UCLA

Posters

Title

Networked Robotic Sensor Platform Deployments for use in Coastal Environmental Assessment in Southern California

Permalink

https://escholarship.org/uc/item/252267w4

Authors

Pereira, Arvind Das, Jnaneshwar Heidarsson, Hordur et al.

Publication Date

2009-05-12

S Center for Embedded Networked Sensing

Networked Robotic Sensor Platform Deployments for use in Coastal Environmental Assessment in Southern California

Arvind Pereira¹, Jnaneshwar Das¹, Hordur Heidarsson¹, Ryan N. Smith¹, Beth Stauffer², Erica Seubert², Marie-Eve Garneau², Meredith Howard², Lindsay Darjany², Carl Oberg¹, Ivona Cetinic², Matthew Ragan², Ellen C. Smith², Gerardo Toro-Farmer², Filippo Arrichiello³, David A. Caron², Astrid Schnetzer², Burton H. Jones² and Gauray S. Sukhatme

 $^{1} Robotic\ Embedded\ Systems\ Laboratory,\ University\ of\ Southern\ California,\ USA-http://robotics.usc.edu/reslaboratory$

²Dept. of Biological Sciences, University of Southern California, USA - http://college.usc.edu/bisc/home/

³DAEIMI, University of Cassino, Italy – http://webuser.unicas.it/lai/robotica

Features of Slocum gliders, ASVs and Networked Buoys and Moorings for coastal observation

Slocum Gliders

- + Deep profiles (~100m)
- + Good endurance (~4 wks)
- + Collaborative robotic sensing
- Slow moving (<1km/hr)
- Iridium is expensive (>\$2500)

Robotic boats

- Ideal for lakes and marinas
- + Improves spatial coverage
- + Collaborative robotic sensing
- Limited range (<30km)
- Limited endurance (~8hrs)

Networked Sensor Buoys/Moorings

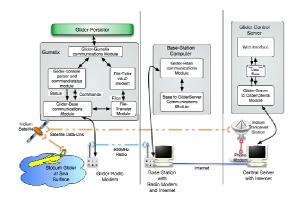
- + Constant presence with real-time web-streaming
- + More sophisticated sensing larger sensors
- Samples a single location
- Difficult to re-deploy

Goals: Reduction of Iridium-usage; ASV Collaboration under Constraints; Online Data-streaming

Coastal radio-modem network

- Develop a Freewave radio modem network
- Slocum gliders at surface communicate with shorebased Base stations using Freewave radios instead of Iridium whenever in range.
- Network should support multiple gliders simultaneously to enable glider data-download and re-tasking of gliders.
- Higher data-rates and reduced surface times improve power-consumption, reduce communication cost and enable easier access to data for re-tasking algorithms.

Multi-ASV collaboration


- Develop controller for multi-robot collaboration under constraints
- Develop a hierarchical control scheme
- Supervisory module commands elementary tasks
- Behavior-based controller generates motion directives to achieve assigned task
- Maneuvering controller follows motion directives
- Perform static-obstacle avoidance
- Perform target of visiting targets while maintaining inter-ASV wireless communication as constraint

Web-streaming of real-time data

- Online data-streaming from Redondo Beach and Marina Del Ray
- Network existing buoys and moorings to stream data to central server.
- Configure and setup repeaters to provide access to remote buoys/moorings

Coastal Freewave network; Hierarchical Control Scheme for ASV; Data-streaming

Coastal network for Glider communication

Block Diagram of Communication system for Gliders

Interpolated File-Transfer rates in bytes/sec

Freewave Carrier-Detect On-Off Ratio

Multi-ASV collaboration under range-limited Communication constraints

ASV reference model and the Two vessels during the experiment

Control architecture for Two ASV team used for experiments

 $Obstacles \ in \ lake; \ Paths \ followed \ by \ both \ \overline{ASVs} \ during \ experiments \ overlaid \ on \ a \ satellite \ map.$

Online streaming of data from Redondo beach and Marine Del Ray

Plots of streamed data displayed on the NAMOS web-server

- Glider Mission Re-tasking successfully tested at range of 9.2km
- With compression, file transmission time improved 24x over Iridium
- Deployed a new centralized Glider Control Server with Mission-planning, updated Glider visualization, glider-console capability and file-transfers
- Glider status reports available at upto 20 km (E)
 Base-station hand-offs took place at location D

Block-diagram of data-streams From sensor installations at Redondo beach marina and Marina Del Ray