
UC Irvine
Western Journal of Emergency Medicine: Integrating Emergency Care 

with Population Health

Title

Development and External Validation of Clinical Features-based Machine Learning Models for 
Predicting COVID-19 in the Emergency Department

Permalink

https://escholarship.org/uc/item/2096p810

Journal

Western Journal of Emergency Medicine: Integrating Emergency Care with Population 
Health, 25(1)

ISSN

1936-900X

Authors

Tay, Joyce
Yen, Yi-Hsuan
Rivera, Kevin
et al.

Publication Date

2024

DOI

10.5811/westjem.60243

Supplemental Material

https://escholarship.org/uc/item/2096p810#supplemental

Copyright Information

Copyright 2024 by the author(s).This work is made available under the terms of a Creative 
Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2096p810
https://escholarship.org/uc/item/2096p810#author
https://escholarship.org/uc/item/2096p810#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Development and External Validation of Clinical Features-based
Machine Learning Models for Predicting COVID-19

in the Emergency Department
Joyce Tay, MD*
Yi-Hsuan Yen, MD†

Kevin Rivera, MS‡

Eric H Chou, MD†§

Chih-Hung Wang, MD, PhD*∥

Fan-Ya Chou, BS*∥

Jen-Tang Sun, MD, MSc¶

Shih-Tsung Han, MD, PhD#

Tzu-Ping Tsai, MD**
Yen-Chia Chen, MD, PhD**
Toral Bhakta, DO†

Chu-Lin Tsai, MD, ScD*∥

Tsung-Chien Lu, MD, PhD*∥

Matthew Huei-Ming Ma, MD, PhD*∥††

*National Taiwan University Hospital, Department of Emergency Medicine,
Taipei, Taiwan

†Baylor Scott and White All Saints Medical Center, Department of
Emergency Medicine, Fort Worth, Texas

‡Texas Christian University, School of Medicine, Fort Worth, Texas
§Baylor University Medical Center, Department of Emergency Medicine,
Dallas, Texas

∥National Taiwan University, College of Medicine, Department of Emergency
Medicine, Taipei, Taiwan

¶Far Eastern Memorial Hospital, Department of Emergency Medicine,
New Taipei City, Taiwan

#Chang Gung Memorial Hospital at Linkou, Department of Emergency
Medicine, Taoyuan, Taiwan

**Taipei Veterans General Hospital, Department of Emergency Medicine,
Taipei, Taiwan

††National Taiwan University Hospital Yunlin Branch, Department of
Emergency Medicine, Yunlin County, Taiwan

Section Editors: Stephen Liang, MD, and Elizabeth Burner, MD, MPH
Submission history: Submitted February 20, 2023; Revision received September 29, 2023; Accepted October 2, 2023
Electronically published December 22, 2023
Full text available through open access at http://escholarship.org/uc/uciem_westjem
DOI: 10.5811/westjem.60243

Introduction: Timely diagnosis of patients affected by an emerging infectious disease plays a crucial
role in treating patients and avoiding disease spread. In prior research, we developed an approach by
using machine learning (ML) algorithms to predict serious acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection based on clinical features of patients visiting an emergency department (ED)
during the early coronavirus 2019 (COVID-19) pandemic. In this study, we aimed to externally validate
this approach within a distinct ED population.

Methods:To create our training/validation cohort (model development) we collected data retrospectively
from suspected COVID-19 patients at a US ED from February 23–May 12, 2020. Another dataset was
collected as an external validation (testing) cohort from an ED in another country from May 12–June 15,
2021. Clinical features including patient demographics and triage information were used to train and test
the models. The primary outcome was the confirmed diagnosis of COVID-19, defined as a positive
reverse transcription polymerase chain reaction test result for SARS-CoV-2. We employed three
different ML algorithms, including gradient boosting, random forest, and extra trees classifiers, to
construct the predictive model. The predictive performances were evaluated with the area under the
receiver operating characteristic curve (AUC) in the testing cohort.

Results: In total, 580 and 946 ED patients were included in the training and testing cohorts, respectively.
Of them, 98 (16.9%) and 180 (19.0%) were diagnosed with COVID-19. All the constructed ML models
showed acceptable discrimination, as indicated by the AUC. Among them, random forest (0.785,
95% confidence interval [CI] 0.747–0.822) performed better than gradient boosting (0.774, 95% CI
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0.739–0.811) and extra trees classifier (0.72, 95% CI 0.677–0.762). There was no significant difference
between the constructed models.

Conclusion:Our study validates the use of ML for predicting COVID-19 in the ED and demonstrates its
potential for predicting emerging infectious diseases based on models built by clinical features with
temporal and spatial heterogeneity. This approach holds promise for scenarios where effective
diagnostic tools for an emerging infectious disease may be lacking in the future. [West J Emerg Med.
2024;25(1)67–78.]

INTRODUCTION
The global impact of the coronavirus 2019 (COVID-19)

pandemic, caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has been far reaching.1,2 Its
clinical manifestations vary from mild to severe illness and
even death, with a subset of those infected remaining
asymptomatic.3 The worldwide crisis has resulted in a
significant loss of life and deeply affected global health.
Effectively controlling disease transmission requires early
recognition and quarantine measures; however, this was
difficult before the identification of the causal pathogen and
the advent of the molecular diagnostic tool during the early
phase of the pandemic.

Taiwan had success in preventing COVID-19 outbreaks
until mid-May 2021 when community transmission emerged
and cases surged to over 3,100 in a week.4 As of September
20, 2022, Taiwan has reported over six million cases and over
5,000 deaths. The sudden surge in cases, coupled with
shortages of vaccine and testing, triggered a surge of patients
seeking care in the emergency department (ED). This surge
significantly impacted healthcare professionals, rendering
them susceptible to burnout and emotional strain.5–8 Tools
to reduce workload and streamline processes for healthcare
personnel are crucial to ease their mental health burden
during a pandemic.

When facing an emerging infectious disease such as
COVID-19, it is crucial to identify patients with the risk of
infection and thus avoid spreading the disease into the
community. For timely recognition of COVID-19 cases,
variousmachine learning (ML)models were developed using
a combination of clinical and laboratory reports,9–12 with
some requiring imaging data.13–15 However, such data may
not be readily available during ED triage, hindering early
risk stratification. Moreover, any additional diagnostic tests
further pose risk to healthcare personnel and require
transport and movement of the patient, which should be
minimized from an infection prevention and control
perspective.16Hence, a persistent challenge remained: how to
provide an accurate prediction of SARS-CoV-2 infection in
suspected patients with limited modalities of data.

By employing clinical features ascertained during initial
ED triage, we previously constructed ML models to create a
preliminary screening mechanism that would effectively
identify individuals with SARS-CoV-2 infection.17 Based on
the framework established in that earlier study, we sought
external validation of our proposed methodology in the
setting of an ED in a tertiary medical facility in Taiwan. Of
note, this ED consists of a distinctive population of patients
with dissimilar demographic characteristics (in contrast to
the cohort used for the original model development). Our
primary goal was to validate the feasibility of our approach,
to expedite the process of risk stratification pertinent to
emerging infectious diseases within the ED.

Population Health Research Capsule

What do we already know about this issue?
Timely diagnosis of an emerging infectious
disease like COVID-19 is crucial for
treatment and prevention.

What was the research question?
Can machine learning models predict
COVID-19 based on features collected from
different emergency departments?

What was the major finding of the study?
Random forest achieved good performance
(AUC 0.785, 95% CI 0.747–0.822) for
COVID-19 prediction.

How does this improve population health?
Machine learning can quickly predict
COVID-19 in diverse EDs, holding promise
for early diagnosis and control of emerging
infectious diseases.
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METHODS
Study Design and Setting

We previously conducted a retrospective cohort study by
retrieving electronic health record (EHR) data of suspected
COVID-19 patients from February 23–May 12, 2020 at the
ED of Baylor Scott & White All Saints Medical Center
(BAS) in Fort Worth, TX, a 574-bed, university-affiliated
tertiary teaching hospital with≈50,000EDvisits annually. In
the current study, we retrospectively collected another set of
patient records from suspected adult COVID-19 cases from
12 May 12–June 15, 2021 at the ED of National Taiwan
University Hospital (NTUH), Taipei in Taiwan, a 2,400-bed
university-affiliated tertiary teaching hospital with a daily
census of ≈8,000 outpatients and 300 emergency visits. This
study was approved by the Baylor Scott & White Research
Institute Insitutional Review Board (No.: 344143), and by
NTUH (No. 202009106RIPA), which waived the
requirement for informed consent.

Study Population
In the retrospective study that served as the model

development cohort, we identified all patients who presented
at the ED of the study hospital with suspected COVID-19
and underwent testing for SARS-CoV-2 through the reverse
transcription polymerase chain reaction (RT-PCR) method.
In the current study, we also retrospectively collected clinical
data for all adult (≥18 years) patients who were tested for
SARS-CoV-2 usingRT-PCR for suspectedCOVID-19 as the
model’s external validation cohort. The decision to perform
RT-PCR tests was left to the discretion of the emergency
physician or physician assistant of each patient.

Data Collection and Outcome Measures
Patient demographics, past medical histories (PMH), vital

signs recorded at ED triage, and presenting symptoms were
retrieved from the EHR. The comprehensive process of data
collection was elaborated in our previous study.17 A positive
RT-PCR for SARS-CoV-2 confirms the diagnosis of
COVID-19 (or SARS-CoV-2 infection) and was defined as
the primary outcome in both cohorts. We used the model
development cohort as the training/validation set to
construct the ML models, and the external validation
cohort was used as the testing set to evaluate the
models’ performance.

Data were entered, processed, and analyzed with SPSS
Statistics for Windows version 27.0, (IBM Corp, Armonk,
NY). We performed the assessment of data normality using
the Shapiro-Wilk test for continuous variables. The results
were subsequently reported as either the mean with standard
deviation or the median with interquartile range. Categorical
variables were denoted as proportions or percentages. To
identify pertinent features, we used univariate analyses to
discern disparities in outcomes among distinct groups. These
analyses encompassed statisticalmethods such as the Student

t-test, chi-squared test, Fisher exact test, or Mann-Whitney
U test depending on the distribution. We subsequently
selected variables with P < 0.1 on the training/validation set
as the input features for the development of the ML models.
We usedK-fold cross-validation to train themodel by setting
k from 7 to 10, and the selection of k was based on the best
area under the receiver operating characteristic curve (AUC)
performance on the test set.

In our preceding study, we employed three distinct ML
algorithms—specifically, gradient boosting, random forest,
and extra trees classifiers—to construct predictionmodels for
forecasting SARS-CoV-2 infection.17 In the current study,
we validated this approach in another ED population,
wherein we replicated the predictive modeling methodology
through the employment of the identicalMLalgorithms used
in our prior research. These ML algorithms represent
sophisticated ensemble techniques that amalgamate multiple
individual models to enhance predictive accuracy and
robustness for classification tasks. To deal with the intricate
challenge posed by imbalanced data within our cohorts, we
applied the synthetic minority oversampling technique
(SMOTE), after technique to oversample the minority class,
augmenting it by a factor of 0.6 times relative to the
magnitude of the majority class. We undertook this measure
to establish a more balanced representation, so that the ratio
of COVID-19 positive to negative was 0.6 to 1.0 during the
training phase. Subsequently, we assessed the performance
metrics exhibited by the developed ML models used in the
testing set.

To evaluate the performance of the models we built, we
used different performance metrics, including the area under
the receiver operating characteristic curve (AUC), accuracy,
F1-score, precision (positive predictive value [PPV], recall
(sensitivity), specificity, negative predictive value (NPV), and
area under the precision-recall curve (AUPRC). We used the
DeLong test forAUCandBoyd test forAUPRC for pairwise
comparisons of the models’ performances. All ML analyses
were performed using Jupyter Notebook 6.0.3 (Project
Jupyter) with Python 3.8.3 installed and the package scikit-
learn 0.23.1 (Python Software Foundation).

RESULTS
The model development cohort (training/validation set)

consisted of 580 cases from patients who presented to BAS,
while the model validation cohort (testing set) comprised 946
cases from patients who presented to NTUH. Among them,
98 (16.9%) and 180 (19.0%), respectively, were diagnosed
with COVID-19. The characteristics of the study population
are shown in Table 1. The characteristics and univariate
analyses of variables (features) between patients with
COVID-19 are summarized in Table 2, for the training/
validation and testing sets, respectively.

We selected 26 features by setting the P-value threshold
of less than 0.1 from the model development
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Table 1. Characteristics of the study population.

Variables (features) Total (n= 1,526) Training cohort (n= 580) Testing cohort (n= 946) P value

Demographics

Age (years), mean (SD) 52.6 (19.4) 53.7 (18.9) 51.9 (19.6) 0.09

Gender <0.001**

Male 670 (43.9) 213 (36.7) 457 (48.3)

Female 856 (56.1) 367 (63.3) 489 (51.7)

EMS transport 359 (23.5) 151 (26.0) 208 (22.0) <0.001**

Triage <0.001**

1 131 (8.6) 5 (0.9) 126 (13.3)

2 315 (20.6) 149 (25.7) 166 (17.5)

3 865 (56.7) 416 (71.7) 449 (47.5)

4 140 (9.2) 9 (1.6) 131 (13.8)

5 75 (4.9) 1 (0.2) 74 (7.8)

Temperature, mean (SD) 37.3 (0.8) 37.2 (0.7) 37.4 (0.9) <0.001**

Pulse rate, mean (SD) 96.6 (21.2) 92.8 (20.3) 99.0 (21.4) <0.001**

Respiratory rate, mean (SD) 19.9 (4.8) 18.8 (3.6) 20.5 (5.3) <0.001**

SBP, mean (SD) 132.6 (26.4) 137.9 (25.7) 129.3 (26.4) <0.001**

DBP, mean (SD) 79.4 (16.4) 80.2 (16.7) 78.9 (16.2) 0.12

SpO2, mean (SD) 96.7 (4.1) 97.4 (3.4) 96.3 (4.5) <0.001**

Oxygen therapy 199 (13.0) 70 (12.1) 129 (13.6) 0.5

Weight, mean (SD) 73.1 (23.7) 88.9 (26.1) 63.4 (15.6) <0.001**

Height, mean (SD) 1.7 (0.4) 1.7 (0.1) 1.7 (0.5) 0.16

BMI, mean (SD) 26.6 (7.8) 31.5 (9.0) 23.5 (4.9) <0.001**

Smoking history <0.001**

Yes 297 (19.5) 187 (32.2) 110 (11.6)

No 773 (50.7) 376 (64.8) 397 (42)

Unknown 456 (29.9) 17 (2.9) 439 (46.4)

Travel history 348 (22.8) 36 (6.2) 312 (33.0) <0.001**

Contact history 329 (21.6) 110 (19.0) 219 (23.2) <0.001**

Duration, days, mean (SD) 4.1 (6) 5.7 (7.7) 3.1 (4.5) <0.001**

AMS 123 (8.1) 30 (5.2) 93 (9.8) 0.001**

Seizures 15 (1.0) 4 (0.7) 11 (1.2) 0.36

Fever 673 (44.1) 266 (45.9) 407 (43.0) 0.42

Chills 130 (8.5) 84 (14.5) 46 (4.9) <0.001**

Myalgia 218 (14.3) 131 (22.6) 87 (9.2) <0.001**

Arthralgia 18 (1.2) 11 (1.9) 7 (0.7) 0.04**

Headache 199 (13.0) 116 (20.0) 83 (8.8) <0.001**

Facial pain 9 (0.6) 4 (0.7) 5 (0.5) 0.69

Red eyes 6 (0.4) 5 (0.9) 1 (0.1) 0.02**

Otalgia 16 (1.0) 10 (1.7) 6 (0.6) 0.04**

Sore throat 332 (21.8) 81 (14.0) 251 (26.5) <0.001**

Rhinorrhea 172 (11.3) 26 (4.5) 146 (15.4) <0.001**

Stuffy nose 92 (6.0) 69 (11.9) 23 (2.4) <0.001**

Sneezing 12 (0.8) 8 (1.4) 4 (0.4) 0.04**

(Continued on next page)
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Table 1. Continued.

Variables (features) Total (n= 1,526) Training cohort (n= 580) Testing cohort (n= 946) P value

Postnasal drip 7 (0.5) 5 (0.9) 2 (0.2) 0.07

Hypogeusia/ageusia 14 (0.9) 3 (0.5) 11 (1.2) 0.2

hyposmia/anosmia 14 (0.9) 6 (1.0) 8 (0.8) 0.71

Hoarseness 6 (0.4) 1 (0.2) 5 (0.5) 0.28

Dysphagia 23 (1.5) 6 (1.0) 17 (1.8) 0.24

Cough 715 (46.9) 362 (62.4) 353 (37.3) <0.001**

Sputum 197 (12.9) 47 (8.1) 150 (15.9) <0.001**

SOB 535 (35.1) 334 (57.6) 201 (21.2) <0.001**

Malaise 240 (15.7) 110 (19.0) 130 (13.7) 0.007**

Diarrhea 202 (13.2) 65 (11.2) 137 (14.5) 0.07

Vomiting 126 (8.3) 66 (11.4) 60 (6.3) <0.001**

Nausea 154 (10.1) 115 (19.8) 39 (4.1) <0.001**

Anorexia 52 (3.4) 26 (4.5) 26 (2.7) 0.07

Abdominal pain 132 (8.7) 62 (10.7) 70 (7.4) 0.03**

Chest pain 190 (12.5) 120 (20.7) 70 (7.4) <0.001**

Hemoptysis 12 (0.8) 6 (1.0) 6 (0.6) 0.39

Skin lesion 9 (0.6) 5 (0.9) 4 (0.4) 0.28

Skin itch 9 (0.6) 3 (0.5) 6 (0.6) 0.77

Paresthesia 7 (0.5) 3 (0.5) 4 (0.4) 0.79

Back pain 51 (3.3) 38 (6.6) 13 (1.4) <0.001**

Neuropathy 1 (0.1) 1 (0.2) 0 (0.0) 0.2

Renal colic/flank pain 18 (1.2) 15 (2.6) 3 (0.3) <0.001**

Cormorbidities (if any) 906 (59.4) 450 (77.6) 456 (48.2) <0.001**

Cormorbidities (>1) 646 (42.3) 355 (61.2) 291 (30.8) <0.001**

COPD 87 (5.7) 66 (11.4) 21 (2.2) <0.001**

Asthma 132 (8.7) 99 (17.1) 33 (3.5) <0.001**

DM 281 (18.4) 149 (25.7) 132 (14.0) <0.001**

HTN 497 (32.6) 276 (47.6) 221 (23.4) <0.001**

CAD 115 (7.5) 55 (9.5) 60 (6.3) 0.02**

CHF 81 (5.3) 52 (9.0) 29 (3.1) <0.001**

CVA 77 (5.0) 36 (6.2) 41 (4.3) 0.1

Hepatitis B 28 (1.8) 0 (0.0) 28 (3.0) <0.001**

Hepatitis C 15 (1.0) 11 (1.9) 4 (0.4) 0.005**

Cirrhosis 20 (1.3) 14 (2.4) 6 (0.6) 0.003**

Cancer 213 (14.0) 74 (12.8) 139 (14.7) 0.29

Current chemotherapy 56 (3.7) 11 (1.9) 45 (4.8) 0.004**

CKD 102 (6.7) 76 (13.1) 26 (2.7) <0.001**

ESRD 49 (3.2) 32 (5.5) 17 (1.8) <0.001**

History of solid organ transplant 24 (1.6) 18 (3.1) 6 (0.6) <0.001**

Immunodeficiency 132 (8.7) 5 (0.9) 127 (13.4) <0.001**

HIV 11 (0.7) 4 (0.7) 7 (0.7) 0.91

Rheumatologic diseases 34 (2.2) 17 (2.9) 17 (1.8) 0.15

Dementia 24 (1.6) 11 (1.9) 13 (1.4) 0.43

(Continued on next page)
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Table 1. Continued.

Variables (features) Total (n= 1,526) Training cohort (n= 580) Testing cohort (n= 946) P value

PUD 21 (1.4) 1 (0.2) 20 (2.1) 0.002**

Gastroparesis 5 (0.3) 4 (0.7) 1 (0.1) 0.05

Migraine 19 (1.2) 17 (2.9) 2 (0.2) <0.001**

Fibromyalgia 8 (0.5) 4 (0.7) 4 (0.4) 0.48

Chronic pain syndrome 31 (2.0) 24 (4.1) 7 (0.7) <0.001**

Alcohol use disorder 9 (0.6) 5 (0.9) 4 (0.4) 0.28

Substance use disorder 27 (1.8) 24 (4.1) 3 (0.3) <0.001**

Depression 70 (4.6) 55 (9.5) 15 (1.6) <0.001**

Psychiatric disease 73 (4.8) 52 (9.0) 21 (2.2) <0.001**

Pregnancy 21 (1.4) 19 (3.3) 2 (0.2) <0.001**

EMS, emergency medical services; SBP, systolic blood pressure; DBP, diastolic blood pressure; SpO2, oxygen saturation; BMI, body mass
index; AMS, altered mental status; SOB, shortness of breath; COPD, chronic obstruction pulmonary disease; DM, diabetes mellitus; HTN,
hypertension; CAD, coronary artery disease; CHF, congestive heart failure; CVA, cerebrovascular accident; CKD, chronic kidney disease;
ESRD, end stage renal disease; PUD, peptic ulcer disease.
Note: ** P< 0.05.

Table 2. Characteristics and univariate analyses of variables (features) between patients with or without COVID-19 on the training and
testing cohorts.

Training cohort (n= 580)

P value

Testing cohort (n= 946)

P value
COVID-19 (−)

(n= 482)
COVID-19 (+)

(n= 98)
COVID-19 (−)

(n= 766)
COVID-19 (+)

(n= 180)

Demographics

Age (y), mean (SD) 54.4 (18.9) 50.3 (18.7) 0.05* 50.3 (20.3) 58.9 (14.6) <0.001*

Gender 0.36 0.24

Female 309 (64.1) 58 (59.2) 403 (52.6) 86 (47.8)

Male 173 (35.9) 40 (40.8) 363 (47.4) 94 (52.2)

EMS transport 132 (27.4) 19 (19.4) 0.1 144 (18.8) 64 (35.6) <0.001*

Triage 0.43 0.07*

1 3 (0.6) 2 (2.0) 98 (12.8) 28 (15.6)

2 129 (26.8) 20 (20.4) 139 (18.1) 27 (15.0)

3 342 (71.0) 74 (75.5) 352 (46.0) 97 (53.9)

4 7 (1.5) 2 (2.0) 116 (15.1) 15 (8.3)

5 1 (0.2) 0 (0.0) 61 (8.0) 13 (7.2)

Temperature, mean (SD) 37.2 (0.7) 37.6 (0.7) <0.001* 37.3 (0.8) 37.9 (0.9) <0.001*

Pulse rate, mean (SD) 92.5 (20.7) 94.1 (18.1) 0.46 98.9 (22.2) 99.4 (18.0) 0.77

Respiratory rate, mean (SD) 18.7 (3.4) 19.5 (4.4) 0.05* 20.3 (5.4) 21.5 (4.9) 0.007*

SBP, mean (SD) 139.0 (26.2) 133.0 (22.2) 0.04* 128.9 (26.8) 130.7 (24.3) 0.42

DBP, mean (SD) 80.2 (17.2) 80.0 (13.7) 0.9 78.9 (16.7) 78.7 (14.1) 0.88

SpO2, mean (SD) 97.6 (3.1) 96.3 (4.3) <0.001* 96.6 (3.9) 94.9 (6.3) <0.001*

Oxygen therapy 59 (12.2) 11 (11.2) 0.78 90 (11.7) 39 (21.7) <0.001*

Weight, mean (SD) 87.6 (26.1) 95.0 (25.6) 0.01* 63.4 (16.3) 63.7 (12.5) 0.81

Height, mean (SD) 1.7 (0.1) 1.7 (0.1) 0.53 1.7 (0.6) 1.6 (0.1) 0.51

BMI, mean (SD) 31.1 (9.1) 33.7 (8.4) 0.009* 23.4 (5.1) 23.8 (3.8) 0.3

(Continued on next page)
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Table 2. Continued.

Training cohort (n= 580)

P value

Testing cohort (n= 946)

P value
COVID-19 (−)

(n= 482)
COVID-19 (+)

(n= 98)
COVID-19 (−)

(n= 766)
COVID-19 (+)

(n= 180)

Smoking history <0.001* <0.001*

Yes 169 (35.1) 18 (18.4) 80 (10.4) 30 (16.7)

No 305 (63.3) 71 (72.4) 276 (36) 121 (67.2)

Unknown 8 (1.7) 9 (9.2) 410 (53.5) 29 (16.1)

Travel history 23 (4.8) 13 (13.3) 0.001* 204 (26.6) 108 (60.0) <0.001*

Contact history 59 (12.2) 51 (52.0) <0.001* 112 (14.6) 107 (59.4) <0.001*

Duration, days, mean (SD) 5.9 (8.2) 5.1 (3.7) 0.35 2.9 (4.3) 3.7 (5) 0.04*

AMS 29 (6.0) 1 (1.0) 0.04* 82 (10.7) 11 (6.1) 0.06*

Seizures 4 (0.8) 0 (0.0) 0.37 10 (1.3) 1 (0.6) 0.4

Fever 197 (40.9) 69 (70.4) <0.001* 287 (37.5) 120 (66.7) <0.001*

Chills 72 (14.9) 12 (12.2) 0.49 36 (4.7) 10 (5.6) 0.63

Myalgia 98 (20.3) 33 (33.7) 0.004* 60 (7.8) 27 (15.0) 0.003*

Arthralgia 11 (2.3) 0 (0.0) 0.13 6 (0.8) 1 (0.6) 0.75

Headache 94 (19.5) 22 (22.4) 0.51 72 (9.4) 11 (6.1) 0.16

Facial pain 4 (0.8) 0 (0.0) 0.37 5 (0.7) 0 (0.0) 0.28

Red eyes 5 (1.0) 0 (0.0) 0.31 0 (0.0) 1 (0.6) 0.04*

Otalgia 8 (1.7) 2 (2.0) 0.79 6 (0.8) 0 (0.0) 0.23

Sore throat 70 (14.5) 11 (11.2) 0.39 205 (26.8) 46 (25.6) 0.74

Rhinorrhea 19 (3.9) 7 (7.1) 0.16 128 (16.7) 18 (10.0) 0.02*

Stuffy nose 55 (11.4) 14 (14.3) 0.42 21 (2.7) 2 (1.1) 0.2

Sneezing 7 (1.5) 1 (1.0) 0.74 4 (0.5) 0 (0.0) 0.33

Postnasal drip 4 (0.8) 1 (1.0) 0.85 2 (0.3) 0 (0.0) 0.49

Hypogeusia/ageusia 0 (0.0) 3 (3.1) <0.001* 6 (0.8) 5 (2.8) 0.02*

hyposmia/anosmia 3 (0.6) 3 (3.1) 0.03* 6 (0.8) 2 (1.1) 0.67

Hoarseness 1 (0.2) 0 (0.0) 0.65 3 (0.4) 2 (1.1) 0.23

Dysphagia 6 (1.2) 0 (0.0) 0.27 16 (2.1) 1 (0.6) 0.16

Cough 285 (59.1) 77 (78.6) <0.001* 248 (32.4) 105 (58.3) <0.001*

Sputum 35 (7.3) 12 (12.2) 0.1 114 (14.9) 36 (20.0) 0.09*

SOB 277 (57.5) 57 (58.2) 0.9 141 (18.4) 60 (33.3) <0.001*

Malaise 90 (18.7) 20 (20.4) 0.69 98 (12.8) 32 (17.8) 0.08*

Diarrhea 48 (10.0) 17 (17.3) 0.03* 114 (14.9) 23 (12.8) 0.47

Vomiting 57 (11.8) 9 (9.2) 0.45 57 (7.4) 3 (1.7) 0.004*

Nausea 92 (19.1) 23 (23.5) 0.32 36 (4.7) 3 (1.7) 0.07*

Anorexia 21 (4.4) 5 (5.1) 0.75 19 (2.5) 7 (3.9) 0.3

Abdominal pain 54 (11.2) 8 (8.2) 0.37 60 (7.8) 10 (5.6) 0.29

Chest pain 106 (22.0) 14 (14.3) 0.09* 55 (7.2) 15 (8.3) 0.59

Hemoptysis 4 (0.8) 2 (2.0) 0.28 4 (0.5) 2 (1.1) 0.37

Skin lesion 5 (1.0) 0 (0.0) 0.31 2 (0.3) 2 (1.1) 0.11

Skin itch 3 (0.6) 0 (0.0) 0.43 6 (0.8) 0 (0.0) 0.23

Paresthesia 2 (0.4) 1 (1.0) 0.45 4 (0.5) 0 (0.0) 0.33

Back pain 33 (6.8) 5 (5.1) 0.52 11 (1.4) 2 (1.1) 0.74

Neuropathy 0 (0.0) 1 (1.0) 0.03* 0 (0.0) 0 (0.0) NA

(Continued on next page)
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cohort, encompassing six demographics, four triage data,
10 clinical symptoms, and six PMHs. Employing k as 7
for K-fold cross-validation, the classification outcomes
for the three different ML models in the testing set
are presented in Table 3 and Figure 1. The detailed
performance metrics in terms of different k values on the

training/validation and testing sets are shown in
Supplementary Table 1.

Among the constructed ML models, random forest
demonstrated superior performance with the highest AUC
value (0.785, 95% CI 0.747–0.822), followed by gradient
boosting (0.774, 95% CI 0.739–0.811) and extra trees

Table 2. Continued.

Training cohort (n= 580)

P value

Testing cohort (n= 946)

P value
COVID-19 (−)

(n= 482)
COVID-19 (+)

(n= 98)
COVID-19 (−)

(n= 766)
COVID-19 (+)

(n= 180)

Renal colic/flank pain 12 (2.5) 3 (3.1) 0.75 3 (0.4) 0 (0.0) 0.4

Comorbidities (if any) 389 (80.7) 61 (62.2) <0.001* 365 (47.7) 91 (50.6) 0.48

Comorbidities (>1) 304 (63.1) 51 (52.0) 0.04* 245 (32.0) 46 (25.6) 0.09

COPD 63 (13.1) 3 (3.1) 0.004* 18 (2.3) 3 (1.7) 0.58

Asthma 86 (17.8) 13 (13.3) 0.27 29 (3.8) 4 (2.2) 0.3

DM 125 (25.9) 24 (24.5) 0.77 101 (13.2) 31 (17.2) 0.16

HTN 236 (49.0) 40 (40.8) 0.14 170 (22.2) 51 (28.3) 0.08*

CAD 46 (9.5) 9 (9.2) 0.91 51 (6.7) 9 (5.0) 0.41

CHF 45 (9.3) 7 (7.1) 0.49 28 (3.7) 1 (0.6) 0.03*

CVA 35 (7.3) 1 (1.0) 0.02* 35 (4.6) 6 (3.3) 0.46

Hepatitis B 0 (0.0) 0 (0.0) NA 23 (3.0) 5 (2.8) 0.87

Hepatitis C 10 (2.1) 1 (1.0) 0.49 4 (0.5) 0 (0.0) 0.33

Cirrhosis 14 (2.9) 0 (0.0) 0.09* 6 (0.8) 0 (0.0) 0.23

Cancer 66 (13.7) 8 (8.2) 0.13 123 (16.1) 16 (8.9) 0.01*

Current chemotherapy 9 (1.9) 2 (2.0) 0.91 43 (5.6) 2 (1.1) 0.01*

CKD 63 (13.1) 13 (13.3) 0.96 25 (3.3) 1 (0.6) 0.05*

ESRD 29 (6.0) 3 (3.1) 0.24 15 (2.0) 2 (1.1) 0.44

History of solid organ transplant 17 (3.5) 1 (1.0) 0.19 5 (0.7) 1 (0.6) 0.88

Immunodeficiency 5 (1.0) 0 (0.0) 0.31 112 (14.6) 15 (8.3) 0.03*

HIV 4 (0.8) 0 (0.0) 0.37 6 (0.8) 1 (0.6) 0.75

Rheumatologic diseases 16 (3.3) 1 (1.0) 0.22 14 (1.8) 3 (1.7) 0.88

Dementia 8 (1.7) 3 (3.1) 0.35 12 (1.6) 1 (0.6) 0.29

PUD 1 (0.2) 0 (0.0) 0.65 15 (2.0) 5 (2.8) 0.49

Gastroparesis 4 (0.8) 0 (0.0) 0.37 1 (0.1) 0 (0.0) 0.63

Migraine 15 (3.1) 2 (2.0) 0.57 2 (0.3) 0 (0.0) 0.49

Fibromyalgia 4 (0.8) 0 (0.0) 0.37 2 (0.3) 2 (1.1) 0.11

Chronic pain syndrome 20 (4.1) 4 (4.1) 0.98 5 (0.7) 2 (1.1) 0.52

Alcohol use disorder 5 (1.0) 0 (0.0) 0.31 3 (0.4) 1 (0.6) 0.76

Substance use disorder 21 (4.4) 3 (3.1) 0.56 3 (0.4) 0 (0.0) 0.4

Depression 54 (11.2) 1 (1.0) 0.002* 14 (1.8) 1 (0.6) 0.22

Psychiatric disease 47 (9.8) 5 (5.1) 0.14 17 (2.2) 4 (2.2) 1

Pregnancy 14 (2.9) 5 (5.1) 0.27 2 (0.3) 0 (0.0) 0.49

EMS, emergency medical services; SBP, systolic blood pressure; DBP, diastolic blood pressure; SpO2, oxygen saturation; BMI, body mass
index; AMS, altered mental status; SOB, shortness of breath; COPD, chronic obstruction pulmonary disease; DM, diabetes mellitus; HTN,
hypertension; CAD, coronary artery disease; CHF, congestive heart failure; CVA, cerebrovascular accident; CKD, chronic kidney disease;
ESRD, end stage renal disease; PUD, peptic ulcer disease.
Note: * P < 0.1.
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classifier (0.720, 95% CI 0.677–0.762). By fine-tuning the
tradeoff between precision and recall for different thresholds
to calculate the AUPRC, random forest (0.497. 95% CI
0.419–0.576) outperformed gradient boosting (0.458, 95%CI
0.381–0.534) and extra trees classifier (0.420, 95% CI:

0.349–0.499). The differences between each ML model in
terms of AUC and AUPRC are not significant.

In evaluating additional performance metrics, all our ML
models performed well in terms of accuracy, specificity, and
NPV. Nevertheless, the performances of the F1 score,
sensitivity, and PPV are suboptimal. Feature importance
(presented as a heat map computed and ordered by median
normalized importance across all models) is shown in

Table 3. Performance metrics of 7-fold cross validation for different machine learning algorithms on the testing set.

Models AUC (95% CI) AUPRC (95% CI) Accuracy F1 Sensitivity Specificity PPV NPV

Gradient boosting 0.774 (0.739–0.811) 0.458 (0.381–0.534) 0.815 0.335 0.244 0.949 0.53 0.842

Random forest 0.785 (0.747–0.822) 0.497 (0.419–0.576) 0.827 0.427 0.339 0.941 0.575 0.858

Extra trees 0.72 (0.677–0.762) 0.42 (0.349–0.499) 0.792 0.426 0.406 0.883 0.448 0.863

CI, confidence interval; AUC, area under the receiver operating characteristic curve; AUPRC, area under the precision recall curve;
PPV, positive predictive value; NPV, negative predictive value.

Figure 1. Results of the machine learning models on the test cohort.
(A), Receiver operating characteristic (ROC) curves and the
comparison of area under curve (AUC); (B), precision-recall curve
and the comparison of area under the precision-recall curve
(AUPRC) for three different machine learning models.
ET, extra trees; RF, random forest; GB, gradient boosting.

Figure 2. The heat map of computed features ordered by median
normalized importance across all models.
SBP, systolic blood pressure; BMI, body mass index; SPO2, oxygen
saturation; Hx, history; COPD, chronic obstructive pulmonary
disorder;CVA, cerebrovascular accident; AMS, alteredmental state;
ET, extra trees; RF, random forest; GB, gradient boosting.
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Figure 2. The 9 most important features were temperature,
systolic blood pressure, weight, body mass index, any
co-morbidities, age, oxygen saturation, respiratory rate, and
contact history.

DISCUSSION
The Main Findings of This Study

In our previous study, we constructed ML models
designed to predict COVID-19 based on the clinical features
documented during ED triage within a tertiary teaching
hospital in the US during the first wave of the COVID-19
pandemic.17 In the current study, our objective was to
validate this approach externally in another ED population
of a medical center located elsewhere in the world. By
collecting a cohort of 946 consecutive ED patients visiting
NTUH during the second wave of the COVID-19 pandemic
in Taiwan, we found that the random forest model emerged
as the best performer with acceptable discrimination
performance in terms of AUC and AUPRC. However, the
remaining two models also achieved close results without
significant differences, and all models performed well in
accuracy, specificity, and NPV. With only demographics,
vital signs at triage, clinical symptoms, contact history and
PMH collected at ED triage, this approach exemplifies the
feasibility of predicting COVID-19 at triage even before
patients go into the ED. The predictive results offer valuable
assistance to emergency physicians in identifying patients at
risk of the disease. This enables such patients to undergo
further examination, testing, isolation, and appropriate
treatment measures.

Comparison with Previous Studies
Since the inception of the disease, ML algorithms have

been extensively applied in fighting COVID-19.18 While
certain applications targeted COVID-19 diagnosis as the
primary outcome, others focused onmorbidity andmortality
for patients with confirmed SARS-CoV-2 infection.10 Some
investigations focused on the ED setting, while others
focused on the general population.19,20 Moreover, some
reports used chest radiographs or computed tomography of
the lung to exploit imaging characteristics to differentiate
pneumonia caused by SARS-CoV-2 from that with other
causes,13,14,15 while others used routine blood test
results.9,11,12 Meanwhile, certain reports employed clinical
data—including patient demographics, symptoms, vital
signs, and PMH—as the input of predictionmodels similar to
our study design.21 Furthermore, there were studies that
combined multiple modalities from the above-mentioned
studies.22 Although the source and size of the studies reported
in the literature varied, our current study is the only one that
uses only the clinical features collected from ED triage and
provides promising external validation results.

In comparison to this study, our previous study yielded a
stronger result with an AUC of 0.86, whereas the best-

performing model in this study achieved only an AUC of
0.785. The decline in performance was anticipated since the
test dataset in the previous study came from the same
population as the training dataset, whereas in this study the
two datasets came from different populations with different
patient demographics. Additionally, certain features used in
our previous study that rely on the model development
cohort were not employed in this validation study due to
different healthcare systems and ethnicity distribution in
different populations. Nonetheless (with the exception of the
study by Zoabi et al), the models we built in the current study
showed competitive or even better performance in
comparison to other studies that relied on clinical features for
their models19–22 (Supplementary Table 2).

Feasibility for Clinical Application
This study achieved acceptable predictive performances

with metrics exceeding 0.7 in terms of AUC, specificity, and
NPV, making these ML models a suitable screening tool to
rule in patients in need of further attention. With the
information readily accessible from the EHR during ED
triage, our model may assist emergency clinicians to
segregate patients with a high likelihood of COVID-19
infection from those at lower risk. By doing so, the risk of
cross-infection may be minimized, and high-risk patients
may receive appropriate care promptly. If effectively
integrated into the system as an automated alert system
during the initial ED encounter, it could exert substantial
impact on clinical workflows while simultaneously reduce
disease transmission and cross-infection in the ED setting.
However, precision must be exercised to ensure the alerts
provided by the predictive model are pertinent and timely,
without disrupting the existing workflow.23

At present, a confirmed diagnosis of COVID-19 is made
by direct detection of SARS-CoV-2 RNA using RT–PCR
testing; however, it may take up to eight hours to obtain the
test result after the sample is delivered.24 Although several
rapid antigen tests (RAT) have been developed as screening
tools, their accuracy is strongly affected by the pretest
probability and is less effective in the asymptomatic
population.25 Moreover, many regions worldwide still lack
the capacity for RAT kits. As the COVID-19 pandemic
persists and new variants emerge, a reliable ML prediction
model could function as a rapid screening tool to quickly
differentiate the suspicious cases from other patients and
facilitate infection control even before patients enter the ED.
Additionally, this study also provides a proof of concept for
ML models capable of predicting an emerging infectious
disease of an unknown pathogen based on models built by
clinical features without the necessity of pathogen-specific
tests. When faced with an emerging novel infectious disease
in the future, this approach would be extremely valuable,
particularly in situations where a dedicated diagnostic tool
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has yet to be developed or encounters challenges related to
supply and demand.

LIMITATIONS
This study does come with limitations. First, a class

imbalance issue was evident. With only 16.9% and 19.0%
being diagnosed with COVID-19 in our development and
validation cohorts, the diagnostic performances in terms of
sensitivity and PPV were suboptimal. However, the
performance of AUPRC was acceptable given that the
positivity rate of COVID-19 in the testing cohort was only
19%. Second, the study was conducted before widespread
vaccination was available in the US (for the training/
validation dataset) and in Taiwan (for the test dataset).17 and
prior to the emergence and dominance of the Omicron
variant.26 The difference in symptoms could affect the
accuracy of the model when the models were trained with
cases of different variants of SARS-CoV-2.27 However, this
approach could be aptly adapted in the future as the model is
continuously trained and updated to reflect the new
attributes of variant pathogens. It is essential that further
prospective studies are undertaken to examine the feasibility
of this model being applied to future patients.

CONCLUSION
Our machine learning approach exhibited acceptable

discriminatory performance for screening patients with
suspected COVID-19, based on models built in a different
patient population characterized by temporal and spatial
heterogeneity, and relying solely on clinical features captured
during ED triage. This study offers a proof of concept,
suggesting the applicability of an ML approach in
diagnosing novel emerging infectious diseases within one
region by drawing on clinical features collected from another
region, especially in circumstances preceding the advent and
availability of a rapid diagnostic tool.
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