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Abstract

A simple valuation model that allows for time variation in investment op-
portunities is developed and estimated. The model assumes that the invest-
ment opportunity set is completely described by two state variables, the real
interest rate and the maximum Sharpe ratio, which follow correlated Ornstein-
Uhlenbeck processes. The model parameters and time series of the state vari-
ables are estimated using data on US Treasury bond yields and expected in-
flation for the period January 1952 to December 2000, and, as predicted, the
estimated maximum Sharpe ratio is shown to be related to the equity pre-
mium. In cross-sectional asset pricing tests using the 25 Fama-French size and
book-to-market portfolios, both state variables are found to have significant
risk premia, which is consistent with the ICAPM of Merton (1973). In con-
trast to the CAPM and the Fama-French 3-factor model, the simple ICAPM
is not rejected by cross-sectional tests using the 25 Fama-French size and B/M
sorted portfolios. Returns on the 30 industrial portfolios do not discriminate
clearly between the three models. When both sets of portfolios are included
as test assets all three models are rejected, but the estimated risk premia for
both ICAPM state variables are significant while those associated with the
Fama-French arbitrage portfolios are insignificant.



1 Introduction

In the short run, investment opportunities depend only on the real interest rate

and the slope of the capital market line, or Sharpe ratio, as in the classic Sharpe-

Lintner Capital Asset Pricing Model. The slope of the capital market line depends in

turn on the risk premium and volatility of the market return, and there is now strong

evidence of time variation both in the equity risk premium and in market volatility,

implying variation in the market Sharpe ratio, as well as in the real interest rate.

Kandel and Stambaugh (1990), Whitelaw (1997), and Perez-Quiros and Timmermann

(2000) have all found significant cyclical variation in the market Sharpe ratio.1

The Intertemporal Capital Asset Pricing Model (ICAPM) of Merton (1973) sug-

gests that when there is stochastic variation in investment opportunities, it is likely

that there will be risk premia associated with innovations in the state variables that

describe the investment opportunities. However, despite this evidence of time vari-

ation in investment opportunities, and despite the lack of empirical success of the

classic single period CAPM and its consumption based variant, there has been rela-

tively little effort to test models based on Merton’s classic framework.2 One reason

for this may have been the tendency to lump the ICAPM and Ross’ (1976) Arbitrage

Pricing Theory together as simply different examples of “Factor Pricing Models”.3

Yet this is to ignore the distinguishing characteristic of the ICAPM - that the “fac-

tors” that are priced are not just any set of factors that are correlated with returns,

but are the innovations in state variables that predict future returns.4 In this paper

1Other studies that identify significant predictors of the equity risk premium include: Lintner
(1975) for interest rates; Campbell and Shiller (1988) and Fama and French (1988) for dividend
yield; Fama and French (1989) for term spread and junk bond yield spread; Kothari and Shanken
(1999) for Book-to-Market ratio.

2An important exception is Campbell (1993).
3“The multi-factor models of Merton (1973) and Ross (1976) . . . can involve multiple factors and

the cross-section of expected returns is constrained by the cross-section of factor loadings . . .. The
multi-factor models are an empiricist’s dream . . . can accommodate . . . any set of factors that are
correlated with returns.” Fama (1991, p1594).

4It is surprising that papers testing conditional versions of the CAPM that allow for time variation
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we estimate a simple ICAPM that allows for time-variation in the real interest rate

and slope of the capital market line, and evaluate the ability of the model to account

for the returns on portfolios sorted according to size and Book-to-market ratio, as

well as according to industry.

In the simple ICAPM that we develop, time variation in the instantaneous invest-

ment opportunity set is fully described by the dynamics of the real interest rate and

the maximum Sharpe ratio. We assume that these two variables follow correlated

Ornstein-Uhlenbeck processes; consequently, the current values of these variables are

sufficient statistics for all future investment opportunities and are the only state vari-

ables that are priced in an ICAPM setting.5 Then, using the martingale pricing

approach, we show how a claim to a future cash flow is valued.6 With additional

assumptions about the stochastic process for the price level, the model is adapted in

a simple fashion to the pricing of default-free nominal bonds, and the model para-

meters, as well as the time series of the real interest rate and the Sharpe ratio, are

estimated by Kalman filter on data on US Treasury Bond yields and inflation expec-

tations for the period January 1952 to December 2000. It is shown that, as predicted

by the model, the Sharpe ratio estimate is significantly related to the ‘ex-post’ equity

market Sharpe ratio which is measured by the ratio of the excess return on the market

index to an estimate of volatility obtained from an EGARCH model.

In order to determine whether the simple ICAPM can account for the cross-

section of returns on the 25 Fama-French size and B/M sorted portfolios for the period

in expected returns typically do not allow for the pricing of the state variables they use to describe
the investment opportunity set. Jagannathan and Wang (1996) explicitly assume that “the hedging
motives are not sufficiently important . . .. ”(to warrant consideration of the ICAPM).

5Nielsen and Vassalou (2001) demonstrate formally that investors hedge only against stochastic
changes in the slope and the intercept of the instantaneous capital market line, which implies that
only variables that forecast the real interest rate and the Sharpe ratio will be priced.

6Papers that are related to our general valuation framework in allowing for time-variation in
interest rates and risk premia include Ang and Liu (2001) and Bekaert and Grenadier (2000). The
valuation model in this paper differs from the models presented in these papers chiefly in its parsi-
monious specification of the relevant state variables.
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from January 1952 to December 2000, we follow a two-stage cross-sectional regression

procedure. In the first stage, we regress the 25 portfolio returns on the market excess

return, and the estimated innovations in the state variables, the real interest rate and

the maximum Sharpe ratio, to obtain the three betas. In the second stage, the sample

mean excess returns are regressed on the estimated betas to obtain the risk premia

for market risk, the real interest rate risk and the maximum Sharpe ratio risk. A χ2

test of the pricing restrictions implied by the model cannot reject them for the whole

sample period, although the model is rejected using data from the second half of the

period. Moreover, the simple ICAPM explains well the returns on both of the Fama-

French arbitrage portfolios.7 The pricing error for SMB is only −0.07% per month,

and for HML 0.02% per month, and neither of these pricing errors is significant. On

the other hand, when similar tests are conducted for the Fama-French 3-factor model

and the CAPM, both models are strongly rejected for the whole sample period as

well as for both halves of the sample. As a robustness check, we also test the three

models using the one-step Generalized Method of Moments (GMM) Discount Factor

approach. Again, the simple ICAPM is not rejected while the other two models are

strongly rejected.

Motivated by the data-snooping concerns expressed by Lo and MacKinlay (1990),

we also report the results of tests using 30 industrial portfolios instead of the size and

book-to-market sorted portfolios. In this case, none of the three models is rejected

for any of the sample periods. However, for both the simple ICAPM and the 3-factor

model, the point estimates of the risk premia are quite different when the 30 industrial

portfolios are used. Therefore we combine all 55 portfolios in a single estimation. The

ICAPM risk premia remain significant in the combined sample while the estimated

7The ICAPM has been suggested by Fama and French (FF) themselves as one possible reason
for the premia that they find to be associated with loadings on the SMB and HML hedge portfolios
that are formed on the basis of firm size and book-to-market ratio. In FF (1995) they argue that the
premia, “are consistent with a multi-factor version of Merton’s (1973) intertemporal asset pricing
model in which size and BE/ME proxy for sensitivity to risk factors in returns.”
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premia associated with the Fama-French arbitrage portfolios become economically

and statistically insignificant. However, the pricing restrictions imposed by all three

models are rejected. We conjecture that the rejection of the simple ICAPM is due to

the omission of significant state variables that forecast future values of the interest

rate and maximum Sharpe ratio.

The remainder of the paper is organized as follows. In Section 2 we construct a

simple valuation model that allows for a stochastic interest rate and Sharpe ratio and

specialize the model to the ICAPM. In Section 3 we describe the data and estimation

of the valuation model and the state variables. The main empirical results are reported

and discussed in Section 4, and Section 5 concludes.

2 Valuation with Stochastic Investment Opportu-

nities

The value of a claim to a future cash flow depends on both the characteristics

of the cash flow itself, its expected value, time to realization, and risk, and on the

macroeconomic environment as represented by interest rates and risk premia. Holding

the risk characteristics of the cash flow constant, unanticipated changes in claim value

will be driven by changes in interest rates and risk premia, as well as by changes in

the expected value of the cash flow. Most extant valuation models place primary

emphasis on the role of cash flow related risk. However, Campbell and Ammer (1993)

estimate that only about 15% of the variance of aggregate stock returns is attributable

to news about future dividends. Their results further suggest that news about real

interest rates plays a relatively minor role, leaving about 70% of the total variance

of stock returns to be explained by news about future excess returns or risk premia.

Fama and French (1993)8 show that there is considerable common variation between

bond and stock returns, which also suggests that changes in interest rates and risk

8See also Cornell (1999).
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premia are important determinants of stock returns. In this section we construct

an explicit model for the valuation of stochastic cash flows that takes account of

stochastic variation in interest rates and risk premia.

Let V denote the value of a non-dividend paying asset. The absence of arbitrage

opportunities implies the existence of a pricing kernel, a random variable, m, such

that E[d(mV )] = 0.9 This condition implies that the expected return on the asset

can be written as:

E

[
dV

V

]
= −E

[
dm

m

]
− Cov

(
dm

m
,
dV

V

)
(1)

Assume that the dynamics of the pricing kernel can be written as a diffusion

process:

dm

m
= −r(X)dt− η(X)dzm (2)

where X is a vector of variables that follow a vector Markov diffusion process:

dX = µXdt+ σXdzX (3)

Then equations (1) and (2) imply that the expected return on the asset is given by:

E

[
dV

V

]
≡ µV dt = r(X)dt+ η(X)ρV mσV dt (4)

where ρV mdt = dzV dzm, and σV is the volatility of the return on the asset. It follows,

first, that r(X) is the risk free rate since it is the return on an asset with σV = 0,

and, secondly, that η(X) is the risk premium per unit of covariance with the pricing

kernel. It is immediate from equation (4) that the Sharpe ratio for any asset, V, is

given by SV ≡ (µV −r)/σV = ηρV m. Recognizing that ρV m is a correlation coefficient,

it follows that η is the maximum Sharpe ratio for any asset in the market - it is the

slope of the capital market line, or “market” Sharpe ratio. An investor’s instantaneous

9See Cochrane (2001) for a complete treatment.
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investment opportunities then are fully described by the vector of the instantaneously

riskless rate and the Sharpe ratio of the capital market line, (r, η)′.

In order to construct a tractable valuation model, we shall simplify, by identifying

the vector X with (r, η)′, and assuming that r and η follow simple correlated Ornstein-

Uhlenbeck processes.10 Then, the dynamics of the investment opportunity set are fully

captured by:

dm

m
= −rdt− ηdzm (5.1)

dr = κr(r − r)dt+ σrdzr (5.2)

dη = κη(η − η)dt+ σηdzη (5.3)

Although model (5) is not a structural model since it does not start from the

specification of the primitives - the tastes, beliefs and opportunities of investors,11

it provides a simple basis for consideration of the essential feature of the Intertem-

poral Capital Asset Pricing Model, the pricing of risk associated with variation in

investment opportunities, since it allows for variation in the instantaneous invest-

ment opportunity set while limiting the number of state variables to be considered to

the two that are required to describe that set. The strong assumption in model (5)

is that r and η follow a joint Markov process.

While the pricing model (5) explicitly allows for time-variation in the investment

opportunity set, it is not equivalent to Merton’s ICAPM without further specification

of the covariance characteristics of the pricing kernel: for example, the model will

be equivalent to the simple static CAPM if the innovation in the pricing kernel is

perfectly correlated with the return on the market portfolio. A specific version of the

10Kim and Omberg (1996) also assume an O-U process for the Sharpe ratio.
11For a structural model of time variation in investment opportunities that relies on habit forma-

tion see Campbell and Cochrane (1999).
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ICAPM is obtained by specializing the pricing model (5) so that the innovation in

the pricing kernel is an exact linear function of the total wealth portfolio return and

the innovations in r and η:

dm

m
= −rdt− ωηζ ′dz (6)

where ζ ′ = (ζM , ζη, ζr)
′, dz = (dzM , dzη, dzr)

′, ω ≡ (ζ ′Ωζ)−1/2, and Ωdt = (dz)(dz)′,

where M denotes the portfolio for total wealth.

The structure (5) implies that the riskless interest rate is stochastic, and that

all risk premia are proportional to the stochastic Sharpe ratio η. To analyze the

asset pricing implications of the system (5), consider a claim to a (real) cash flow,

x, which is due at time T . Let the expectation at time t of the cash flow be given

by y(t) ≡ E [x|Λt] where Λt is the information available at time t, and y(t) follows a

driftless geometric Brownian motion with constant volatility, σy:
12

dy

y
= σydzy (7)

Letting ρij denote the correlation between dzi and dzj, the value of the claim to the

cash flow is given in the following theorem.

Theorem 1 In an economy in which the investment opportunity set is described by
(5), the value at time t of a claim to a real cash flow x at time T ≡ t + τ , whose
expectation, y, follows the stochastic process (7), is given by:

V (y, τ, r, η) = EQ
t

[
xT exp−

∫ T
t r(s)ds

]
= EQ

t

[
yT exp−

∫ T
t r(s)ds

]
= yv(τ, r, η) (8)

where Q denotes the risk neutral probability measure, and

v(τ, r, η) = exp[A(τ) − B(τ)r −D(τ)η] (9)

with A(τ), B(τ) and D(τ) defined in the Appendix.

12The assumption of constant volatility is for convenience only. For example, as Samuelson (1965)
has shown, the volatility of the expectation of a future cash flow will decrease monotonically with
the time to maturity if the cash flow has a mean-reverting component.
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Theorem 1 implies that, v(τ, r, η), the value per unit of expected payoff of the

claim, is a function of the maturity, τ , of the cash flow. It also depends on the

covariance of the cash flow with the pricing kernel, φy ≡ σmσyρym, through A(τ) and

D(τ). Finally, it depends on the current values of the two state variables that fully

describe the investment opportunity set, r and η. An increase in the interest rate,

r, unambiguously decreases the normalized claim value, v(τ, r, η). An increase in the

Sharpe ratio, η, also decreases v(τ, rη) if ρym > 0, which corresponds to positive cash

flow systematic risk, and ρrm < 0, which implies a positive interest rate risk premium.

The sensitivities of v(τ, r, η) to r and η, B(τ) and D(τ), are closely related to the

mean reversion parameters κr and κη.

Applying Ito’s Lemma, the theorem implies that the return on the claim can be

written as:

dV

V
= µ(r, η, τ)dt+

dy

y
− B(τ)σrdzr −D(τ)σηdzη, (10)

where

µ ≡ µ(r, η, τ) = r + (Dτ (τ) + κηD(τ))η.

Thus, the risk premium of the claim, µ − r, is proportional to the state variable η,

and its proportional coefficient depends on the claim’s cash flow maturity. The return

risk is determined by the innovations in the two state variables, r and η, as well as

in the cash flow expectation, y. Note that the innovations in r and η are systematic

factors that affect the returns on all securities while dy
y

is security-specific. Moreover,

the loadings on the systematic risks, B(τ) and D(τ), are functions of the cash flow

maturity.

Although equation (10) is for claims of a single cash flow, the intuitions can be

easily carried over to securities paying multiple cash flows. It implies that securities

(cash flow claims) will have different risk exposures to the systematic state variables

as long as they have different cash flow durations, and the ICAPM in (6) may have

8



the potential to explain cross-sectional stock portfolio returns if the portfolios are con-

structed to have enough dispersions of cash flow durations among them. Growth and

value firms have quite different cash flow durations, and Perez-Quiros and Timmer-

mann (2000) show that portfolios of large and small firms have different sensitivities

to credit conditions so that we should at least expect them to have different load-

ings on r. In section 4, we shall empirically examine the ICAPM using 25 size and

Book-to-Market sorted portfolios.

The value of a real discount bond is obtained as a special case of Theorem 1 by

imposing x ≡ y ≡ 1 and σy = 0. The resulting expression generalizes the Vasicek

(1977) model for the price of a (real) discount bond to the case in which the risk

premium, as well as the interest rate, is stochastic. In order to value nominal bonds,

it is necessary to specify the stochastic process for the price level, P ; this is assumed

to follow the diffusion:

dP

P
= πdt+ σPdzP , (11)

where the volatility of inflation, σP , is constant, while the expected rate of inflation,

π, follows an Ornstein-Uhlenbeck process:

dπ = κπ(π − π)dt+ σπdzπ. (12)

Then, noting that the real payoff of the nominal bond is 1/PT , the nominal price of a

zero coupon bond with a face value of $1 and maturity of τ , N(P, r, π, η, τ), and the

corresponding real price, n(P, r, π, η, τ), are given in the following theorem.

Theorem 2 If the stochastic process for the price level P is as described by (11) and
(12), the nominal and the real prices of a zero coupon bond with face value of $1 and
maturity τ , are given by:

N(P, r, π, η, τ) ≡ Pn(r, π, η, τ) = exp[Â(τ) − B(τ)r − C(τ)π − D̂(τ)η] (13)

where Â(τ), B(τ), C(τ), and D̂(τ) are given in Appendix A.
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Equation (13) implies that the nominal yield on a bond of given maturity is a

linear function of the state variables, r, π, and η:

− lnN

τ
= −Â(τ)

τ
+
B(τ)

τ
r +

C(τ)

τ
π +

D̂(τ)

τ
η. (14)

This equation shows that our valuation model, when applied to bonds, is a special

case of the (essentially) affine term structure model considered in Duffee (2002) and

is also closely related to the class of (complete) affine structures discussed by Duffie

and Kan (1996) and Dai and Singleton (2000).

3 Data and Estimation

The primary data set consists of monthly observations of the yields on eight syn-

thetic constant maturity zero coupon U.S. treasury bonds with maturities of 3, 6

months, and 1, 2, 3, 4, 5, and 10 years for the period from January 1952 to Decem-

ber 2000. Table 1 reports summary statistics for the bond yield data. The sample

mean of the bond yields increases slightly with maturity, while the standard deviation

remains relatively constant across maturities. The returns on 25 size and book-to-

market sorted value weighted portfolios and the nominal short interest rate for the

same period are used for the initial cross-sectional pricing tests.13 The CRSP value

weighted market portfolio is used to proxy for the portfolio of total wealth. The tests

are repeated using the returns on the 30 Fama-French industrial portfolios which ZZ

are re-balanced at the end of June every year using 4-digit SIC codes at that time

ZZ.14

In principle, it is possible to estimate the parameters of the system (5) by the

13We thank Luis Viceira and Robert Bliss for providing the bond yield data. Our data start in
January 1952 because the Federal-Treasury Accord that re-asserted the independence of the Fed
from the Treasury was adopted in March 1952. Equity market data are taken from the website of
Ken French.

14The returns are taken from the website of Ken French which describes the formation procedure.
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standard Maximum Likelihood Method from the yields on three different bonds using

equation (14) for the nominal bond yield. However, the choice of bonds to use in the

estimation is arbitrary, and there is no guarantee that the estimates will be consistent

with the yields of other bonds. Therefore, to minimize the consequences of possible

model misspecification as well as measurement errors in the fitted bond yield data, we

allow for errors in the pricing of individual bonds and use a Kalman filter to estimate

the time series of the unobservable state variables r, π and η, and their dynamics,

from data on yields of eight bonds with different maturities. Details of the estimation

are presented in Appendix B. In summary, there are three transition equations for

the unobserved state variables, and there are n observation equations based on the

yields at time t, yτj ,t, on bonds with maturities τj, j = 1, · · · , n.

The transition equations are the discrete time versions of equations (5.2), (5.3)

and (12), the equations that describe the dynamics of the state variables, r, η, and

π.

The observation equations are derived from equation (14) by the addition of mea-

surement errors, ετj
:

yτj ,t ≡ − lnN(t, t+ τj)

τj
= −Â(t, τj)

τj
+
B(τj)

τj
rt +

C(τj)

τj
πt +

D̂(τ)

τ
ηt + ετj

(t). (15)

The measurement errors, ετj
(t), are assumed to be serially and cross-sectionally

uncorrelated, and to be uncorrelated with the innovations in the transition equations.

To reduce the number of parameters to be estimated, the measurement error variance

was assumed to be of the form: σ2(ετj
) = σ2

b/τj where σb is a parameter to be

estimated. This is equivalent to the assumption that the measurement error variance

of the log price of the bonds is independent of the maturity.15

15In estimating a version of the model that has a constant value of η Brennan and Xia (2002) find
that the standard errors of the estimated bond yields decline with maturity out to 5 years. The model
was also estimated assuming a maturity independent measurement error variance: convergence was
slower but the estimates were similar.
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The final observation equation uses the Livingston Survey data on the expected

rate of inflation over the next six months,16 πliv, as a signal of the instantaneous

expected rate of inflation π:

πliv = π + εliv. (16)

Although equation (16) is not necessary to estimate the model, it helps to identify

r and π, which enter the bond yield observation equation (15) in a symmetric way.

We also estimated the model using only bond yield data. The estimates of the state

variables r, π and η obtained using this additional observation equation are highly

correlated with the estimates using only the bond yield data: the correlations between

the levels (innovations) of the two sets of series are, for r, 0.92 (0.96); for π, 0.97 (0.77);

and for η, 0.95 (0.87). However, the estimated sample means of r and π obtained

using the additional observation equation (16) are more reasonable: 2.47% and 3.38%

as compared with 4.54% and 1.15%.

4 Empirical Results

In Section 4.1 we show that the time series of nominal bond yields and inflation

provide strong evidence of time variation in both the real interest rate and the Sharpe

ratio, and that these estimates are associated with the nominal risk free rate and

the equity premium. In Section 4.2 we estimate the risk premia associated with

innovations in r and η and consider the ability of the model to explain the cross

section of returns on, first, 25 size and book-to-market sorted equity portfolios and,

secondly, on 30 industry portfolios.

16The Livingston survey is carried out twice a year in June and December. The CPI forecast
contains the economists’ forecast of the CPI level in six and 12 months. We use the mean of the
six-month forecast to construct the expected rate of inflation, and then use linear interpolation
for the other months. The data are available from the Federal Reserve Bank of Philadelphia:
http://www.phil.frb.org/econ/liv.
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4.1 State Variable Estimates

In this section we report Kalman filter estimates of the stochastic process for the

state variables, r, π, and η, as well as the estimated time series of the state variables.

In order to identify the process for the Sharpe ratio, η, it is necessary to impose a

restriction that determines the overall favorableness of investment opportunities.17

The restriction we impose is that η̄ = 0.7. This value was chosen after fitting an

EGARCH model to the market excess return and using the resulting times series

of volatility estimates to calculate a time series of realized equity market Sharpe

ratios. This series has a mean of 0.57.18 Since η is the maximum Sharpe ratio of

the economy, we set η̄ to 0.7 to allow for the fact that the equity market portfolio

is not mean-variance efficient. This normalization affects only estimates of the scale

of η and correlations of other variables with η. Finally, to improve the efficiency of

estimation, π̄ was set equal to the sample mean of CPI inflation, r̄ was set equal to the

difference between the sample mean of the 3-month nominal interest rate and π̄, and

the volatility of unexpected inflation, σP , was set equal to 1.16%, the sample volatility

of CPI inflation. As a result of predetermining these parameter values, the standard

errors of all other parameters reported in Panel B of Table 1 are understated.

Since the bond yield data were constructed by estimating a cubic spline for the

spot yield curve from the prices of coupon bonds, the bond yields are measured

with error. For estimation purposes the variance of the yield measurement error was

assumed to be inversely proportional to maturity τ . The estimated measurement

error parameter, σb, implies that the standard deviation of the measurement error

varies from 16 basis points for the three month maturity to 5 basis points for the ten

17Equation (4) shows that the structure of risk premia is invariant up to a scalar multiplication of
η and the vector of inverse security correlations with the pricing kernel with typical element, 1/ρV m.

18The excess return of the CRSP value weighted market portfolio during the sample period has a
mean of about 0.62% and a standard deviation of 4.23% per month, implying a Sharpe ratio of 0.5
if volatility is assumed to be constant. Mackinlay (1995) reports an average Sharpe ratio of around
0.40 for the S&P500 for the period 1981-1992.
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year maturity, which is comparable to previous estimates.19

The estimated volatility of expected inflation, σπ, is around 0.75% per year, while

κπ is close to zero, so that the expected rate of inflation rate follows almost a random

walk.20 The estimated volatility of the real interest rate process, σr, is 1.11% per

year; on the other hand the sample volatility of the innovations to the estimated r

series is 0.4% per year, which compares to Campbell and Viceira’s (op. cit.) estimate

of 0.5% per year for a slightly shorter sample period. The estimated mean reversion

intensity for the interest rate, κr, is 0.074 per year which implies a half life of about 9

years. The volatility of the Sharpe ratio process, ση, is 0.31 per year which compares

with the imposed long run mean value of 0.70; the mean reversion intensity for the

Sharpe ratio is 0.047, which implies a half life of more than 14 years. Thus the real

interest rate and the Sharpe ratio are persistent processes. This means that they are

important state variables from the point of view of an investor with a long horizon so

that we should expect to see significant risk premia associated with these variables.

To place the volatility of the real interest rate and the Sharpe ratio in perspective,

suppose that the volatility of the market return, σM , is constant at 15%. Then if the

correlation between the market and the pricing kernel is, say, 0.7, which corresponds to

the point estimate from equation (19) below, the estimated volatility of the expected

market return that is due to the volatility of the Sharpe ratio is 0.15 × 0.31 × 0.7 =

3.33%, which is three times as great as the estimated volatility attributable to the real

interest rate (1.11%), so that the variation in η is of much more importance for the

variation in the expected return on the equity market than is the variation in r. This

is consistent with the finding of Campbell and Ammer (1993) that stock returns are

strongly affected by ‘news about future excess stock returns’, while real interest rates

19Babbs and Nowman (1999) report standard deviations of the measurement errors of 10 basis
points for a one-year maturity and 6 basis points for an eight year maturity for a 3-factor generalized
Vasicek model estimated over a much shorter sample period.

20Campbell and Viceira (2001) also find that the expected rate of inflation is close to a random
walk in a similar setting, using a model with constant risk premia.
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have relatively little impact. Note, however, that the estimated correlation between

the innovations in r and in η is −0.53, so that a significant part of the effect of the

innovations in these two variables on the expected market return is offsetting. The

Wald statistic for the null hypothesis that ση = κη = 0 (so that η is a constant) is

highly significant, providing strong evidence, given the pricing model, that the Sharpe

ratio is time varying. Finally, the t-statistics on ρηm and ρrm strongly reject the null

that the opportunity set state variables, r and η, are unpriced. However, this is not in

itself evidence in favor of the ICAPM, because it is possible that the risk premia are

due to the correlation of these variables with the market portfolio as in the classical

CAPM; we shall investigate this further below. The t-statistics on ρPm and ρπm are

either not significant or are only marginally significant: thus there does not appear

to be a risk premium associated with inflation.

Figures 1 plots the time series of the estimated instantaneous real interest rate r.

It reaches a maximum of 6.91% in mid-1984, and a minimum of -2.37% in mid-1980:

it is positive for most of the sample period and its average value is 2.5%. The real

interest rate tends to fall during recessionary periods which are represented by the

shaded areas in the figures, and to rise following cyclical troughs.21 Figure 2 plots

the estimated series for π along with the corresponding Livingston estimates of the

expected rate of inflation. The estimated π series tracks the Livingston inflation well,

both of them capturing the inflationary episodes of 1974-75 and 1980-81.22

Since the real interest rate series in Figure 1 appears very volatile, while the

expected inflation series in Figure 2 tracks the Livingston survey quite well, it is of

interest to check how well the instantaneous nominal interest rate implied by the

model tracks the one month nominal interest rate, Rf , which is taken from French’s

21The period of recession is measured from peak to trough as determined by the National Bureau
of Economic Research.

22We also estimated the model using only bond yields or using bond yields together with CPI
inflation data. The fitted state variable π from these two data sets is also highly correlated with the
Livingston inflation, but has a lower mean.
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website. The model-implied instantaneous nominal risk free rate is given by

R = r + π − σPρPmη − σ2
P . (17)

Since the estimate of ρPm reported in Table 1 is not significantly different from zero

and σ2
P ≈ 0, we can approximate the model-implied nominal interest rate, R, by r+π.

Figure 3 plots R ≈ r+π along with the empirical 1-month rate Rf . The two series are

almost coincident. Given that the π series tracks the Livingston expected inflation

rates well, this implies that our estimated real interest rate series, r, is approximately

equal to the real interest rate implied by the 1-month interest rate and the Livingston

survey data.

Figure 4 plots the estimated Sharpe ratio, which shows considerable variation

over time, reaching a maximum of 2.02 in April 1985 and a minimum of -1.64 in

March 1980.23 Recessions are generally associated with an increasing Sharpe Ra-

tio. Whitelaw (1997) and Perez-Quiros and Timmermann (2000) have found similar

cyclical patterns in the Sharpe ratio in the equity market.24 The correlation between

the estimated levels of r and η is about 0.1, but there is strong negative correlation

between the innovations in these two variables (-0.53). Cochrane and Piazzesi (2002)

have recently constructed a bond excess return forecasting factor as a linear combi-

nation of several different bond yields, without imposing any model restrictions. Like

our estimate of η, their forecasting factor has high volatility and exhibits a strong

cyclical pattern. Therefore, their forecasting factor corresponds to our η in an un-

restricted model and its sample correlation with our estimate of η is 0.65.25 The

similarity is not surprising in view of the fact that our model has three state variables

and Litterman and Scheinkman (1991) find that three principal components capture

23Boudoukh et. al.(1993) find evidence that the ex-ante equity market risk premium is negative in
periods in which Treasury Bill rates are high. In March 1980 the Treasury Bill rate was over 14%.

24Fama and French (1989) have also documented common variation in expected returns on bonds
and stocks that is related to business conditions.

25We thank Monika Piazzesi for making their series available to us.
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well over 90% of the variation in bond yields.

Equation (15) implies that the difference in yields of bonds with different matu-

rities, the ‘term spread’, is a linear function of the state variables r, π, and η. We

find that our estimated state variables explain almost 99% of the variance of the term

spread as measured by the difference between the yields on one-year and ten-year zero

coupon Treasury bonds; this is further confirmation of the model fit. To the extent

that the state variable innovations are factors in pricing equity returns as our theory

predicts and the empirical results reported below confirm, the innovation to the term

spread will also inherit some of their power in pricing equity returns.

The pricing kernel represented by equation (5) implies that the risk premia on

all assets vary together with η. In particular, equation (4) implies that the equity

market risk premium is related to η by:

µM − r = ηρMmσM

which implies that the equity market Sharpe ratio can be written as:

SHM ≡ µM − r

σM
= ηρMm. (18)

The realized market Sharpe ratio for each month, SHR
M , was constructed by dividing

the market excess return for that month by the EGARCH fitted volatility. To test

equation (18), SHR
M was regressed on η−1. The estimated equation is:

SHR
M = 0.156

(0.71)

+ 0.707η−1,

(2.64)

R̄2

1.2%
(19)

where the Newey-West adjusted t-ratios are in the parentheses. Thus, as the model

predicts, the Sharpe ratio that we have estimated using data on bond yields and

inflation has significant information for normalized excess returns on the stock market.
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The estimated coefficient of η−1 implies that ρMm = 0.71,26 and the lack of significance

of the intercept is consistent with the theoretical specification (18). The adjusted R2

increases from 1.2% to 4% if the realized average Sharpe ratio over the next 12

months is the dependent variable. Note that the filtered estimate of the Sharpe

ratio is a linear function of the bond yields; this provides an economic rationale for

the empirical success of yield-based predictors of expected returns such as nominal

interest rates and yield spreads found by Stambaugh (1988) and Fama and French

(1989) among others.

However, the parsimony of the simple ICAPM that we have proposed comes at

the cost of possible model mis-specification. In particular, the assumption that r, π,

and η follow a correlated O-U process is a strong one. Examination of the estimated

innovations to r, π, and η reveals that they are autocorrelated and non-normal.

The autocorrelation suggests that there may be additional, potentially priced, state

variables, X, that affect the dynamics of r and η. We shall discuss this issue further

below.

The significant values of ρrm (−0.85) and ρηm (0.96) reported in Table 1 imply

that there are indeed risk premia associated with innovations in r and η. In order to

test whether premia associated with innovations in the investment opportunity set

state variables, r and η, provide incremental explanatory power for equity portfolio

returns relative to the CAPM, we calculate the innovations in the state variable (sv)

estimates, ∆r, ∆π and ∆η, using the parameter values reported in Table 1:

∆sv = sv − s̄v
(
1 − e−κsv/12

)
− sv(−1)e−κsv/12, sv = r, π, η.

In the next section, we consider whether the estimated risk premia associated

26Note that the estimated correlation depends on the assumed value of η̄. Shanken (1987) presents
evidence that one can reject the hypothesis that the correlation between a linear combination of the
CRSP equal weighted index and a bond portfolio and the pricing kernel exceeds 0.7. Kandel and
Stambaugh (1987) report similar evidence for the value weighted index.
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with these innovations can account for the observed returns on size and B/M sorted

portfolios and on industry portfolios.

4.2 Cross-sectional Pricing

Under the simple ICAPM described in section 2, the pricing kernel is a linear

function of the excess return on the market portfolio and the innovations in the state

variables r and η so that the unconditional risk premium on asset i may be written

as:

µi − r = η̄ (βiMρmMσM + βirρrmσr + βiηρηmση)

= βiMλM + βirλr + βiηλη (20)

where the λ’s are the unconditional premia for market risk, real interest rate risk and

Sharpe ratio risk, and βiM etc. are coefficients from the regression of asset returns on

market excess returns and state variable innovations:

Ri − Rf = αi + βiM (RM − Rf) + βiη∆η + βir∆r + εi. (21)

We can directly test the implications of the ICAPM for stock returns by using the

two-stage cross-sectional regression procedure described in Chapter 12 of Cochrane

(2001). Initially, we use as test returns the monthly excess returns on the 25 Fama-

French size and book-to-market sorted portfolios for the period of January 1952 to

December 2000. In the first stage, we regress the 25 portfolio returns on the market

excess return, and the estimated innovations in the state variables, the real inter-

est rate and the maximum Sharpe ratio, to obtain the three betas, as described in

equation (21). In the second stage, we estimate the cross-sectional regression:

Ri −Rf = β̂iMλM + β̂irλr + β̂iηλη + ui, i = 1, · · · , 25,

which corresponds to (20) with µi replaced by portfolio i’s sample mean R̄i and betas
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replaced by their estimates from the first stage.

The model mispricing for portfolio i, α̂i, is then defined by:

α̂i ≡ Ri − Rf −
(
β̂iM λ̂M + β̂irλ̂r + β̂iηλ̂η

)
.

The variance-covariance matrix of the pricing errors, Σ ≡ Cov (α̂), is calculated using

Shanken’s (1992) correction. The model restrictions are tested using the quadratic

form α̂
′
Σ−1α̂, which is distributed as χ2(22) under the null hypothesis. For compari-

son, we also estimate and test the CAPM and the Fama-French 3 factor model using

the same approach.

ZZ The estimated risk premia and the χ2 test statistics for the three models are

summarized in Table 2, which also reports the sample statistics for the market excess

return, the SMB and HML portfolio returns.ZZ The model mispricing, α̂, is reported

in Table 3. The χ2 test statistic does not reject the pricing restrictions implied

by the simple ICAPM (p−value ≈ 20%), while both the CAPM and the Fama-

French 3-factor model are strongly rejected (p−values < 1%).27 For the ICAPM,

both real interest rate risk and Sharpe ratio risk are significantly priced; moreover

the signs of the risk premia are consistent with the estimates of the correlations of

the innovations in these variables with the pricing kernel reported in Table 1. For the

Fama-French 3-factor model, the factor HML carries a significant 0.4% per month

risk premium, which is close to the mean sample return on the HML portfolio of

0.36%per month; the risk premium for the SMB factor is only 0.08% per month and

not significant, and the mean return on the SMB portfolio for the sample period is

only 0.10% per month and is not significant either. The estimated monthly market

risk premium is 0.56% from the ICAPM, 0.58% from the FF 3-factor model, and 0.70%

from the CAPM, as compared to the sample mean of the market excess return of 0.61%

27The CAPM and Fama-French 3-factor models are also rejected using the Gibbons-Ross-Shanken
(1989) (GRS) test for the joint significance of the α’s in OLS regressions of portfolio excess returns
on the market excess return and (for the 3 factor model) the returns on SMB and HML.
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per month. The individual mispricing α’s are about the same magnitude under the

ICAPM as those under the FF 3-factor model, so that the theoretically motivated

ICAPM performs as well as the FF 3-factor model in this regard. Interestingly, there

is considerable overlap between the portfolios whose α′s have significant t-statistics

under the ICAPM and the 3-factor model. Small, high book-to-market, portfolios

are significantly mispriced by both models, as are small and big low book-to-market

portfolios; however, the t-statistics are more significant for the 3-factor model and

there are other portfolios that are well priced by the ICAPM but are mispriced by

the 3-factor model. ZZ The tests were repeated for the two halves of the sample period

and the results are summarized in Panel B and Panel C of Table 2: the CAPM and

the 3-factor model are rejected in both subperiods, while the ICAPM is rejected

only for the second sub-period. The estimated risk premia for r and η, and for the

Fama-French arbitrage portfolios are qualitatively similar across the two-subperiods.

ZZ

When the two special portfolios from the Fama-French 3-factor model, SMB and

HML, are added as additional test assets in the cross-sectional test, the ICAPM is

still not rejected, and the mispricings for SMB and HML are -0.07% and 0.02% per

month respectively, and are statistically insignificant. Thus the ICAPM is able to

account for the mean excess returns on the two Fama-French risk factors themselves.

The standard errors used to compute the t−ratios reported in Table 2 are cal-

culated using the Shanken (1992) correction to account for errors in the first stage

beta estimates. However, the beta estimates from the first stage will be biased to the

degree that the factors ∆r and ∆η are estimated with error. Then the second stage

parameter estimates are biased due to the errors in the estimated betas. Therefore,

as a robustness check, we also estimate and test the three models using the one-step

Generalized Method of Moments Discount Factor (GMM/DF) approach. A discrete

time version of the pricing model (5) implies that E
[
ψ(R̃− Rf)

]
= 0 where ψ can
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be written as a linear function of the three ICAPM factors:

ψ = 1 + bMRM + br∆r + bη∆η.

Define gT (b) = 1
T

∑T
t=1 ψt(Rt −Rf125) where b = (b1, b2, b3)

′
, Rt is a (1×25) vector of

portfolio returns, and 125 is a vector of ones with length 25. The GMM/DF approach

is carried out by minimizing the quadratic form gT (b)WgT (b)
′
with respect to b, where

the weighting matrix W is set to be the inverse of the variance covariance matrix of

the pricing errors, S−1. The same approach is also applied to the FF 3-factor model

and the CAPM. Under the null hypothesis of the ICAPM, TJT ≡ TgT (b̂)S−1gT (b̂)
′
is

distributed as χ2(22). Again for the whole sample period, the simple ICAPM is not

rejected (p−value =6.04%) while the 3-factor model and the CAPM are rejected at

significance levels of< 1%. The estimated coefficients of the ICAPM pricing kernel are

(t-ratios in parentheses): b̂1 = −4.40 (3.1), b̂2 = −69.48 (1.4), and b̂3 = −7.51 (3.8).

When the tests are repeated for the two halves of the sample period, the ICAPM is not

rejected for the first half sample with p−value of 11.2% but is rejected at better than

1% significance level for the second sub-period. The FF and the CAPM are rejected

for both sub periods at better than 1% significance level. The estimated coefficients

of the pricing kernel are (t-ratios in parentheses): b̂1 = −3.07 (1.9), b̂2 = −77.14 (1.3),

and b̂3 = −7.06 (3.2) for the first sub-period, and b̂1 = −6.89 (3.8), b̂2 = −57.02 (1.6),

and b̂3 = −4.35 (2.9) for the second sub-period. Thus, the GMM results confirm the

cross-sectional pricing results.

Lo and MacKinlay (1990) advise caution in drawing inferences from samples of

characteristic sorted data such as the size and book-to-market sorted portfolios.

Therefore, as a robustness check we repeat the analysis using the returns on ZZ

30 Fama-French industrial portfolios.ZZ The results are reported in Table 4, which

contains the test statistics and the estimated factor risk premia for the whole sample

period and two sub-periods, and Table 5, which contains the pricing errors for the

whole sample period. Now, none of the three models is rejected by the two stage
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cross-sectional test, either for the whole period or for the subperiods, and the pric-

ing errors of the models are similar. The estimates of the risk premium associated

with the market factor of 0.64-0.75% per month are similar to those obtained with

the 25 size and B/M portfolios, and are broadly consistent with the sample mean

excess return on the market portfolio of 0.62% per month. However, the signs of

the risk premium estimates associated with η for the ICAPM, and with both SMB

and HML for the 3-factor model, are reversed when the industry data are used, and

are generally not significant. This is true both for the whole sample period and for

the two sub-periods. Moreover, for the 3-factor model the estimated risk premia for

the SMB (HML) factors of -0.30% (-0.38%) per month are quite different from the

sample mean returns on the corresponding portfolios of 0.10% (0.36%) per month.

As a result, a one-pass GRS F test, which includes in the null hypothesis the equality

of the factor risk premia and the corresponding portfolio risk premia, strongly rejects

the 3-factor model for the whole sample period and for the two halves with p-values

well under 1%. The CAPM is also rejected under the one-pass GRS test with a p-

value of about 4%. The ICAPM does not constrain the factor risk premia so the GRS

test is not directly applicable to this model. However, if factor-mimicking portfolios28

are constructed for the innovations in r and η then the GRS F-test, which use these

portfolios as factors, does not reject the ICAPM (p-value = 8.3%) in constrast to the

rejection of both FF 3-factor model and the CAPM. We do not place much weight on

the mimicking portfolio results, however, since the portfolio weights of the mimicking

portfolios are estimated with considerable error and in any case, as we shall see, the

ICAPM is rejected by the two-stage cross-sectional tests reported below when the test

assets include both the industrial portfolios and the size and book-to-market sorted

portfolios. It is interesting to note that for all three models it is the tobacco industry,

‘Smoke’, that is the most mispriced - its return is from 3.6% to 6.2% under-predicted

by the models. ZZ

28See Breeden (1979) and Breeden, Gibbons and Litzenberger (1989) for details.
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Given the contrasting point estimates of the factor premia from the two sets of

data, we examine how the model performs when the 55 portfolio returns are combined.

The results are reported in Table 6. First, the estimated market risk premium is quite

similar across the three models and the two subperiods at around 0.6−0.7% per month

which is close to the sample mean excess return on the market portfolio. For the 3-

factor model, the risk premia associated with SMB and HML are close to zero and

insignificant: for SMB the point estimate is around 25 basis points per year, and for

HML around 144 basis points, in both cases well below the sample mean returns on

the corresponding portfolios. On the other hand, both ICAPM factor risk premia are

highly significant in the full sample and, though not significant, have the same sign

in both sub-periods. All three models are rejected at better than the 1% level for the

three sample periods. The GMM/DF tests yield similar rejections except that the

ICAPM is not rejected in the first subperiod.

The fact that the simple ICAPM is rejected is not entirely surprising in view of

the evidence of model mis-specification that we reported in Section 4.1: since r and

η do not follow a joint Markov process there must be additional state variables in the

stochastic process for these two variables that describe the instantaneous investment

opportunity set, and in general we should expect them to be priced. Moreover, in

specifying the empirical version of the simple ICAPM we have treated the stock

market index as the market portfolio and the resulting mismeasurement of the return

on aggregate wealth could also account for the model rejection.

5 Conclusion

In this paper we have developed, estimated, and tested a simple model of asset

valuation for a setting in which real interest rates and risk premia vary stochastically.

The model implies that zero-coupon nominal bond yields are linearly related to the

state variables r and η, the real interest rate and the maximal Sharpe ratio, as well as
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to the expected rate of inflation, π. Data on bond yields and expected inflation were

used to provide estimates of the state variables and of the parameters of their joint

stochastic process. The estimated real interest rate and Sharpe ratio both show strong

business cycle related variation: the Sharpe ratio rising, and the real interest rate

falling, during recessions. The Sharpe ratio estimate was shown to be related to the

excess return on the equity market portfolio, consistent with the model predictions.

However, there was evidence of model mis-specification in that the filtered series for

r and η did not possess the hypothesized Markov property.

The model was tested first on the 25 size and book-to-market portfolios. The

estimated risk premia for both r and η were significant, and the model pricing re-

strictions were not rejected for the whole sample period, although they were rejected

for one half of the period. In contrast, both the CAPM and the Fama-French 3-factor

model were rejected for the whole sample period and the two subperiods.

Lo and Mackinlay (1990) have warned against testing asset pricing models on the

returns of portfolios that have been formed on the basis of some characteristic which

is known to be associated with returns. Since the size and book-to-market portfolios

seem to meet this criterion, we also tested the model using the returns on 30 industry

portfolios. None of the three models was rejected using these returns. However, the

point estimates of the risk premia associated with r and η and with SMB and HML

were quite different from those obtained using the 25 portfolios.

Finally, the models were estimated and tested using the combined sample of 55

portfolios. With these data the market risk premium was significant for all three

models; and, while neither of the premia associated with the Fama-French arbitrage

portfolios were significant, the premia associated with both r and η were highly sig-

nificant. Despite this, the pricing restrictions of all three models were rejected. It is

hypothesized that the rejection of the simple ICAPM could be due either to mismea-

surement of the return on aggregate wealth or to the failure of the assumption that
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the two investment opportunity set state variables follow a Markov process. Never-

theless, these results with a highly simplified ICAPM are sufficiently encouraging to

warrant further empirical investigation of the ICAPM. We stress the need in empir-

ical implementation of the ICAPM to pay careful attention to the selection of state

variables: the ICAPM is not just another “factor model”; the state variables of the

model must be limited to those that predict future investment opportunities.
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Appendix

A. Proof of Theorems 1 and 2

The real part of the economy is described by the processes for the real pricing

kernel, the real interest rate, and the maximum Sharpe ratio (5.1)-(5.3), while the

nominal part of the economy is described by the processes for the price level and the

expected inflation rate (11)-(12). Under the risk neutral probability measure Q, we

can write these processes as:

dr = κr(r̄ − r)dt− σrρmrηdt+ σrdz
Q
r (A1)

dπ = κπ(π̄ − π)dt− σπρmπηdt+ σπdz
Q
π (A2)

dη = κ∗η(η̄
∗ − η)dt+ σηdz

Q
η (A3)

where κ∗η = κη + σηρmη and η̄∗ = κη η̄

κ∗
η

.

Let y, whose stochastic process is given by (7), denote the expectation of a nominal

cash flow at a future date T , XT . The process for ξ ≡ y/P , the deflated expectation

of the nominal cash flow, under the risk neutral probability measure can be written

as:

dξ

ξ
=

[
−π − σyσPρyP + σ2

P − η(σyρym − σPρPm)
]
dt+ σydz

Q
y − σPdz

Q
P . (A4)

The real value at time t of the claim to the nominal cash flow at time T , XT , is given

by expected discounted value of the real cash flow under Q:

V (ξ, r, π, η, T − t) = EQ
t

[
XT

PT
exp−

∫ T
t r(s)ds

]
= EQ

t

[
yT

PT
exp−

∫ T
t r(s)ds

]

= EQ
t

[
ξT exp−

∫ T
t r(s)ds

]
(A5)
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Using equation (A4), we have

ξT = ξt exp

{(
−1

2
σ2

y +
1

2
σ2

P

)
(T − t) − (σyρym − σPρPm)

∫ T

t

η(s)ds

−
∫ T

t

π(s)ds+ σy

∫ T

t

dzQ
y − σP

∫ T

t

dzQ
P

}
. (A6)

Tedious calculations from equations (A1), (A2), and (A3) easily lead to results

for
∫ T

t
η(s)ds,

∫ T

t
π(s)ds, and

∫ T

t
r(s)ds. Substituting the expressions for

∫ T

t
η(s)ds,

∫ T

t
π(s)ds, and

∫ T

t
r(s)ds into equation (A5) yields

V (ξ, r, π, η, T − t) = ξtGEQ
t [expϕ] , (A7)

where G is given by

G = exp {E(τ) − B(τ)rt − C(τ)πt −D(τ)ηt} (A8)

and

B(τ) =
1 − e−κr(T−t)

κr
(A9)

C(τ) =
1 − e−κπ(T−t)

κπ
(A10)

D(τ) = d1 + d2e
−κ∗

ητ + d3e
−κrτ + d4e

−κπτ (A11)

(A12)

with

d1 = −σPρmP − σyρmy

κ∗η
− σrρmr

κr κ∗η
− σπρmπ

κπκ∗η
(A13)

d2 = −σyρmy

κ∗η
− σrρmr

(κ∗η − κr)κ∗η
− σπρmπ

(κ∗η − κπ)κ∗η
(A14)

= −d1 − d3 − d4

d3 =
σrρmr

(κ∗η − κr)κr

(A15)

d4 =
σπρmπ

(κ∗η − κπ)κπ
(A16)
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The stochastic variable ϕ is a linear function of the Brownian motions:

ϕ = ση

∫ T

t

[
d2

(
1 − e−κ∗

η(T−s)
)

+ d3

(
1 − e−κr(T−s)

)
+ d4

(
1 − e−κπ(T−s)

)]
dz∗η(s)

− σr

κr

∫ T

t

(
1 − e−κr(T−s)

)
dz∗r (s) −

σπ

κπ

∫ T

t

(
1 − e−κπ(T−s)

)
dz∗π(s)

+ σy

∫ T

t

dz∗y(s) − σP

∫ T

t

dz∗P (s). (A17)

Since ϕ is normally distributed with mean zero, V is given by

V (ξ, r, π, η, T − t) = ξtG1 exp

{
1

2
Vart(ϕ)

}
(A18)

Calculating Vart(ϕ) and collecting terms, we get that

V (ξ, r, π, η, T − t) = ξt exp {A(τ) −B(τ)rt − C(τ)πt −D(τ)ηt} (A19)

where

A(τ) = a1τ + a2
1 − e−κrτ

κr
+ a3

1 − e−κπτ

κπ
+ a4

1 − e−κ∗
ητ

κ∗η

+a5
1 − e−2κrτ

2κr
+ a6

1 − e−2κπτ

2κπ
+ a7

1 − e−2κ∗
ητ

2κ∗η

+a8
1 − e−(κ∗

η+κr)τ

κ∗η + κr
+ a9

1 − e−(κ∗
η+κπ)τ

κ∗η + κπ
+ a10

1 − e−(κr+κπ)τ

κr + κπ
. (A20)

Define a0 ≡ σrη

κr
+ σπη

κπ
+ σPη − σyη − κ∗ηη̄

∗, r̄∗ ≡ r̄− σPr−σyr

κr
, and π̄∗ ≡ π̄− σPπ−σyπ

κπ
,
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then a1, . . . , a10 are expressed as

a1 = σ2
P − σyP +

σ2
r

2κ2
r

+
σ2

π

2κ2
π

+
σrπ

κrκπ
+
σ2

η

2
d2

1 − r̄∗ − π̄∗ + a0d1 (A21)

a2 = r̄∗ − σ2
r

κ2
r

− σrπ

κrκπ

− σrη

κr

d1 + a0d3 + σ2
ηd1d3 (A22)

a3 = π̄∗ − σ2
π

κ2
π

− σrπ

κrκπ
− σπη

κπ
d1 + a0d4 + σ2

ηd1d4 (A23)

a4 = a0d2 + σ2
ηd1d2 (A24)

a5 =
σ2

r

2κ2
r

+
σ2

η

2
d2

3 −
σrη

κr

d3 (A25)

a6 =
σ2

π

2κ2
π

+
σ2

η

2
d2

4 −
σπη

κπ
d4 (A26)

a7 =
σ2

η

2
d2

2 (A27)

a8 = −σrη

κr
d2 + σ2

ηd2d3 (A28)

a9 = −σπη

κπ
d2 + σ2

ηd2d4 (A29)

a10 =
σrπ

κrκπ
− σπη

κπ
d3 −

σrη

κr
d4 + σ2

ηd3d4 (A30)

Theorems 1 and 2 follow as special cases of equation (A19). Theorem 1 is obtained

by setting σP and the parameters in the expected inflation process (A2) to zero.

Theorem 2 is obtained by setting σy to zero.

B. Details of Kalman Filter

The yield-based estimates of the state variable dynamics are derived by applying a

Kalman filter to data on bond yields and inflation using equation (15). The transition

equations for the state variables, r, π and η are derived by discretizing equations (5.2),

(5.3), and (12):
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rt

πt

ηt


 =




e−κr∆t 0 0

0 e−κπ∆t 0

0 0 e−κη∆t







rt−∆t

πt−∆t

ηt−∆t


 +




r̄
[
1 − e−κr∆t

]

π̄
[
1 − e−κπ∆t

]

η̄
[
1 − e−κη∆t

]


 +




εr(t)

επ(t)

εη(t)


(B1)

where the vector of innovations is related to the standard Brownian motions, dzr, dzπ

and dzη, by 


εr(t)

επ(t)

εη(t)


 =




σre
−κrt

∫ t

t−∆t
eκrτdzr(τ)

σπe
−κπt

∫ t

t−∆t
eκπτdzπ(τ)

σηe
−κηt

∫ t

t−∆t
eκητdzη(τ)


 , (B2)

and the variance-covariance matrix of the innovations is

Q =




σ2
r

2κr

[
1 − e−2κr∆t

]
σrσπρrπ

κr+κπ

[
1 − e−(κr+κπ)∆t

] σrσηρrη

κr+κη

[
1 − e−(κr+κη)∆t

]

σrσπρrπ

κr+κπ

[
1 − e−(κr+κπ)∆t

]
σ2

π

2κπ

[
1 − e−2κπ∆t

] σπσηρπη

κπ+κη

[
1 − e−(κπ+κη)∆t

]

σrσηρrη

κr+κη

[
1 − e−(κr+κη)∆t

] σπσηρπη

κπ+κη

[
1 − e−(κπ+κη)∆t

] σ2
η

2κη

[
1 − e−2κη∆t

]


 .

(B3)

The first n observation equations assume that the observed yields at time t, yτj ,t, on

bonds with maturities τj, j = 1, · · · , n, are given by equation (15) plus a measurement

error terms, ετj
:

yτj ,t ≡ − lnV (t, t + τj)

τj
= −A(t, τj)

τj
+
B(τj)

τj
rt +

C(τj)

τj
πt +

D(τj)

τj
η + ετj

(t). (B4)

The measurement errors, ετj
(t), are assumed to be serially and cross-sectionally un-

correlated and are uncorrelated with the innovations in the transition equations. The

n+ 1 observation equation uses the Livingston estimate of the rate of inflation:

πliv = π + εliv. (B5)

where εliv is assumed to be uncorrelated with the yield measurement errors and the

innovations in the transition equation.
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Table 1

Summary Statistics on Bond Yields and Model Parameter Estimates

Panel A of the table reports summary statistics for the bond yield data. The bond data are monthly obser-

vations on constant maturity zero coupon U.S. Treasury yields for the period from January 1952 to December 2000.

Panel B reports the summary statistics for the inflation data. CPI inflation is calculated using CPI data for the

same sample period while the Livingston inflation is calculated using the Livingston survey data. Panel C reports

estimates of the parameters of the stochastic process of the investment opportunity set, equations (5.2) to (5.3),

obtained from a Kalman filter applied to the inflation and bond yield data with r̄ = 1.62%, π̄ = 3.85% and η̄ = 0.7,

where r̄ and π̄ are the sample means, and η̄ is 20% higher than the CRSP value weighted market index Sharpe ratio.

η is the Sharpe ratio. r is the real interest rate. m is the pricing kernel, π is the expected rate of inflation, and P is

the price level. Asymptotic t-ratios are in parentheses.

A. Bond Yields (% per year)

Bond Maturity (years) 0.25 0.5 1 2 3 4 5 10
Mean 5.47 5.70 5.90 6.12 6.26 6.36 6.44 6.64

Std. Dev. 2.86 2.90 2.88 2.83 2.79 2.77 2.76 2.72

B. Inflation (% per year)

CPI Livingston
Inflation Inflation

Mean 3.85% 3.15%
Std. Dev. 1.16% 0.68%

C. Parameter Estimates

σb σr σπ ση κr κπ κη

Estimate 0.16% 1.11% 0.75% 30.79% 0.074 0.000 0.047
t-ratio (86.75) (11.76) (12.58) (8.52) (14.15) (0.75) (5.44)

ρrπ ρrη ρrm ρπη ρπm ρηm ρPm

Estimate 0.114 -0.528 -0.852 -0.283 -0.219 0.962 0.383
t-ratio (1.30) (6.27) (11.21) (3.52) (1.05) (4.98) (1.89)

r̄ π̄ η̄ σP σliv ML
Pre-set Value 1.62% 3.85% 0.700 1.16% 0.35% 30,962.63
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Table 2

Joint Test of ICAPM, FF and CAPM for 25 Size and Book-to-Market Sorted
Portfolios: R −Rf = β̂λ+ ε

This table reports the two-stage cross-sectional regression results under the ICAPM. In the first stage, the

excess returns on 25 size and book-to-market sorted portfolios are regressed on the market risk premium, RM − Rf ,

and the innovations in the state variables, ∆r and ∆η to obtain estimates of the loadings on the three factors,

β̂. In the second stage, the sample mean of the excess returns is regressed on the beta without the intercept:

R− Rf = β̂λ + ε, and then the mispricing is calculated as α̂ = R− Rf − β̂λ̂. A χ2 test is then formed on α̂ to test

the joint significance of the mispricing. The individual t-ratios and the variance covariance matrix, Σ, are calculated

using Shanken’s adjustment. The sample period is from January 1952 to December 2000.

Panel A: January 1952 to December 2000

ICAPM FF 3-factor Model CAPM Sample Mean
λM λr λη λM λSMB λHML λM RM − Rf SMB HML

Estimate 0.56% -0.43% 13.59% 0.58% 0.08% 0.40% 0.70% 0.62% 0.10% 0.36%
t-ratios 3.11 2.39 3.44 3.28 0.62 3.48 3.75 3.55 0.82 3.26

α
′
Σ−1α 27.31 70.04 94.43

p−value 19.97% < 1% < 1%

Panel B: January 1952 to June 1976

ICAPM FF 3-factor Model CAPM Sample Mean
λM λr λη λM λSMB λHML λM RM − Rf SMB HML

Estimate 0.43% -0.15% 7.53% 0.53% 0.03% 0.44% 0.62% 0.55% 0.06% 0.39%
t-ratios 1.75 1.43 2.67 2.23 0.21 3.23 2.41 2.32 0.72 4.68

α
′
Σ−1α 28.83 46.16 57.39

p−value 14.98% < 1% < 1%

Panel C: June 1976 to December 2000

ICAPM FF 3-factor Model CAPM Sample Mean
λM λr λη λM λSMB λHML λM RM − Rf SMB HML

Estimate 0.69% -0.43% 15.93% 0.64% 0.13% 0.34% 0.78% 0.68% 0.14% 0.34%
t-ratios 2.60 2.17 2.57 2.47 0.68 1.84 2.87 2.65 0.74 1.90

α
′
Σ−1α 41.94 89.10 108.95

p−value < 1% < 1% < 1%
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Table 3

Mispricing under ICAPM, FF and CAPM for 25 Size and Book-to-Market
Sorted Portfolios: January 1952 to December 2000

This table reports the model mispricing, α̂i, in the two-stage cross-sectional regression for 25 Size and

Book-to-Market Sorted Portfolios. For the ICAPM α̂i ≡ Ri − Rf −
(
β̂iM λ̂M + β̂irλ̂r + β̂iηλ̂η

)
. For the 3-factor

model α̂i ≡ Ri − Rf −
(
β̂iM λ̂M + β̂iSMBλ̂SMB + β̂iHMLλ̂HML

)
. For the CAPM α̂i ≡ Ri − Rf −

(
β̂iM λ̂M

)
. The

sample period is from January 1952 to December 2000.

Book-to-Market Book-to-Market
Low 2 3 4 High Low 2 3 4 High

Size α(%) t(α)
ICAPM

small -0.44 -0.20 -0.17 0.07 0.16 1.67 1.25 1.28 0.84 1.85
2 -0.25 -0.25 0.07 0.02 0.16 1.62 2.00 0.74 0.23 1.51
3 -0.01 -0.09 0.04 0.16 0.03 0.08 0.82 0.41 1.74 0.25
4 -0.11 -0.18 0.19 0.13 0.09 1.02 2.13 1.91 0.98 0.53
big 0.28 0.04 0.17 0.13 0.28 2.25 0.37 1.80 0.79 1.35

Fama-French 3-Factor Model
small -0.25 -0.10 -0.08 0.16 0.18 1.69 0.88 0.91 2.56 2.46
2 -0.14 -0.04 0.17 0.03 0.15 1.48 0.47 2.32 0.43 1.85
3 0.05 0.07 0.04 0.17 -0.12 0.63 0.99 0.46 2.42 1.52
4 0.03 -0.15 0.17 0.06 -0.07 0.48 1.97 2.43 0.72 0.66
big 0.16 -0.08 0.08 -0.17 -0.25 1.75 1.16 0.91 2.03 2.15

CAPM
small -0.45 -0.17 -0.07 0.23 0.35 2.20 1.19 0.57 2.28 2.77
2 -0.49 -0.16 0.15 0.14 0.34 3.45 1.67 1.87 1.84 3.28
3 -0.29 -0.02 0.05 0.31 0.12 2.37 0.28 0.67 3.81 1.12
4 -0.27 -0.21 0.24 0.22 0.18 2.18 2.25 2.60 2.20 1.34
big -0.10 -0.11 0.16 0.07 0.09 0.61 0.85 1.19 0.47 0.58
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Table 4

Joint Test of ICAPM, FF and CAPM for 30 Industrial Portfolios: R− Rf = β̂λ+ ε

This table reports the two-stage cross-sectional regression results under the ICAPM. In the first stage, the

excess returns on 30 industrial portfolios are regressed on the market risk premium, RM − Rf , and the innovations

in the state variables, ∆r and ∆η to obtain estimates of the loadings on the three factors, β̂. In the second stage,

the sample mean of the excess returns is regressed on the beta without the intercept: R− Rf = β̂λ + ε, and then

the mispricing is calculated as α̂ = R − Rf − β̂λ̂. A χ2 test is then formed on α̂ to test the joint significance of the

mispricing. The t-ratios and the variance covariance matrix, Σ, are calculated using Shanken’s adjustment. Results

for the whole sample period of from January 1952 to December 2000 and two equal sub samples are reported.

Panel A: January 1952 to December 2000

ICAPM FF 3-factor Model CAPM Sample Mean
λM λr λη λM λSMB λHML λM RM − Rf SMB HML

Estimate 0.69% -0.08% -4.01% 0.75% -0.30% -0.38% 0.64% 0.62% 0.10% 0.36%
t-ratios 3.81 1.09 1.45 4.18 1.82 2.51 3.52 3.55 0.82 3.26

α
′
Σ−1α 18.73 18.80 25.59

p−value 87.95% 87.71% 64.72%

Panel B: January 1952 to June 1976

ICAPM FF 3-factor Model CAPM Sample Mean
λM λr λη λM λSMB λHML λM RM − Rf SMB HML

Estimate 0.65% 0.04% -2.24% 0.69% -0.08% -0.25% 0.62% 0.55% 0.06% 0.39%
t-ratios 2.69 0.61 1.12 2.88 0.44 1.35 2.52 2.32 0.72 4.68

α
′
Σ−1α 20.91 18.80 22.54

p−value 79.04% 87.71% 79.73%

Panel C: July 1976 to December 2000

ICAPM FF 3-factor Model CAPM Sample Mean
λM λr λη λM λSMB λHML λM RM − Rf SMB HML

Estimate 0.71% -0.09% -7.82% 0.79% -0.86% -0.49% 0.66% 0.68% 0.14% 0.34%
t-ratios 2.60 0.76 1.75 3.01 2.85 2.08 2.46 2.65 0.74 1.90

α
′
Σ−1α 19.18 25.15 32.99

p−value 86.33% 56.59% 27.82%
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Table 5

Mispricing under ICAPM, FF and CAPM for 30 Industrial Portfolios: Janu-
ary 1952 to December 2000

This table reports the model mispricing, α̂i, in the two-stage cross-sectional regression for 30 indus-

trial portfolios. For the ICAPM α̂i ≡ Ri − Rf −
(
β̂iM λ̂M + β̂irλ̂r + β̂iηλ̂η

)
. For the 3-factor model

α̂i ≡ Ri − Rf −
(
β̂iM λ̂M + β̂iSMB λ̂SMB + β̂iHMLλ̂HML

)
. For the CAPM α̂i ≡ Ri − Rf −

(
β̂iM λ̂M

)
. The sample

period is from January 1952 to December 2000.

Industry ICAPM FF CAPM
α(%) t(α) α(%) t(α) α(%) t(α)

Food 0.18 1.74 0.14 1.37 0.26 2.23
Beer 0.20 1.26 0.09 0.63 0.12 0.83
Smoke 0.30 1.55 0.42 2.25 0.52 2.63
Games 0.07 0.46 0.07 0.52 -0.01 0.03
Books 0.10 0.78 0.12 1.08 0.10 0.94
Hshld 0.11 0.97 -0.07 0.80 0.15 1.41
Clths -0.19 1.15 -0.01 0.04 -0.20 1.43
Hlth 0.12 0.83 0.02 0.14 0.28 2.01
Chems -0.11 0.86 -0.22 2.17 -0.11 1.05
Txtls 0.04 0.29 0.10 0.81 -0.19 1.36
Cnstr -0.21 2.20 -0.11 1.39 -0.15 1.83
Steel -0.10 0.77 -0.21 1.51 -0.31 2.17
FabPr -0.17 1.68 -0.17 1.84 -0.18 1.97
ElcEq 0.09 0.56 -0.03 0.24 0.02 0.15
Autos 0.02 0.13 0.00 0.01 -0.01 0.07
Carry 0.01 0.09 0.16 1.09 0.11 0.75
Mines -0.01 0.07 -0.11 0.57 -0.25 1.25
Coal 0.03 0.14 0.01 0.06 -0.08 0.35
Oil 0.07 0.39 -0.01 0.09 0.15 0.91
Util -0.04 0.41 0.15 1.37 0.19 1.50
Telcm 0.03 0.20 0.03 0.25 0.15 1.09
Servs 0.06 0.37 0.05 0.50 0.05 0.34
BusEq 0.21 1.44 -0.04 0.34 0.12 0.81
paper -0.11 0.96 -0.15 1.55 -0.04 0.43
Trans -0.17 1.29 -0.08 0.66 -0.17 1.44
Whlsl -0.09 0.81 0.05 0.55 -0.07 0.70
Rtail 0.10 0.72 0.01 0.11 0.07 0.63
Meals 0.05 0.31 0.15 1.07 0.05 0.37
Fin -0.16 1.72 0.00 0.01 0.06 0.64
Other -0.25 2.05 -0.14 1.21 -0.19 1.68
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Table 6

Joint Test of ICAPM, FF and CAPM using 25 size and B/M sorted and 30

Industrial Portfolios: R − Rf = β̂λ+ ε

This table reports the two-stage cross-sectional regression results under the ICAPM. In the first stage, the

excess returns on 55 portfolios are regressed on the market risk premium, RM − Rf , and the innovations in the state

variables, ∆r and ∆η to obtain estimates of the loadings on the three factors, β̂. In the second stage, the sample

mean of the excess returns is regressed on the beta without the intercept: R − Rf = β̂λ + ε, and then the mispricing

is calculated as α̂ = R− Rf − β̂λ̂. A χ2 test is then formed on α̂ to test the joint significance of the mispricing. The

t-ratios and the variance covariance matrix, Σ, are calculated using Shanken’s adjustment. Results for the whole

sample period of from January 1952 to December 2000 and two equal sub samples are reported.

Panel A: January 1952 to December 2000

ICAPM FF 3-factor Model CAPM Sample Mean
λmkt λr λη λmkt λSMB λHML λmkt RM − Rf SMB HML

Estimate 0.64% -0.25% 5.81% 0.65% 0.02% 0.12% 0.67% 0.62% 0.10% 0.36%
t-ratios 3.54 3.23 2.31 3.63 0.17 1.03 3.67 3.55 0.82 3.26

α
′
Σ−1α 116.39 161.95 186.09

p−value < 1% < 1% < 1%

Panel B: January 1952 to June 1976

ICAPM FF 3-factor Model CAPM Sample Mean
λmkt λr λη λmkt λSMB λHML λmkt RM − Rf SMB HML

Estimate 0.59% -0.02% 1.36% 0.65% -0.01% 0.15% 0.61% 0.55% 0.06% 0.39%
t-ratios 2.46 0.33 0.66 2.71 0.03 1.00 2.47 2.32 0.72 4.68

α
′
Σ−1α 110.37 109.74 120.91

p−value < 1% < 1% < 1%

Panel C: July 1976 to December 2000

ICAPM FF 3-factor Model CAPM Sample Mean
λmkt λr λη λmkt λSMB λHML λmkt RM − Rf SMB HML

Estimate 0.74% -0.22% 1.55% 0.69% 0.01% 0.02% 0.71% 0.68% 0.14% 0.34%
t-ratios 2.79 2.10 0.46 2.63 0.07 0.10 2.69 2.65 0.74 1.90

α
′
Σ−1α 180.21 209.66 229.59

p−value < 1% < 1% < 1%
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Figure 1
Time Series of Real Interest Rate Estimates

The figure plots the estimated real interest rate series from January 1952 to December 2000, which is filtered out
from the bond yield and inflation data. Shaded area indicates periods of U.S. recessions.

1952.01 1957.01 1962.01 1967.01 1972.01 1977.01 1982.01 1987.01 1992.01 1997.01
−0.05

0

0.05

0.1

42



Figure 2
Time Series of Expected Inflation Rate Estimates and the Livingston Expected

Inflation Rates

The figure plots the estimated expected inflation rates, π, against the expected inflation rate from the Livingston
Survey, πliv, from January 1952 to December 2000. The expected inflation rate is filtered out from the bond yield

and Livingston inflation data. The Livingston Survey expected inflation rate, πliv, is constructed from the
economists’ six-month ahead forecast of CPI level. The monthly data is constructed using linear interpolation. The

data in the figure is in percent per month. Shaded area indicates periods of U.S. recessions.

Legend: Solid line - π; dash-dot line - πliv
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Figure 3
Time Series of Nominal Interest Rate Estimates and the Realized One-month T-bill

Rate

The figure plots the estimated nominal interest rate series, R ≡ r + π, against the realized one-month T-bill rate,
Rf , from January 1952 to December 2000. The real interest rate r and the expected inflation π are filtered out from

the bond yield and inflation data. Shaded area indicates periods of U.S. recessions.

Legend: Solid line - r + π; dash-dot line - Rf
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Figure 4
Time Series of Sharpe Ratio Estimates

The figure plots the estimated Sharpe ratio series from January 1952 to December 2000, which are filtered out from
the bond yield and inflation data. Shaded area indicates periods of U.S. recessions.
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