However, many interesting traits are non-normally
distributed. Time-to-event phenotypes, such as survival times or tumor onset, are important cases
when the trait is expected to be non-normally distributed, usually with a long right tail. In these
situations, individuals in the right tail are likely to be genetically more informative, and it is un-
clear which type of selection strategy (one-tail, two-tail, or a different strategy) should be applied
in this setting. Moreover, from a cost-saving perspective the additional problem arises that the
most informative individuals (those in the right tail) will also be the most expensive to phenotype
because of the cost of following the individuals until the event of interest has been observed. The
investigator must therefore decide to either stop following up, which results in reduced cost and
a loss of information due to censoring, or to follow up the entire sample until all events have been
observed, which implies greater cost but a minimal loss of information. As far as we are aware,
these tradeoffs have not been studied.

In applications where phenotyping is more expensive than genotyping, (JIN ET AL., 2004) pro-
posed selective phenotyping as an approach to maximize the genetic diversity of individuals
selected for phenotyping in a genomic region of interest. Their simulations showed that, for a
fixed number of phenotyped individuals, this approach increases power relative to a random
sample. Although this gain in power diminishes when multiple genomic regions are considered,
it continues to outperform the random sample alternative. This approach is particularly attrac-
tive for genetical genomics studies (JANSEN AND NAP, 2001) where the traits of interest consist
of genomewide molecular measurements (e.g. transcriptome, metabolome, proteome) obtained
through microarray and mass spectrometry technology. In the specific case of genetical genomics
studies, (FU AND JANSEN, 2006) proposed a related selective phenotyping strategy which seeks to
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increase power by co-hybridizing the transcripts of the most genetically distant pairs of individu-
als in the sample onto the same array.

The above-mentioned experimental design problems have one common feature – they involve
data gathering strategies (selective genotyping, selective phenotyping, choice of followup period)
with a tradeoff between information and experimental cost. SEN ET AL. (2005) showed that by
adopting an information perspective, one can formally study these tradeoffs in QTL studies. In
that paper, the information approach was used to explain known results, and obtain some new
ones. The present work extends these ideas and explores several unresolved issues in data gath-
ering strategies in QTL studies.

Our paper is organized as follows. In the next section we briefly review the theory underlying our
information perspective. In the following section we present the results obtained by applying that
theory. We examine the efficacy of selective genotyping and phenotyping in the context of multi-
locus models when the phenotype is normally distributed. Then we study selective genotyping
when the trait may not be normally distributed with a special emphasis on time-to-event (lifetime
or survival) phenotypes. We conclude with a discussion of our results.

THEORY

Information perspective on QTL study design Traditionally, the efficacy of QTL study designs
has been investigated using power calculations. In the experimental design literature, notably
industrial experimental design, study designs are evaluated using the information matrix of the
design. This is because the information matrix is a fundamental statistical quantity, and is simpler
to characterize. The power of a study design, the expected LOD score (which is a log likelihood
ratio), and variance of estimated QTL effects, all depend on the information matrix.

The expected Fisher information is defined as the expected value of the second derivative of the
log likelihood function.

J(β) = E
[

− ∂2

∂β2
ℓ(β|yobs)

]

= E
[

− ∂2

∂β2
log p(yobs|β)

]

,

where ℓ(β|yobs) denotes the log likelihood function for the parameter of interest β, when the ob-
served data is yobs. For large sample sizes, the variance of the maximum likelihood estimate, β̂
is

V (β̂) ≃ J(β)−1.

The log likelihood ratio statistic for testing β = β0 is

2
(

ℓ(β̂) − ℓ(β0)
)

which, for large samples, has an approximate non-central χ2 distribution with s (dimension of β)
degrees of freedom and non-centrality parameter (β − β0)

′J(β)(β − β0). The log-likelihood ratio
expressed in base 10 logarithms is the LOD score. Thus, the power of the likelihood ratio test,
which depends on the non-centrality parameter, depends on the unknown state of nature (β−β0),
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and the informationmatrix, J(β). The experimenter has no control over the state of nature, but has
limited control over experimental design choices that determine the information content. Thus
the information content of a study design provides us with a parsimonious description of the
statistical characteristics of the study.

Criteria for evaluating designs We calculate the expected Fisher information (for the QTL effect
parameters conditional on QTL location) for each genotyping strategy in each context. This is used
to evaluate the usefulness of selective genotyping in each genetic model context. When multiple
loci are involved, the information is a matrix, andwe have to resort to one-dimensional summaries
of the information matrix.

In the experimental design literature, a few different summary measures (optimality criteria) have
been proposed for comparing alternative designs (COX AND REID, 2000). We compare the designs
here using two criteria based on the information matrix J , or equivalently V = J−1:

1. D-optimality criterion: This criterion maximizes the determinant of the information matrix,
det(J), or equivalently (det(J))1/k , where k is the number of parameters. It minimizes the
volume of the joint confidence ellipsoid of all the parameters. It is the most popular design
criteria because it makes full use of the information matrix, and is not affected by orthogonal
reparametrizations of the parameter.

2. c-optimality criterion: This criterion maximizes the inverse of the variance of a contrast c
between model parameters, (c′V c)−1.

The appropriate criterion depends on one’s objective. In the present paper, we will use the c-
optimality and D-optimality criteria.

Calculation of the information content We use missing data methods to calculated the ex-
pected information content under selective genotyping. When we use selective genotyping we
deliberately choose not to collect genotyped data on certain individuals based on their phenotype.
This data is missing data. We use the missing data principle to calculate the expected information
content of any genotyping strategy. The missing information principle (ORCHARD AND WOOD-
BURY, 1972; MCLACHLAN AND KRISHNAN, 1996) states that the observed information, Io, may be
calculated as

Io = Ic − Im, .

where the observed information is

Io(β) = − ∂2

∂β2
log p(yobs|β),

the missing information is

Im(β) = E
[

− ∂2

∂β2
log p(ymis|yobs, β)

∣

∣

∣
yobs, β

]

,

and the complete information is

Ic(β) = E
[

− ∂2

∂β2
log p(ymis, yobs, β)

∣

∣

∣
yobs, β

]
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In the selective genotyping context, yobs consists of the phenotypes, and the genotypes of geno-
typed individuals. The missing data, ymis consists of the genotype data at all ungenotyped loca-
tions. Since the expected information satisfies, J(β) = E(Io(β)), we can use the missing informa-
tion principle to calculate the expected information content of genotyping designs.

Backcross population, single locus model Assume we have a population of n individuals.
Let y denote the phenotype of an individual and let g the genotype at a particular locus. Let β
denote the genetic model parameters. In general, β is a vector. The phenotype is assumed to be
normally distributed given the QTL genotypes with mean depending on β and variance 1.

Assume that a single locus contributes to the trait variation, and consider a single individual with
phenotype y, and with q denoting the conditional probability that the individual is homozygous
at a locus, given the available marker data. SEN ET AL. (2005) showed that, in this case, the
contribution of the individual to the observed information is

1 − 4y2q∗(1−q∗),

where q∗/(1−q∗) = e2βq/(1−q). At a locus with no nearby markers genotyped, q=1/2, so that the
observed information is

1 − 4y2 e2βy

1 + e2βy

1

1 + e2βy
= 1 − y2sech2(βy) = 1 − y2 + y4β2 − (2y6)

3
β4 + . . .

If the individual is genotyped, then the observed information is simply 1. When selectively geno-
typing with selection fraction α, we genotype an α fraction of the most extreme phenotypic indi-
viduals. Thus, if z(α, β) is the upper α point of the phenotype distribution when the QTL effect is
β, then the expected information using the two-tail selective genotyping strategy is

J(α, β) = α+

∫

+zα/2,β

−zα/2,β

(1 − y2sech2(βy))dy = α+ 2 zα/2,βφ(zα/2,β) +O(β2).

For small β,
J(α, β) ≃ J(α) = α+ 2 zαφ(zα),

where zα is the upper alpha point of the standard normal distribution.

The observed information corresponding to an individual phenotype y gives an indication of the
value of genotyping that individual. Integrating over the observed information corresponding to a
genotyping strategy, we can get the expected information resulting from that genotyping strategy.
Thus, we can devise and evaluate strategies by examining the observed information and expected
information.

Backcross population, two unlinked loci Let g1 and g2 denote the QTL genotypes at two un-
linked loci. Assuming that the two loci, are additive, we can write the genetic model for the
phenotype as:

y = β0 + β1(2g1−1) + β2(2g2−1) + ǫ, (1)

where β0 is the overall mean, β1 and β2 are the effects of the first and secondQTL respectively, and
ǫ is the random error which is normally distributed. For simplicity, we will assume β0=0 for the
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rest of this paper. SEN ET AL. (2005) used the above-mentioned approach to calculate the expected
information for β = (β1, β2), when β1=0, and β2=β. This gives us the missing information when
the first QTL has small effect as a function of the effect of the second QTL. In this setting the
missing information matrix for an ungenotyped individual with phenotype y was shown to be

Im =

(

(y2+β2) + 2βy tanh(βy) 0

0 y2sech2(βy)

)

.

Note that when the second QTL has a small effect the expected information under selective geno-
typing behaves similarly as with a single QTL. As the strength of the second QTL the information
content for the first QTL progressively decreases. The worst scenario is when the second QTL has
a really dramatic effect. In this setting, when half the extreme individuals are genotyped, only
half the information is obtained – this is the same as genotyping randomly selected individuals
(random genotyping). When more than half of the extreme individuals are genotyped, selective
genotyping performs worse than random genotyping.

RESULTS

Two linked loci Let g1 and g2 denote the QTL genotypes at two loci separated by a recom-
bination fraction θ. Our objective is to evaluate the expected information content of a selective
genotyping design where α fraction of the extreme phenotypic individuals are genotyped. As-
sume that the QTL act additively, i.e. the genetic model for the phenotypes is the same as (1). First
note that with complete genotyping, the expected information matrix per observation is

J =

(

1 1−2θ
1−2θ 1

)

.

Thus, det(J) = 4θ(1−θ). The variance of the parameter estimates is thus

V = J−1 =
1

4θ(1−θ)

(

1 2θ−1
2θ−1 1

)

.

Using either a D-optimality criterion (the determinant of the information matrix) or the inverse
of the variance of the first locus effect, β̂1, we see that the informativeness for two linked loci is
a function of θ(1−θ) which is maximum when the two loci are unlinked, and gets progressively
smaller as theta approaches 0.

Our goal is to examine how selective genotyping affects the information to detect two linked loci.
To do this, we have to calculate the information matrix using the missing information principle.
The missing information matrix is

Im =

(

y2sech2(βy) + 4θ(1−θ)
(

y tanh(βy)−β
)2

(1−2θ)y2sech2(βy)

(1−2θ)y2sech2(βy) y2sech2(βy)

)

.

Note that when the QTL are unlinked, i.e. θ=1

2
, the missing information for β1 is

y2sech2(βy) +
(

y tanh(βy)−β
)2

= y2
(

sech2(βy) + tanh2(βy)
)

+ β2 + 2βy tanh(βy)

= y2 + β2 + 2βy tanh(βy),
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which coincides with the result for unlinked loci derived earlier. Further,

Im =

(

A+ 4θ(1−θ)B (1−2θ)A
(1−2θ)A A

)

,

where A=y2sech2(βy), and B=
(

y tanh(βy)−β
)2
. Thus,

Io = Ic − Im =

(

1 1−2θ
1−2θ 1

)

−
(

A+ 4θ(1−θ)B (1−2θ)A
(1−2θ)A A

)

Therefore the expected information has the form

J(α, β) =

(

A∗ + 4θ(1−θ)B∗ (1−2θ)A∗

(1−2θ)A∗ A∗

)

,

where A∗=(1−A), and B∗=−B. Note that A, A∗, B, and B∗ are independent of θ. Now we
will determine how the two quantities of interest, depend on how close the two loci are to each
other (as measured by θ). Since the information matrix is not scalar, we will use our two scalar
summaries, the determinant and the inverse of the variance of the β̂1. First, note that

det(J(α, β)) = 4θ(1−θ)(1−A∗)(1−A∗−B∗),

whichmeans that by the D-optimality criterion, the effect of selective genotyping and the closeness
of the two loci are independent. This implies, that beyond the loss of information due to linked
loci, the effect of selective genotyping is exactly as for unlinked loci. Next, note that the variance
matrix is

V (α, β) = J(α, β)−1 =
1

4θ(1−θ)(1−A∗−B∗)

(

1 2θ−1
2θ−1 1 − 4θ(1−θ)B∗/

(

1−A∗
)

)

.

Here also, the variance of β̂1 is the product of two terms, one that depends on how linked the
loci are, and another that depends on the selective genotyping scheme. This also implies that the
relative change in information to detect a locus with small effect in the presence of a linked locus,
does not depend on the extent of linkage.

Two epistatic loci We will analyze the case of two epistatic loci with the same approach as for
two linked loci. Consider the following linear model for the phenotype.

y = β0 + β1(2g1−1) + β2(2g2−1) + β3(2g1−1)(2g2−1) + ǫ, (2)

where β3 is the epistatic effect of the two QTL. We will consider two important special cases when
the epistatic effect is small: (a) when there is one major main effect and the other locus has a
small effect (β1=β, β2=0, β3=0), and (b) when both loci have equal but non-zero main effects
(β1=β, β2=β, β3=0). The analytic expressions for the observed information matrix are included
in the supplementary information. We graph the functions in Figures 1 and 2.

We find that as long as the proportion of variance explained by the main effect QTLs remains
less than 20% the effectiveness of selective genotyping is approximately the same as that for the
case when a single locus with a main effect is segregating in the cross. When the proportion of
variance explained by the main effect QTLs is larger, the efficiency of selective genotyping for
detecting epistasis varies. In some cases, it can be less efficient than random sampling (Figure 1);
in other cases it may have more information than that for the main effect loci (Figure 2).
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Figure 1: Expected information in a two-QTL model with epistasis, as a function of the selection frac-
tion α for main effects (β1, left panel) and epistatic effects (β3, right panel). The information is plotted
as we vary the size of the main effect of the first QTL, while the second QTL and epistatic effect size is
assumed to be zero. The shaded region is the space of variation as β1 varies from 0 to∞. The solid line
corresponds to β1=0, and successive dashed lines (as the size of the dash increases) correspond to the
proportion of variance explained by the first QTL equal to 20%, 50%, 75% and 90%. If the proportion of
variance explained by the main effect QTL is less than 20%, the expected information is approximately
equal to that when the proportion variance explained is 0%. Information for the main effect increases
as the size of the effect increases. The information for the epistatic effect decreases as the size of the
main effect increases. For selection fractions greater than 50% selective genotyping may be less efficient
than even random sampling (solid diagonal line), for which the expected information is equal to the
selection fraction. This is specially so when the variance explained by the main effect exceeds 50%.

Selective phenotyping with multiple regions of interest JIN ET AL. (2004) proposed selective
phenotyping as a cost-savings measure when phenotyping is substantially more expensive than
genotyping. Here we analyze the effect of selection based on multiple unlinked regions on the
information content of the experiment.

The fundamental idea of selective phenotyping is to pick a subset of individuals who are as geno-
typically diverse as possible at a set of candidate regions. The efficiency of this approach decreases
as the number of unlinked loci considered increases. To motivate the general result we first con-
sider a single locus, then two unlinked loci, and then the general case. Throughout we consider
selective phenotyping in an F2 population where genotypes at any given locus are coded 0, 1, and
2 corresponding to the number of alleles from a particular inbred strain. We focus on detecting
the additive effect of a locus.

Single locus The most efficient strategy is to first pick equal numbers of the two homozygotes
(corresponding to genotypes 0 and 2) until they are exhausted. Then we pick the heterozygotes
(corresponding to the genotype 1). Note that for detecting additive effects, heterozygotes are not

8



0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

0
10

20
30

40
50

60
70

80
90

10
0

E
xp

ec
te

d 
in

fo
rm

at
io

n 
(%

)

Selection fraction,α (%)
0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

0
10

20
30

40
50

60
70

80
90

10
0

E
xp

ec
te

d 
in

fo
rm

at
io

n 
(%

)

Selection fraction,α (%)

Figure 2: Expected information in a two-QTL model with epistasis, as a function of the selection frac-
tion α main effects (β1, left panel) and epistatic effects (β3, right panel). The information is plotted as
we vary the size of the main effects of the both QTL, assumed to be of equal effect, while the epistatic
effect size is assumed to be zero. The shaded region is the space of variation as β1 varies from 0 to ∞.
The solid line corresponds to β1=β2=0, and successive dashed lines (as the size of the dash increases)
correspond to the proportion of variance explained by the main effect QTLs equal to 20%, 50%, 75%
and 90%. The diagonal solid line is the efficiency of genotyping a random subset. If the proportion of
variance explained by the main effect QTL is less than 20%, the expected information is slightly less
than that when the proportion variance explained is 0%. Information for the main effects decrease as
the size of the effects increases, but the pattern is not monotonic with the effect size. The information
for the epistatic effect approaches 100% as the size of the main effects increases. This “hyper-efficiency”
relative to when the main effect size is zero is most pronounced when the proportion of variance ex-
plained by the main effects exceeds 75%.

informative, so on average, just studying half the population is as effective as studying all of it.
This is reflected in Figure 3.

Suppose we select an α proportion of the sample for phenotyping, and of those a proportion τ are
homozygotes . Then it is easily seen that the information content of the sample relative to studying
the full sample is 2τα. Wewill use this result for proving the general result for an arbitrary number
of loci.

Two loci When selective phenotyping is performed using two loci, the genotypes can be repre-
sented as in Figure 4. There are three genotype classes depending on the number of homozygous
loci (0, 1, or 2). These correspond to the center point, the inner circle, and the outer circle re-
spectively. The outer circle genotypes are the most different, and represent the greatest genetic
diversity, followed by the inner circle, and finally the center point. Thus, the optimal strategy is to
first select equal numbers of individuals from the outer circle (2 homozygous loci), then the inner
circle (1 homozygous locus), and finally the center point (0 homozygous loci). The outer circle

9



Random

1 2
3

10

0 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
90

10
0

Selection fraction, α, in percent

E
xp

ec
te

d 
pe

rc
en

t i
nf

or
m

at
io

n

Random

10

3

2 1

0 10 20 30 40 50 60 70 80 90 100

0
20

40
60

80
10

0
12

0
14

0
16

0
18

0
20

0

Selection fraction, α, in percent

R
el

at
iv

e 
ef

fic
ie

nc
y 

in
 p

er
ce

nt

Figure 3: Information of selective phenotyping as a function of the selection fraction and the number of
unlinked genetic loci used for selection. The left panel shows the expected information from selected
phenotyping as a function of the selection fraction when one, two, three, or ten loci are used for selec-
tion. The solid line shows the expected information from random sampling. The right panel shows
the information from selective phenotyping relative to random sampling as a function of the selection
fraction. We see that as the number of loci increases, the efficiency of selective phenotyping approaches
random selection. However, the relative efficiency for small selection fractions can be quite high even
when ten loci are used for selection.

covers 1/4 of the sample, the inner circle 1/2 and the center point 1/4.

If the loci considered are unlinked, the effect estimates corresponding to the loci are uncorrelated
with each other, and hence, orthogonal. Thus, using symmetry, the information content of the
whole sample can be evaluated through the information of any single locus.

Let us consider the information content corresponding to three key α values, 1/4, when the outer
circle points are included, 3/4, when the outer and inner circle points are included, and 1, when all
points are included. When α is 1/4, at any given locus all individuals are homozygous. Thus, the
information content is 2×1× 1

4
= 1

2
. When α is 3/4, all homozygous individuals are in the sample;

they comprise 2/3 of the selected sample. Thus, the information content is 2 × 2

3
× 3

4
= 1. When

α is 1, all individuals are in the sample, and thus the information content is 1. The information
content of all other α values can be calculated by linear interpolation as in Figure 3.

Arbitrary number of loci We can now tackle the general case with m unlinked loci, where the
genotypes can be represented as points on a lattice in an m-dimensional space. There are m+1
classes of points corresponding to their distance from the center point representing an individual
heterozygous at all loci. The classes are defined by the number of homozygous loci, 0 throughm.
The proportion of the sample in each of these classes is given by the probability mass function of
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(1,1)

(1,0)
(2,0)

(2,1)
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Figure 4: Distances of genotypes from the average genotype for two-locus genotypes in an F2 inter-
cross. We code genotypes at each locus as 0, 1, or 2. The x-axis and y-axis are used to plot the genotypes
at the first and second locus respectively. The average genotype is the (1,1) genotype (double heterozy-
gote) at the center of the figure. Two concentric circles are drawn to depict two sets of equidistant
point from the center. The outermost circle consists of the homozygous genotypes, the points (0,0),
(0,2), (2,2), and (2,0). These are the points most distant from the center. The inner circle consists of
genotypes homozygous at one locus, and heterozygous at the other, the points (0,1), (1,2), (2,1), and
(1,0). These are the next most distant from the center. To pick the most genotypically diverse individu-
als, one would first pick individuals with genotypes in the outermost circle, then the inner circle, and
finally the center.

a binomial distribution with parametersm and 1/2. The expected information content of the class
with k homozygous loci is

2 × k

n
×
(

m

k

)

×
(

1

2

)m

.

Thus, the information content of a sample that has chosen the classesm,m−1, . . . , k is

m
∑

i=k

2
i

n

(

m

i

)(

1

2

)m

.
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The information content corresponding to intermediate selection fractions can be found by linear
interpolation. The function info.pheno in the R/qtlDesign package (SEN ET AL., 2007) calculates
the information content of selective phenotyping.

We find that as the number of loci used for selective phenotyping increases, the efficiency of se-
lective phenotyping decreases. In the limit, it reduces to random selection. However, it is notable
that the gain in efficiency relative to random selection is higher for small selection fractions (the
fraction of individuals selected for selective phenotyping). In other words, if phenotyping is very
expensive relative to genotyping and rearing, then even if a large number of loci (or the whole
genome) is used for selective phenotyping, it will be effective. These findings are consistent with
the simulation studies of JIN ET AL. (2004), and provide a theoretical justification for their obser-
vations.

Non-normal phenotypes The logic of selective genotyping is that extreme phenotypic indi-
viduals provide the most information. This may not hold for all situations. For example, if the
phenotype is heavy-tailed, the most extreme individuals are less informative. In other words, we
expect individuals with moderately high, but not the most extreme phenotypes, to be the most
informative. This argument implicitly assumed that both extremes of the phenotype are equally
important. For lifetime distributions, it is reasonable to expect that the right tail is more important
than the left tail, but this asymmetry is not reflected in two-tailed selective genotyping strategies.
To help us choose a genotyping strategy based on the nature of the phenotype distribution, we
develop the idea of the information gain function below.

Information gain function We develop our ideas in the context of a backcross. Let y be the phe-
notype of an individual, g=0, 1 be the QTL genotype at a locus of interest, and let q=P(g=1|m)
be the probability of the 1 genotype given the marker genotype information, m. Let the distri-
bution of the phenotype given the QTL genotype be p(y|g). The observed data consists of (y,m),
while the missing data is g. We want to know, based on an individual’s phenotype, how infor-
mative that individual will be. Let p(y|g=0) = f(y,−δ), and p(y|g=1) = f(y,+δ) where f is the
phenotype density. In our context, the missing data are the unobserved QTL genotypes and the
observed data consist of the marker genotypes and the phenotypes. The parameter of interest is δ.
Thus the distribution of the missing data conditional on the observed data is q∗g(1−q∗)1−g,where
q∗ = P (g=1|y,m, δ). Since q = P (g=1|m), by Bayes theorem it is easy to see that

q∗ =
q f(y,+δ)

q f(y,−δ) + (1−q) f(y,+δ)
.

Hence the missing data log likelihood is

ℓ∗ =
(

g log(q∗) + (1−g) log(1−q∗)
)

Differentiating twice, we get

∂2ℓ∗

∂δ2
=

(

∂2q∗

∂δ2

)[

g

q∗
− (1−g)

(1−q∗)

]

+

(

∂q∗

∂δ

)2 [

− g

q∗2
− 1−g

(1−q∗)2
]
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Hence,

−E
(

∂2ℓ∗

∂δ2

∣

∣

∣

∣

y,m, δ

)

=

(

∂q∗

∂δ

)2 [ 1

q∗(1−q∗)

]

= h(y, q, δ) q∗(1−q∗),

where

h(y, q, δ) =

(

∂q∗

∂δ

)2 [ 1

q∗(1−q∗)

]2

,

is a function depending on the phenotype density f . We expect this function to change with the
shape of the phenotype distribution. By calculating this function, which we call the information
gain function, for different functional forms of f , we can identify the individuals that are best to
genotype. We use Taylor expansions for small δ, the most interesting scenario. For the normal
distribution, h(y, q, δ)=y2 and captures the fact that most information is to be gained from the
extremes of the distribution. Information gain functions for selected distributions is shown in
Table 1.

Location shift – symmetric distributions Wefirst examine, symmetric distributionswith a location
shift depending on genotype. Our calculations show very different information gain functions for
the normal and Cauchy distributions (Figure 5). This suggests that the most extreme phenotypic
individuals are not as informative when the phenotype distribution is Cauchy, as it is when the
phenotype distribution is normal.

To study this further, we conducted a simulation study as follows. We simulated 10,000,000 in-
dividuals from a backcross. Conditional on the genotype, the phenotype in the two genotype
groups was location-shifted by 0.1 times the IQR (inter-quartile range). Then we examined the
genotype ratios conditional on the percentile of the phenotype distribution. Uninformative per-
centiles would be those where the genotype ratio is 0.5. The further the deviation from 0.5, the
more informative the percentile. Assuming that the two genotypes are coded 0 and 1, let pq be
the proportion of 1 genotypes conditional on the phenotype y being in the q-th percentile. We plot
(pq−0.5)2 as a function of q to see which percentiles most discriminate between the two genotypes
(Figure 5).

The simulation study confirmed what the information gain function suggests – the most extreme
individuals are most informative when the phenotype distribution is normal or logistic; however,
they are not the most informative if the phenotype has a Cauchy distribution. This shows that
the best selective genotyping strategy depends on the shape of the phenotype distribution, and
that the traditional two-tail selective genotyping strategy is not always the best. We explore this
further by examining the information gain function for typical survival distributions.

Scale shift – lifetime distributions For lifetime distributions we focus on the exponential distri-
bution, and two families extending it – the Gamma and Weibull distributions. Calculating the
information gain function for a scale shift (Figure 6) we find that the upper tail, containing in-
dividuals with the longest lifetimes (top 15%), is more informative than the shortest lived indi-
viduals. This suggests that for phenotypes with a long right tail we should selectively genotype
by oversampling the right tail. Although the information gain function for Weibull and exponen-
tial distributions appear different in functional form (Table 1), they are identical as a function of
phenotype percentile, .
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Figure 5: Top panel: Plot of the information gain function against the phenotype percentile for normal,
Cauchy, and logistic distributions. We see that the extreme phenotypic individuals are very informa-
tive if the phenotype has a normal or logistic distribution. However, if the phenotype follows a Cauchy
distribution, the extreme phenotypic individuals are not very informative. The most informative in-
dividuals are those near the first and third quartiles. Bottom panel: Plot of the squared deviation of
the segregation ratio from the expected 50% by percentile of phenotype distribution from 10,000,000
simulations. The squared segregation ratios conditional on phenotype have shapes similar to the in-
formation gain function.

14



0 10 20 30 40 50 60 70 80 90 100

0
5

10
15

20
25

In
fo

rm
at

io
n 

ga
in

 fu
nc

tio
n

Phenotype percentile

Exponential

Gamma(3)

Gamma(10)

0 20 40 60 80 100

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4

Phenotype percentile

S
qu

ar
ed

 s
eg

re
ga

tio
n 

di
st

or
tio

n

Figure 6: Top panel: Information gain function against the phenotype percentile for lifetime distribu-
tions (Exponential, and Gamma). The upper (right) tail is more informative than the lower (left) tail.
The importance of the right tail decreases as the shape parameter of the Gamma distribution increases
(and approaches a normal distribution). Bottom panel: Plot of the squared deviation of the segregation
ratio by percentile of phenotype distribution from 10,000,000 simulations. The solid line corresponds to
the exponential distribution. The dashed lines (in order of increasing width of dashes) are Gamma dis-
tribution shape parameter 3, Gamma distribution with shape parameter 10, and Weibull distribution
with shape parameter 10. The shape of the squared segregation ratios resembles that of the information
gain function. 15



As with the symmetric distributions we simulated 10,000,000 individuals from a backcross. Con-
ditional on the genotype, the scale parameter of the phenotype in the two genotype groups was
shifted by 10%. We examined the genotype ratios conditional on the phenotype percentile (Fig-
ure 6). As with the symmetric distributions, the shape of the information gain function parallels
that of the squared deviation of the segegation ratios from 1/2. This further demonstrates the
fundamental role of the information gain function for prioritizing individuals for genotyping.

Selective genotyping for lifetimes Since the right tail is more informative for phenotypes with
a long right tail such as lifetimes, we investigate single-tail selective genotyping, where individu-
als with the longest lifetimes are genotyped. We concentrate on the exponential distributionwhich
has a central role in the analysis of lifetimes (and time-to-event data). The expected information
for small effect sizes as a function of the selection fraction, α has a simple form:

J(α) = α+ α log(α)2.

Comparing this with the expected information from traditional two-tail selective genotyping for
normally distributed phenotypes (Figure 7) reveals important differences. Although the expected
information rises more steeply for small α, it flattens out for α between 20% and 70%. This is
because after about 20% of the individuals have been genotyped, one-tail genotyping is no longer
the most efficient strategy (as indicated by the information gain function); the best strategy is to
genotype both tails after that point. Nevertheless, a one-tail genotyping strategy is simpler to
implement in practice.

Next we consider the impact of genotyping cost on selective genotyping. As in SEN ET AL. (2005)
we consider a simple linear cost function. Let c be the cost of genotyping relative to raising and
phenotyping an individual. Our goal is to maximize information relative to cost by focusing on
the information-cost ratio:

J(α)

1 + cα
.

The optimal selection fraction is the value of α that maximizes this ratio (Figure 8). We observe a
“phase transition” in the optimal selection fractionwhen the genotyping cost is approximately half
that of raising and phenotyping an individual. If genotyping is very expensive then we should
genotype a small fraction of the population. As genotyping costs get smaller, the best strategy is
to progressively genotype more individuals. If genotyping is cheaper than half the cost of pheno-
typing and rearing, the best strategy is to genotype everyone.

Followup time for lifetimes For many lifetimes (time-to-event phenotypes), such as time to
tumorogenesis (in animals), flowering time (in plants) and lifespan, an investigator may have
to decide how long to wait for the event of interest (tumorogenesis, flowering, or death, in the
examples above) to occur. Individuals for whom the event has not occurred in the followup period
are considered “censored” in the language of survival analysis. For these individuals we do not
know the time to event exactly, but we know that it is greater than the followup time.

We consider the problem of choosing the followup duration when measuring lifetimes. We con-
sider the tradeoffs between loss of information due to incomplete followup, and the greater cost
of full followup. We develop our ideas in the context of a backcross population.
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Figure 7: Expected information for single-tail selective genotyping as a function of the selection frac-
tion, and proportion censored. We assume that the trait distribution is exponential, and that the effect
size affecting the scale parameter is small. We assume that all individuals until a certain time are
followed up, and the rest are censored. The solid black line shows the expected information for an ex-
ponential information with no censoring (100% followup). The dashed lines with increasing dash size
show, respectively, the expected information with 10%, 20% and 30% censoring. The solid grey line
shows, for reference, the expected information for a normal distribution with two-tail selective geno-
typing. With no censoring, genotyping 20% of the longest lived individuals gives us almost 75% of the
information. However, the gains from selective genotyping more individuals are modest thereafter.

Let y denote the time to an event, and g denote the (0/1) genotype of an individual in a backcross
when the event time distribution conditional on the genotype is exponential. Assume that the
followup period for all individuals is T , 0 < T <∞. Then, we can write

p(y|g, δ) =

{

f(y|g, δ), if y≤T
F̄ (T |g, δ), if y>T,

where f(·) is the density function of the event times, and F̄ (·) is the survival function (the comple-
ment of the cumulative distribution function). Without loss of generality we rescale time so that
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Figure 8: Optimal selection fraction as a function of genotyping cost for exponentially distributed
waiting time phenotypes. We assume a one-tail selective genotyping scheme is being used. The cost
of genotyping is measured relative to the cost of raising and phenotyping, assuming everyone is fol-
lowed up with no censoring. The dotted line gives the optimal selection fraction for two-tail selective
genotyping when the trait is normally distributed. As expected, it is more efficient to genotype less as
the cost of genotyping increases relative to raising and phenotyping. However, for one-tail selective
genotyping there is a “phase transition” or a sudden change in the optimal fraction when the cost of
genotyping is comparable to the cost of phenotyping and raising (by contrast the change is gradual
with traditional two-tail selective genotyping). The best strategy is to genotype everyone, or less than
20% of the individuals depending on genotyping cost.

the average waiting time for the “0” genotype is exp(−δ) and that of the “1” genotype is exp(δ).
Then we obtain,

p(y|g, δ) =

{

exp(−(2g−1)δ) exp(−y/ exp(2(g−1)δ)), if y≤T
exp(−T/ exp((2g−1)δ)), if y>T

We use this to construct the log-likelihood function and to derive the expected Fisher information
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for δ,

I(δ) = 1 − exp(− exp(δ)T ) + exp(− exp(−δ)T )

2

= 1 − exp(−T ) +
δ2

2
(T 2−T ) exp(−T ) +O(δ4) (3)

If Cf is the fixed cost per individual (for rearing, and genotyping, for example), and Cw is the cost
of waiting per unit time, then for followup period T the information-cost ratio is

I(δ)

Cf + TCw
≃ 1

Cf

1 − exp(−T )

1 + TCw/Cf
∝ 1 − exp(−T )

1 + TC
,

where C = Cw/Cf . Thus, if we are willing to assume that the genetic effect, δ is small, we only
need to maximize the ratio (1− exp(−T ))/(1 + TC). Elementary calculus shows that maximizing
that ratio is equivalent to solving, for T , the equation

exp(T ) − 1 − T = 1/C.

The solution of the equation, T ∗, the optimal time, has a one-to-one relationship with the optimal
proportion of uncensored individuals, 1− exp(−T ∗). Figure 9 shows the optimal proportion of
uncensored individuals as a function of C , the ratio of the cost of followup and the fixed costs per
individual. The function, opt.wait in the R/qtlDesign package (SEN ET AL., 2007) calculates the
optimal waiting time and the optimal proportion of uncensored individuals given the cost ratio,
C .

Selective genotyping and followup time for lifetimes Selectively genotyping the longest lived
individuals is a good strategy for lifetime phenotypes. On the other hand, the longest lived are the
most expensive to follow up, and may be censored to save cost. What is the best strategy when
a fraction of the longest lived individuals are censored by design? We investigate this question
when the lifetimes are exponentially distributed.

Suppose the individuals are followed up until time T . Treating T as a parameter, we can calculate
the information gain function, and the expected information, as with the previously considered
distributions. The expected information for small δ is

Jβ(α) =

{

α− β + α log(α)2, if α≥β
α log(β)2, if α<β

= ((α − β)∧0) + α log(α∧β)2,

where β = exp(−T ) is the proportion of censored individuals and ∧ is the maximum operator
(Figure 7). Notice that the upper bound for information with β proportion censored is β.

The information gain function for the censored exponential distribution is

4(y−1)2, if y≤T
4T 2, if y>T.
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Figure 9: Optimal followup strategy in a backcrosswith exponential survival distributions. We plot the
optimal proportion of uncensored individuals as a function of the cost of followup assuming that the
difference in mean waiting times between two groups to be compared is small. The cost of followup
is measured as the cost of following up an individual until the mean event time divided by the fixed
costs per individual (genotyping, raising). The optimal proportion of individuals to be followed up
decreases as the followup costs increase. If the cost of following until the mean event time is approx-
imately the same as the fixed costs for that individual, we should follow up until approximately 70%
of the events have been observed.

Figure 10 shows this function when the proportion censored is 15%. We can see that a one-tail
selective genotyping strategy would be a good one, even in the presence of censoring.

As with the case with no censoring, we investigated the effect of followup cost and genotyping
cost on the genotyping/followup strategy. Let cF be the cost of following up an individual for
an average lifetime, and let cG be the cost of genotyping an individual. Both costs are measured
relative to the fixed cost of rearing an individual. Then the cost per individual of a study that
genotypes α proportion, and censors β proportion of the population is

1 + αcG + (1 − βcF ),
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Figure 10: Information gain function for exponential phenotypes in the presence of censoring. The dot-
ted line shows the information gain function for uncensored individuals as a function of the percentile
of their phenotype. The dashed line shows the level of the information gain function for censored in-
dividuals as a function of the percentile of individuals who are followed up. As an example, the solid
dots show the information gain function for the case when all individuals above the 85th percentile are
censored. The information gain function for the first 85% of individuals follows the usual pattern for
exponential phenotypes. The information gain for the censored 15% individuals is horizontal level in-
dicated by dashed line. We see that one-tail selective genotyping is a good strategy even in the presence
of censoring.

and the information cost ratio is
Jβ(α)

1 + αcG + (1 − βcF )
.

Given the cost structure, (cF , cG), we can find (α, β) that minimize the information cost ratio (Fig-
ure 11). The optimal selection fraction, α, shows an abrupt change, while the censoring propor-
tion, β, does not. This is consistent with the optimal α when there is no censoring (β=0), and the
optimal β when everyone is genotyped (α=1).

DISCUSSION

In this paper we have analyzed data gathering strategies in QTL experimental design in the con-
text of non-normal phenotype distributions and multi-locus models. Our approach to analyzing
QTL study design is based on the information content of design choices. Genotyping and phe-
notyping strategies can be analyzed using this framework. This approach can provide useful
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Figure 11: Optimal selection fraction, and censoring fraction as a function of genotyping and followup
cost. The left panel shows the optimal selection fraction in percent, and the right panel shows the
optimal followup proportion. A “phase transition” is observed with the selection fraction, but the
followup proportion changes more gradually.

guidance for a wide range of scenarios.

A limitation of our approach is that it is model-based, asymptotic, and makes assumptions about
the nature of the phenotype and genotype distributions. Our information analysis does neces-
sarily reflect how the data will be analyzed; a sample may be more informative, but the analysis
method may not take full advantage of it. However, making design choices necessitates making
assumptions about yet unseen data. From that perspective, our methods allow contemplation of
a range of choices.

Our information approach requires that we know (or guess) the conditional distribution of the phe-
notype given genotype. In practice, only themarginal distribution of the phenotype is known, thus
posing difficulties for our analytic approach. However, for the most interesting and useful scenar-
ios, when the effect size is small, the marginal and conditional distributions are approximately the
same. Thus, for the purposes of selecting a genotyping scheme, it is reasonable to use the marginal
phenotype distribution as a guide.

Our analysis of selective genotyping was performed in the context of a backcross population.
However, we expect the conclusions to apply to more general settings including F2 intercrosses,
and human association studies with multiple haplotypes as SEN ET AL. (2005) showed that ex-
pected information for any contrast between haplotypes behaves the same way as in a backcross.
Our results indicate that selective genotyping in genome-wide association studies may be effec-
tive since the effect sizes are expected to be small. Additionally, our results indicate how followup
time for time-to-event phenotypes can be optimized in conjunction with selective genotyping.

The discontinuity in the optimal selection fraction for one-tail selective genotypingwith exponen-
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tially distributed phenotypes is surprising. However, as we have noted, it is not the most efficient
genotyping strategy, but a “good” one that is easily implemented. A strategy devised using the
information gain function will have an expected information function that will equal or exceed
that for one-tail selective genotyping. That strategy will not exhibit a discontinuity in the optimal
genotyping fraction as a function of cost.

Our analysis of selective genotyping for non-normal trait distributions has led us to conclusions
similar to those of PARK (1996) and ZHENG AND GASTWIRTH (2000) who used more involved an-
alytical techniques calculating the exact distribution of order statistics. Our results are asymptotic,
but easily calculated.

Computer code used for symbolic algebra usingMaxima (http://maxima.sourceforge.net),
and for numerical calculation using R (http://www.r-project.org) will be made available at
http://www.biostat.ucsf.edu/sen.
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Table 1: Table showing the density function and the information gain function for select distributions. The parameter of interest for the
first three distribution is the location parameter. For the last three, the para-mater of interest is the scale parameter, the respective shape
parameters being fixed. ψ((·, ·) is the incomplete Gamma function.

Distribution Density function Information Gain Expected information Parameter

Normal
1√
2π

exp(−1

2
(y − θ)2) y2 α+ 2x 1

√

2π

exp(− 1

2
(x− θ)2) θ

Cauchy
1

π

1

1 + (y − θ)2
16

y2

(y2 + 1)2
1 − 4

tan−1(x)

2π
+ 4

(x− x3)

2π(x2 + 1)2
θ

Logistic
exp((y − θ))

1 + exp((y − θ))
4

(exp(y) − 1)2

(exp(y) + 1)2
2
3 exp(2x) + 1

(exp(x) + 1)3
θ

Exponential (1/σ) exp(−y/σ), y > 0 4 (y − 1)2 α+ α log(α)2 θ = log(σ)

Gamma
(y/σ)ν−1 exp(−y/σ)

σ Γ(ν)
, y > 0 4 (y − ν)2 ψ(x,m+ 1) + (x−m)

exp(−x)xm

Γ(m+ 1)
θ = log(σ)

Weibull (ν/σ) (y/σ)ν−1 exp(−(y/σ)ν), y > 0 4 ν2 (yν − 1)2 α+ α log(α)2 θ = log(σ)
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