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Abstract

Background: Epidemiologic studies suggest maternal immune activation (MIA) is a significant 

risk factor for future neurodevelopmental disorders, including schizophrenia (SZ), in offspring. 

Consistent with findings in SZ and work in rodent systems, preliminary cross-sectional findings 

in nonhuman primates suggest MIA is associated with dopaminergic hyperfunction in young adult 

offspring.

Methods: In this unique, prospective longitudinal study, we used [18F]fluoro-l-m-tyrosine 

([18F]FMT) PET to examine the developmental time course of striatal presynaptic dopamine 

synthesis in male rhesus monkeys born to dams (n=13) injected with a modified form of the 
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inflammatory viral mimic, Polyinosinic:polycytidylic acid, in the late first trimester. Striatal 

(caudate, putamen, and nucleus accumbens) dopamine was compared to control offspring born 

to dams that received saline (n=10) or no injection (n=4). Dopamine was measured at 15, 26, 38, 

and 48 months of age. Prior work from this cohort found decreased prefrontal gray matter volume 

in MIA offspring vs. controls between 6–45 months of age. Based on theories of the etiology 

and development of SZ-related pathology, we hypothesized a delayed (relative to the gray matter 

decrease) increase in striatal FMT signal in the MIA group vs. controls.

Results: [18F]FMT signal showed developmental increases in both groups in the caudate and 

putamen. Group comparisons revealed significantly greater caudate dopaminergic signal in the 

MIA group at 26 months.

Conclusions: These findings are highly relevant for the known pathophysiology of SZ and 

highlight the translational relevance of the MIA model in understanding mechanisms by which 

MIA during pregnancy increases risk for later illness in offspring.

Keywords

Caudate; Dopaminergic; Inflammation; Macaque; Putamen; Striatum

Introduction

Neuroimmune perturbations early in development are now recognized as significant risk 

factors for future mental health problems. Indeed, a multitude of epidemiologic evidence 

suggests that infections during pregnancy increase the likelihood that offspring will develop 

illnesses such as schizophrenia (SZ) and bipolar disorder with psychotic features (1–

9). This increased risk is mediated by the maternal immune response (in addition to 

biologically damaging direct effects of the pathogenic agent) (10–12). Understanding the 

mechanisms by which maternal immune activation (MIA) may alter neurodevelopment and 

the function of key neural systems associated with risk for neurodevelopmental and mental 

health disorders is therefore of paramount importance, especially considering the current 

COVID-19 pandemic (13).

Animal MIA model systems have provided important insights regarding the behavioral, 

systems and cellular and molecular mechanisms changes resulting from MIA (14, 15). Using 

these models, researchers have found that offspring of mothers who experience MIA show 

neurodevelopmental abnormalities, including striatal dopaminergic hyperfunction, that may 

be related to various mental disorders such as SZ (16–18). This critical data from the 

rodent model provides a strong premise for determining if the association between MIA 

and hyperdopaminergia is present in a species more physiologically, developmentally, and 

behaviorally related to humans, such as the nonhuman primate (NHP) rhesus macaque 

(Macaca mulatta) (19, 20).

To that end, over the past several years we at the University of California, 

Davis Conte Center have examined the effects of a modified form of the 

MIA agent Polyinosinic:polycytidylic acid (Poly IC, stabilized with polylysine and 

carboxymethylcellulose; also known as Hiltonol®), a viral mimic, on NHP offspring 
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neuroanatomy, physiology, and behavior (21). Pilot work from a small cohort of male 

monkeys (n=5 first trimester + n=4 second trimester MIA-exposed vs. 4 saline-exposed or 

unexposed controls) found that in addition to a transient maternal immune response, Poly IC 

induced increased repetitive behaviors and abnormal social behaviors in offspring (22–24). 

We also performed PET imaging using the presynaptic dopamine tracer [18F] fluoro-l-m-

tyrosine (FMT) at 3.5 years of age in these macaques. Consistent with murine MIA models 

(25, 26), we found preliminary evidence for presynaptic striatal hyperdopaminergia in the 

MIA group (27). These findings are consistent with the neurochemistry of SZ, for which 

elevated striatal presynaptic dopamine has been repeatedly observed (28–35).

Although these early findings were encouraging in that they were consistent with the 

highly replicable hyperdopaminergic phenotype of SZ, the developmental time course 

of this divergence remains unclear. Indeed, SZ is increasingly being recognized as a 

neurodevelopmental disorder (36, 37), based on evidence that cognitive deficits may be 

evident as early as childhood in people who later developed SZ-spectrum disorders (38, 39). 

Prominent theories of the etiology of SZ posit that the initial developmental pathophysiology 

occurs in the dorsolateral prefrontal cortex (DLPFC), which plays a prominent role in 

regulating the activity of midbrain dopaminergic nuclei. Specifically, it is posited that an 

initial loss of dopaminergic input from the brainstem to the DLPFC leads to subsequent 

downstream changes (e.g., hyperdopaminergia) in subcortical regions such as the striatum 

as a compensatory response (40, 41). According to this framework, one would hypothesize 

to observe prefrontal pathology in SZ months in years prior to the increase in striatal 

presynaptic dopamine. Accordingly, we have previously published longitudinal findings 

demonstrating a loss of prefrontal volume starting at 6 months and persisting through 

45 months of age in MIA-treated animals (42). Here, in this new, larger (compared to 

our pilot study (27)) cohort of Poly IC and control animals, we report on longitudinal 

changes in presynaptic dopamine as assessed by [18F]FMT PET, providing a unique test of 

the neurodevelopmental hypothesis in a system with neurodevelopmental perturbation due 

to a known risk factor for SZ (e.g., MIA). Based on the neurodevelopmental hypothesis 

described above and our preliminary data, we hypothesized striatal hyperdopaminergia 

in these animals starting at a later timepoint and then persisting through the 48-month 

assessment.

Methods and Materials

Overview

Structural neuroimaging and cognitive data of the cohort in the present study has been 

previously published (42). All experimental procedures were developed in collaboration 

with the veterinary, animal husbandry, and environmental enrichment staff at the California 

National Primate Research Center (CNPRC) and approved by the University of California, 

Davis Institutional Animal Care and Use Committee. All attempts were made to promote 

species-typical social development and psychological well-being of the animals that 

participated in this research (in terms of social housing, enriched diet, use of positive 

reinforcement strategies, and minimizing the duration of daily training/testing sessions). 

Gestational timing, choice of species, source of immune activating agent, and subsequent 
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magnitude of the MIA response determine the impact on offspring neurodevelopment 

in preclinical MIA models. In accordance with recent guideline recommendations for 

improving the reporting of MIA model methods, we have filled out the template from (43) 

and provided it as Table S1.

Animal Selection

Pregnant dams were selected from the indoor, time-mated breeding colony based on age, 

weight, parity, and number of prior live births. Dam characteristics (age at conception, 

weight, and prior conceptions) are provided in (42)). Candidate dams between 5 and 12 

years old carrying a male fetus were assigned to MIA (n=14) and control/saline (n=10). Due 

to limited availability of male fetuses, unexposed pregnant females confirmed to be carrying 

male fetuses were added to the control group (n=4). One offspring from the MIA group was 

euthanized at 6 months of age due to an unrelated health condition and is not included in this 

report. A second animal from the MIA-exposed group was euthanized at 42 months of age 

also due to an unrelated health condition.

Maternal Immune Activation and Validation

MIA induction protocols were based on our previous dosing and gestational timing 

experiments (22, 23, 27, 42, 44, 45). Synthetic double-stranded RNA (Poly IC stabilized 

with poly-L-lysine (Oncovir, Inc.; 0.25 mg/kg i.v.) or sterile saline (equivalent volume to 

Poly IC) was injected at 07:30 hours in the cephalic vein in awake animals on gestational 

day (GD) 43, 44, and 46 (see (42) for detailed protocol). Health and behavior observations 

were conducted three times pre-exposure, 6 hours after each of the three injections, and 

three times post-exposure. The checklist captured the presence or absence of any clinical 

or behavioral symptoms resulting from the infusions including change in appetite, watery 

eyes or nasal discharge, liquid stool, lethargy or labored movements, and body temperature. 

Prior to infusions, programmable temperature microchips (Bio Medic Temperature Systems, 

Seaford, DE) were implanted subcutaneously under sedation near the left and right clavicle, 

and a temperature wand then scanned the microchip and displayed body temperature. 

Temperatures were recorded just prior to Poly IC or saline injection, and 30 minutes, 

6 hours, and 8 hours after injection. Pre- and post-exposure baseline temperatures were 

taken during health and behavior observations. Blood was collected from the dams on 

approximately GD 40 while sedated for ultrasound (pre-exposure), from awake animals on 

GD 44 and 46, 6 hours after Poly IC infusion, and on GD 51 or 52 while sedated for a 

recheck ultrasound (post-exposure) for cytokine analysis. Blood samples were centrifuged, 

and the serum was removed, aliquoted into 200 uL samples, and frozen at −80°C until 

analysis. A longitudinal examination on the maternal IL-6 response to Poly IC exposure 

was measured in serum using a NHP multiplexing bead immunoassay (MilliporeSigma, 

Burlington, MA) that was analyzed using the flow-based Luminex™ 100 suspension array 

system (Bio-Plex 200; Bio-Rad Laboratories, Inc.).

Rearing Conditions and Husbandry

Infants were raised in individual cages with their mothers where they always had visual 

access to other mother-infant pairs. Additional significant socialization procedures were also 

applied (see Supplementary Material for details re: socialization, rearing, and husbandry).
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Structural Neuroimaging

To generate regions of interest (ROIs) for PET analysis, structural magnetic resonance 

imaging of the brain was performed when the monkeys were approximately 12, 24, 36, 

and 45 months of age using a Siemens Magnetom Skyra 3-T (Siemens Medical Solutions, 

Erlangen, Germany) with an 8-channel receiver coil optimized for monkey brain scanning 

(Rapid MRI, Columbus, Ohio). It was determined that two of the animals (one in the MIA 

group and one in the control group) were sensitive to isoflurane, therefore, at subsequent 

timepoints, these animals were scanned using propofol as the anesthetic1.

The rate of infusion varied to maintain the animal at a steady state of anesthesia. All 

other animals at all timepoints were sedated with ketamine for tracheal intubation, then 

anesthetized with isoflurane for positioning in an MR-compatible stereotaxic apparatus. 

Once the animal was placed in and centered at the mid-line of the stereotaxic apparatus, the 

8-channel receiver coil was attached to the stereotaxic apparatus using a custom connector. 

Anesthesia was maintained with isoflurane at 1.3–2.0%. Fluids were maintained with a 

saline infusion at a rate of 10 mL/kg/hr for the duration of the MRI scan.

T1-weighted images (480 sagittal slices) were acquired with TR=2500 ms, TE=3.65 ms, 

flip angle=7°, field of view 256 × 256, voxel size during acquisition 0.6 × 0.6 × 0.6 mm. 

Acquired images were interpolated during image reconstruction to 512 × 512 voxels with a 

final resolution voxel size of 0.3 × 0.3 × 0.3 mm.

Regions-of-Interest

T1-weighted images were segmented into gray matter, white matter, and cerebrospinal 

fluid using NeosegPipeline_v1.0.8 (46). The gray matter of the cerebellum and bilateral 

subcortical regions of interest (ROIs; caudate, putamen, and nucleus accumbens (NAcc)) 

were segmented using a multi-atlas segmentation in AutoSeg_3.3.2 (47) with publicly 

available atlases (www.nitrc.org/projects/unc_macaque/).

Positron Emission Tomography

The [18F]FMT synthesis and animal preparation followed our previously reported protocol 

(27). [18F]FMT behaves similarly to [18F]FDOPA and is metabolized in the periphery, 

causing lower bio-availability in the brain (48). To avoid this metabolism, 5 mg/kg carbidopa 

was administered as a peripheral decarboxylase inhibitor (48–52) approximately 45 min 

prior to injection of [18F]FMT. The cephalic vein was used for carbidopa and radiotracer 

injection. For PET imaging, the anesthetized (with isoflurane or propofol (n = 2); see 

Structural Neuroimaging, above) monkey was placed on a custom-built bed, head-first, into 

the bore of the PiPET scanner (Brain Biosciences, Rockville, MD 20852, spatial resolution 

~2.0 mm). A cold transmission scan was acquired followed by [18F]FMT injection (~18.5 

MBq/kg). A 90-min dynamic emission PET scan was conducted starting approximately 10 

s prior to injection of [18F]FMT. Data were reconstructed using the maximum likelihood 

expectation maximization method into 24 frames of the following durations: 10 frames at 1 

1In our prior neuroanatomical paper42 we stated that three animals were sensitive to isoflurane. By 12 months, one of these animals 
passed a tolerance test and thus was switched back to isoflurane, explaining the discrepancy.
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min each, 5 frames at 2 min each, 4 frames at 5 min each, and 5 frames at 10 min each. 

Images were acquired when the monkeys were approximately 15, 26, 38, and 48 months of 

age.

PET data were analyzed using PMOD v. 3.9 software (PMOD Technologies Ltd, Zurich, 

Switzerland). First, individual PET time series images were summed and registered to skull-

stripped anatomical images of each animal using the PMOD automated registration function. 

Registrations were subsequently visually inspected for accuracy. The calculated registration 

matrix was then applied to the dynamic, unsmoothed PET data. Consistent with our prior 

work (27), index of influx (Ki) [18F]FMT values for each ROI were determined using the 

Patlak reference tissue model with the cerebellum as a reference region and a time cutoff 

value of 25 min for model fitting (53, 54). Ki values were normalized by V0, the volume 

of distribution in the reversible compartment (estimated as the Patlak intercept), to provide 

the [18F]FMT influx rate per unit [18F]FMT distribution volume (55, 56). Ki/V0 values were 

considered indices of the concentration of bound [18F]FMT relative to the concentration of 

free [18F]FMT and thus presynaptic dopamine.

Statistical Analysis

Linear mixed-effects models (57) were used to model presynaptic dopamine synthesis 

capacity trajectories and to evaluate group differences between 15 and 48 months of age. 

This approach explicitly accounts for multiple measurements per animal and allows for 

unequally spaced and missing observations. Separate linear mixed-effects models were built 

to examine the trajectories of Ki/V0 for each brain region (caudate, putamen, and NAcc). 

Initial evaluations focused on determining the optimal covariance structure to account for 

within-subject dependence due to the repeated measures, assessing model fit using Akaike 

information criteria (AIC). As described in detail in the Supplement, several candidate 

covariance structures were considered for each brain region. All initial models were full 

models, i.e., included group (MIA vs. control), linear, quadratic, and cubic effects of 

age at scan (measured in months, centered at 15 months) and interactions between the 

linear, quadratic, and cubic age effects and group. The interaction terms between group 

and the linear, quadratic, and cubic effects of age allowed for differences between groups 

in the linear, quadratic, and cubic trajectories, respectively. The final covariance structure 

chosen by AIC was spatial exponential for the putamen and NAcc. For caudate, the best 

within-animal covariance was modeled by including a random intercept and random slope 

for age (see the Supplement for more technical details). Once the covariance structure was 

selected, further model development was carried out. For each region, interaction effects and 

quadratic and cubic age effects were trimmed by sequentially removing those with p values 

> 0.05. Candidate models including a given interaction or higher order age effect retained all 

corresponding lower-order terms. Significant group by age interactions in the final models 

were followed up by planned comparisons between groups to determine which, if any, 

[18F]FMT PET signals were significantly different at each of the four scanning timepoints. 

At each timepoint, effect sizes were calculated using Cohen’s D = (MIA mean-Control 

mean)/SD (58) where the group differences (MIA mean-Control mean) were estimated 

based on the fitted mixed-effects models, and SDs were the pooled standard deviations from 

MIA and control group at that timepoint.
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To further assess the strength of the evidence for group differences at each timepoint, Bayes 

factors were approximated by exponentiating (BICnull - BICalternative)/2, where BICnull is the 

Bayesian information criterion (BIC) under the null model (i.e., group difference is 0 at a 

specific timepoint) and BICalternative is the BIC under the alternative model (i.e., the final 

model) (59). The Supplement includes the equations for the null and alternative models. 

Bayes factors between 3 – 10, 10 – 30, and > 30 were interpreted as moderate, strong, 

and very strong/extreme evidence for the alternative hypothesis, respectively; between 1/3 – 

1/10, 1/10 – 1/30, and < 1/30 were interpreted as moderate, strong, and very strong/extreme 

evidence for the null, respectively. A Bayes factor between 1/3 and 3 suggested only weak or 

“anecdotal” evidence (59).

Finally, to evaluate the effects of different anesthetics (isoflurane vs. propofol), a sensitivity 

analysis was performed by excluding the two animals that were given propofol and re-fitting 

the final models.

Analyses were conducted using SAS v. 9.4 (SAS Institute Inc., Cary, NC). All tests were 

two-sided, and p-values < .05 were considered statistically significant. Additional technical 

details of the statistical analyses are provided in the Supplement.

Results

Maternal Inflammatory Response

As described previously (42), MIA induced an inflammatory response as indexed by an 

elevation of interleukin-6 levels in plasma from baseline at 6 hours following Poly IC 

injection as well as sickness behaviors (reduced appetite, fever) in dams.

PET Analysis

Age, weight, dose, and [18F]FMT PET signal summary data for each timepoint are provided 

in Table 1. A representative PET scan from a macaque in the MIA group taken at 26 months 

with outlined ROIs is shown in Figure 1. Individual [18F]FMT PET signals trajectories 

over time for the caudate, putamen, and NAcc are shown in Figure 2. The results of the 

mixed-effects analysis are presented in Table 2.

Significant linear, squared, and/or cubic effects of age were observed for Ki/V0 in the 

three regions (Table 2), as Ki/V0 increased over time in the caudate and putamen across 

the MIA and control groups. Significant linear and quadratic age by group interactions 

were also observed in the caudate and putamen, indicating the MIA group had significantly 

different linear and curvilinear trajectories than the control group (Table 2). Linear contrasts 

evaluating group differences at each timepoint revealed that Ki/V0 values were significantly 

different between groups in the caudate at 26 months of age (Table 2), with greater 

dopamine synthesis capacity in the MIA-exposed group. The pattern in the putamen and 

NAcc was similar (with dopamine synthesis capacity qualitatively higher at 26 months for 

the MIA group in general) but these differences did not reach statistical significance.

Bayes factor analysis also demonstrated strong evidence for a group difference at 26 months 

in the caudate with only weak support for differences at other timepoints or regions (Table 
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2). A sensitivity analysis excluding the two animals anesthetized with propofol yielded 

similar estimated model coefficients and findings as the primary analysis (Table S2).

Discussion

In this unique, longitudinal PET neuroimaging study, we examined levels of striatal 

presynaptic dopamine across childhood and adolescence in a NHP model of MIA. 

Consistent with previous neurodevelopmental studies in NHPs (60, 61), dorsal striatal 

presynaptic dopamine levels increased (linearly and/or curvilinearly) across all groups from 

the 15-month baseline to 48 months of age. Furthermore, in agreement with our hypothesis, 

a significant interaction between group and age was also observed on presynaptic dopamine 

levels. This interaction resulted in group difference at 26 months of age and, interestingly, 

normalized by 38 months of age. Bayes factor analysis, furthermore, confirmed strong 

evidence for a group difference at 26 months of age but no evidence for group differences at 

any other timepoint.

Our finding of increased striatal presynaptic dopamine in MIA-exposed animals highlights 

the unique translational significance of this animal model system as it manifests a core 

phenotype that is uniquely relevant to psychotic disorders, specifically SZ (28–35). It 

also suggests a possible neurochemical link between inflammation during pregnancy and 

greater risk for future mental illness in offspring. Although elevated presynaptic dopamine 

is now well-established in SZ, to this point studies have not yet determined when this 

increase occurs during development, as PET imaging studies require injection of radioactive 

elements unsuitable for use in children. Hence, elucidating the full developmental time 

course of striatal hyperdopaminergia in at risk populations benefits greatly from the use of 

translational animal model systems such as NHPs. The results of this study suggest that 

MIA, which is a known risk factor for SZ, induces a striatal hyperdopaminergic state as 

early as 26 months of age in NHPs. In male rhesus monkeys, pubertal onset generally occurs 

between 3–4 years of age (62, 63); thus, while establishing age equivalence for NHPs and 

humans is imprecise, the transient elevation in striatal dopamine seen in the present study 

occurred during a period of development roughly equivalent to late childhood in humans. 

Future studies using emerging technologies such as low-dose, high sensitivity PET (64) or 

nonradioactive magnetic resonance imaging-based neuromelanin quantification (a dopamine 

proxy marker) (65) may help determine if similar increases in dopamine occur in at risk 

humans during this period of development.

Notably, our analysis of brain structure in this cohort found subtle and selective cognitive 

deficits (affecting measures of attention and cognitive flexibility) emerging around 2 years 

of age, along with reduced gray matter volume loss in the prefrontal cortex present at 6 

months of age and persisting throughout the 4-year follow-up period. In conjunction with 

these longitudinal behavioral and structural MRI findings, the present study provides us 

with a unique test of a prominent neurodevelopmental model of dopaminergic dysregulation 

in psychosis – namely that pathophysiological changes in the prefrontal cortex precede 

dopamine dysregulation due to a loss of prefrontal inhibition via projections to the SN/

VTA. Our results in this NHP MIA cohort align with predictions of this model, with early 

structural pathology in the PFC preceding the development of dopamine dysregulation by 
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18 months or the equivalent of roughly 6 human years (40, 41). Our finding of significant 

increases in FMT signal in the MIA group vs. controls in the caudate but not ventral striatum 

is also in agreement with meta-analytic evidence suggesting the most robust differences in 

presynaptic dopamine are in the dorsal (associative) striatum (66). Although the mechanism 

is unclear, one possibility is that changes in the function of the prefrontal cortex, reflected 

by a loss of gray matter volume early in development, leads to a reduction in glutamatergic 

input to the SN/VTA and (over time) dysregulation of dopaminergic neuronal activity (67). 

Supporting this view, studies suggest the striatal region with the most DLPFC input – 

namely, the dorsal striatum – is the region that shows the highest increase in dopaminergic 

tone in SZ (66). Recent work also suggests that in patients with SZ that respond to 

antipsychotics, prefrontal volumes are inversely correlated with elevated striatal dopamine 

(68). To more closely examine DLPFC structure and function in the MIA model and 

their relationships with dopamine, future planned studies by our group include postmortem 

analysis of DLPFC spine number and morphology as well as measures of local circuity 

integrity (including cellular and subcellular characterization of inhibitory interneurons) as 

has been extensively conducted in SZ (69). Of note, a preliminary analysis using the Golgi 

method in an early, adolescent pilot MIA NHP cohort showed alterations in dendritic 

morphology in layer III pyramidal cells of the DLPFC (45).

In our previous pilot study, we reported increased dopamine in a smaller cohort of 3.5-

year-old macaques born to dams who experienced Poly IC-induced MIA in the first or 

second trimester (27). Interestingly, the dopamine increase observed in the MIA cohort 

described here was transient, occurring at 26 months of age but not at later timepoints. 

This intriguing finding suggests that this increase may be reversible. What may be the 

reasons why this reversal occurred? One possible account of this variability across the two 

cohorts is that it may reflect differences in animal housing and activities between the two 

studies. For example, animals in the present study were permanently paired with a home 

cage partner throughout the study duration (monkeys in the first study were only paired 

starting between 18–24 months of age), and socialization can moderate stress responses 

(70–73) and reduce the likelihood of transition to psychosis from high risk status (74–77). 

Additionally, restraint during an eye tracking task in the prior study was not used here, 

suggesting that the additional stress in the first group may have exacerbated MIA effects 

(78, 79). Finally, animals in the present study underwent daily cognitive exercises, which 

may have helped to partially remediate PFC dysfunction (80) and provide better modulation 

of subcortical systems (including the ventral tegmental area) where dopamine-producing 

neurons are located (81). It is also possible that if we had followed the animals in the 

present study for a longer period, we might have seen further evidence of behavioral and 

dopaminergic system dysregulation as the animals progressed into adulthood. It should also 

be noted that the previous pilot study used a very small sample size (n=9 MIA animals and 4 

controls) and we cannot rule out that the previous result may have been a false positive. We 

also cannot rule out the possibility that group differences in FMT biotracer availability 

affected the observed results. Nonetheless, while speculative, an exciting possibility is 

that striatal hyperdopaminergia may ameliorate in socially and/or cognitively enriched 

environments. Indeed, such a neurodevelopmental perspective is consistent with the idea 
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that MIA exposures very early in development (i.e., years before illness onset) may be 

preventative and thus confer the most clinical benefit (36).

Taken together with the effects of MIA-exposure on cognition and structural brain 

development reported previously (42), these results suggest that MIA during the 

first trimester of pregnancy is associated with the development of a behavioral and 

neural systems phenotype that is highly relevant for understanding the developmental 

pathophysiology of SZ. Notable limitations of the study were the small sample size and 

potential confounding effects of cognitive training and socialization as well as potential 

group differences in FMT tracer bioavailability and response to anesthetics. Future studies 

based upon this MIA NHP cohort, including cellular and molecular analyses of the 

atypically developing circuitry identified in this and our previous report, will provide 

additional insights into the pathophysiological mechanisms by which maternal infections 

may increase risk for serious mental illness in humans.
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Figure 1. 
Representative PET scan showing dopamine synthesis capacity within outlined caudate, 

putamen, and NAcc regions of interest. Scan is from a 26-month macaque in the maternal 

immune activation (MIA) group.
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Figure 2. 
Trajectories of [18F]FMT PET signal (Ki/V0) in the caudate (a), putamen (b), and nucleus 

accumbens (c; NAcc) for maternal immune activation (MIA) and control offspring from 

15 through 48 months. The light lines represent observed individual trajectories and dark 

lines represent the average estimated trajectory for the two groups from the final models. 

For caudate, the signal (Ki/V0) was significantly higher in the MIA group at the 26-month 

timepoint relative to the control group. n=12 at 48 months of age for the MIA group as one 

animal was euthanized prior to scanning.
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