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Abstract
The unprecedented spread of smartphone usage and its vari-
ous boarding sensors have been garnering increasing interest
in automatic mental health detection. However, there are two
major barriers to reliable mental health detection applications
that can be adopted in real-life: (a)The outputs of the complex
machine learning model are not explainable, which reduces the
trust of users and thus hinders the application in real-life sce-
narios. (b)The sensor signal distribution discrepancy across
individuals is a major barrier to accurate detection since each
individual has their own characteristics. We propose an ex-
plainable mental health detection model. Spatial and temporal
features of multiple sensory sequences are extracted and fused
with different weights generated by the attention mechanism
so that the discrepancy of contribution to classifiers across dif-
ferent modalities can be considered in the model. Through a
series of experiments on real-life datasets, results show the ef-
fectiveness of our model compared to the existing approaches.
Keywords: Mental health; Mobile sensing; Attention; Deep
learning; Explainable machine learning

Introduction
Mental health problems are on the rise globally and affect a
large number of people of all ages worldwide (Woodward et
al., 2020; R. Wang et al., 2018). A negative mental health
state not only leads to a severe negative impact on daily life
such as work and school performance but also contributes to a
high proportion of illness-related burdens. Therefore, there is
a need to understand what is leading to negative mental health
and how to detect the mental health state automatically and
dynamically so that worse affection can be avoided.

Traditionally, clinical physical and mental health assess-
ment visits rely on periodic self-reports, which require a lot
of time and effort. In addition, the diagnosis result usually
represents a very specific time window into patients’ lives,
which means that the optimal timing of treatment has been
missed. Therefore, if daily mental health state can be mea-
sured in time, it can provide early warnings and prevent se-
vere disorders. As the smartphone is ubiquitous and adopted
as a computing platform with richer functionality in recent
years, it gives the ability to continuously inform clinical in-
ferences and timely intervention on mental health states. Au-
tomatic detection of mental well-being (R. Wang et al., 2016,
2014a) can serve healthcare applications, digital personal as-
sistants, aging systems, and many other domains.

Machine Learning(ML) is a widely-used method to de-
tect the mental health state accurately. Conventional ML ap-
proaches have made tremendous progress on mental health

detection by adopting algorithms such as decision trees, sup-
port vector machines, naive Bayes, and hidden Markov mod-
els. As the dimension and quantity of the data continu-
ously increase, however, those methods may heavily rely on
heuristic hand-crafted feature extraction, which is limited by
human domain knowledge. In addition, high-level features
of sensory readings can not be learned with conventional
ML models. In recent years, due to the similar structure
of text data and sensor data, deep learning techniques con-
volutional neural network (CNN) and recurrent neural net-
work (RNN) (Sharif Razavian, Azizpour, Sullivan, & Carls-
son, 2014; Sundermeyer, Schlüter, & Ney, 2012) are adopted
on the task of sensory series classification such as emotion
and health detection. The studies of detecting and predict-
ing mood, stress, and mental health using sensory data col-
lected from smartphones have increased interest (Tsai, Lai,
Chiang, & Yang, 2013; Tsai, Tsai, Chiang, & Yang, 2018;
Tsai, Lai, & Vasilakos, 2014). For instance, many studies
focusing on detecting mental health using the deep learning
models (Almaslukh, AlMuhtadi, & Artoli, 2017; Suhara, Xu,
& Pentland, 2017; Jaques, Taylor, Sano, Picard, et al., 2017;
Li & Sano, 2020; Li, Yu, & Sano, 2019)

However, the black-box deep learning models can hardly
earn users’ trust in healthcare because of their unexplainable
nature and risk factors. Although existing deep learning ap-
proaches can automatically and accurately learn features to
infer mental health states, most are suffering a significant
drawback—the lack of explanation of the model. In addition,
the multi-modality sensors vary from the data type, sampling
rates, etc (Radu et al., 2018). Most of the existing works fuse
the multiple modalities of sensor readings without consider-
ing the discrepancy of data and its importance, which leads to
multi-modality streaming sensors fusion challenges.

To address these issues above, we propose an attention-
based model for mental health detection by generating expla-
nations based on visualizing the attention mechanism. At-
tention mechanism (Vaswani et al., 2017) has been proven to
perform well in natural language processing areas because of
the ability of weighted averaging of a series of input vectors.
In our proposed model, CNNs are firstly used to extract fea-
tures of different modalities, whose outputs are then fed into
an attention-based fusion layer considering the diverse impor-
tance of multiple modalities. Then an attention-based bidirec-
tional LSTM (Bi-LSTM) extracts and fuses the relatively im-
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portant features from multiple time windows. To promote the
reliability and explainability of the model, the explanation of
when and why mental health is detected is generated accord-
ing to the visualization of attention weights. In addition, the
contextual information is also taken into consideration in the
model by being fused with features of multi-modal sensory
features. To evaluate the proposed model, we conduct exper-
iments on the real-life mobile sensing dataset, which is col-
lected in the university to record students’ daily-life mental
health and smartphone sensory data. The results demonstrate
that the proposed method outperforms other methods.

Related Work
Mobile Sensing for Mental Health Detection
Mental health refers to the wellbeings including emotional,
psychological, and social state (Taylor & Brown, 1988; Gra-
vatt, Lindzey, & Aronson, 2013), which affects how we think,
feel, and perform. The relationships between depression and
generic behavioral features from passive sensing have been
studied in the previous work (Canzian & Musolesi, 2015; Min
et al., 2016; Mohr, Zhang, & Schueller, 2017).

In today’s life, human behaviors such as activity, mobility,
social interaction, and smartphone usage can be sensed by
multiple sensors embedded in smartphones and other wear-
able devices (Tsai, Lai, Chiang, & Yang, 2014). The study
in (Wahle et al., 2016) uses behavioral features such as lo-
cation, activity, smartphone usage, wifi, and log of calls and
achieved an accuracy of 61.5%. (Farhan et al., 2016) detects
negative mental health states using a machine learning model
on the dataset with 79 college students over eight months.
The work in (Thakur, 2020) extracts daily-life behavioral fea-
tures from smartphone usage and sensory data to predict men-
tal health state. To study depression in the university envi-
ronment, (R. Wang et al., 2014b) conducts experiments to
collect data from 48 students for ten weeks. They analyze
further the correlations between depression scores and vari-
ous behavioral features such as sleep duration and contextual
information (X. Xu et al., 2019; Matthews, Abdullah, Gay, &
Choudhury, 2014). The study in (Ahmed, Jeon, & Piccialli,
2021) proposes an IoT-based non-invasive automated patient
discomfort monitoring system, using a deep learning-based
algorithm. (Tuli et al., 2020) proposed a novel framework
for integrating ensemble deep learning in edge computing de-
vices and deployed it for healthcare monitoring.

Multi-modal Sensor Fusion for Emotion Detection
To achieve accurate performance, various sensor readings are
fed into the machine learning model for the detection of emo-
tion (Costa, Rincon, Carrascosa, Julian, & Novais, 2019;
G. Xu, Li, & Liu, 2020), activity (Wu, Liu, Zhu, Wang,
& Zha, 2020; Yao, Hu, Zhao, Zhang, & Abdelzaher, 2017)
and mental health (Lu et al., 2018) in the recent work, espe-
cially in the scenario of an open world (Saeed, Ozcelebi, Tra-
janovski, & Lukkien, 2018; Vaizman, Weibel, & Lanckriet,
2018). Existing sensor fusion work can be divided into two

commonly adopted multi-modal fusion approaches: shallow
classifiers and deep neural networks.

Shallow classifiers such as decision trees, random forest,
and support vector machine (SVM) rely on the manually-
extracted features (Bishop, 2006). Feature concatenation
approaches combine multiple features from each modality
into a single feature vector. The work in (Bulling, Ward,
& Gellersen, 2012) fuses multiple features extracted from
the eye movement data to recognize reading activity using
SVM. (Hemminki, Nurmi, & Tarkoma, 2013) used AdaBoost
to extract and concatenate accelerometer features capturing
characteristics of transportation movement patterns so that
generalization and robustness of the transportation mode de-
tection model improved. (Kapoor & Picard, 2005) proposes a
multi-modality sensor fusion model for an affect recognition
system based on a mixture of Gaussian Processes.

Artificial neural networks (ANN) show a promising abil-
ity to tackle the challenge of multi-modality sensors fu-
sion (Goodfellow, Bengio, Courville, & Bengio, 2016; Ra-
machandram & Taylor, 2017). The work in (Liu, Zheng,
& Lu, 2016) adopts a multi-modal deep learning approach
on multiple physiological sequential signals for the emo-
tion recognition task. The results indicate that the fusion of
multi-modality signals improves the performance of affective
computing models. A multi-modality time series classifica-
tion model combining CNN and RNN structure is proposed
in (Yao et al., 2017), showing promising results in multiple
sensors fusion. The study in (G. Xu et al., 2020) proposes
an emotional classification model for multi-modal social me-
dia to capture users’ emotions in social networks. However,
the features of multiple modalities do not have equal contri-
butions to the task, and thus the features should be treated
differently when being fused.

Explainable AI in Mental Health Detection
Despite deep learning approaches achieving great perfor-
mance, a major drawback is that the model results are not ex-
plainable (Riccardo et al., 2018). Explainability of AI refers
to the model that can generate an explanation to humans
for decision making, meanwhile, both an accurate proxy of
the AI model and comprehensible to humans (Arrieta et al.,
2020). Explainability is one of the most significant princi-
ples for AI models to be used in practical scenarios such as
healthcare (Adadi & Berrada, 2020; Khedkar, Subramanian,
Shinde, & Gandhi, 2019; Pawar, O’Shea, Rea, & O’Reilly,
2020; Holzinger, Biemann, Pattichis, & Kell, 2017).

Initially, the efforts such as feature visualization are made
to investigate the black box of CNNs in the task of im-
age recognition (Yosinski, Clune, Nguyen, Fuchs, & Lipson,
2015). The work in (K. Xu et al., 2015) uses attention mech-
anisms to visualize how the model can automatically learn
the features. The study in (Ribeiro, Singh, & Guestrin, 2016)
explains the outputs of machine learning by learning an ex-
plainable and reliable model for the classifier. (D. Wang,
Yang, Abdul, & Lim, 2019) explores the application-specific
explanation for the machine learning model and applies it to
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Figure 1: Structure of the model

healthcare applications. However, the process of time series
classification tasks such as sensor-based activity and mental
health recognition are less human-understandable since the
model inputs are the sensor signals.

Methodology
The multi-modal sensor readings of smartphones (e.g., ac-
celerometer, GPS, wifi) and contextual information of indi-
viduals are collected as the inputs of our model. The trained
model can provide users with two functions: automatic men-
tal health detection and an explanation of the result. To
achieve these, an attention-based deep learning model for
mental health detection is designed as shown in Fig. 1.

Problem Definition
Mental Health State. The notion of Mental Health State is
formally defined as a three-tuple: MH = {DE,ST ,MO}. DE
denotes the level DEpression. ST refers to the answer to “how
much STress are you suffering?”. MO indicates the current
MOod of the individual.

Multi-modal Sensory Data. The set of multi-modal sen-
sor readings is denoted as: S = {Sk},k ∈ {1, . . . ,K}. Each
sequence of single-modality sensor data from the smartphone
is defined as: St

k = {s1
k ,s

2
K ,s

3
t , . . . ,S

t
k,}, t ∈ T , where T refers

to the length of the time window of sensory readings.
Task of Mental Health Detection. The detection of men-

tal health can be formalized as follows. Given the multi-
modal sensory series S and its corresponding mental health
labels MHn. The mental health detection task can be defined
as finding a function fn : S → MHn for each aspect. The goal
is to minimize the loss L( fn) for each aspect of the mental
health state.

Single-modal Feature Extraction
In the proposed model, CNN is used to learn the feature repre-
sentation of each modality of sensory readings. First, each in-
stance’s sensor sequence is split into multiple mini-windows.
Each modality-specific CNN is used for learning the feature
representations for each mini-window. We apply Fast Fourier
Transform (FFT) to each sensor series Sk to extract more fre-

quency domain information to obtain better local frequency
patterns. We then stack both the time domain and frequency
domain data into a tensor, and the set of resulting tensors for
each modality is the input of the CNNs.

For each modality of sensor readings, an individual CNN is
designed to extract the features in a mini-window. To extract
both time domain and frequency domain features, we first ap-
ply 2d filters to learn the interaction among sensor measure-
ment dimensions and local patterns in the frequency domain
with the output. Then we apply 1d filters hierarchically to
learn high-level relationships. Then we flatten the matrix into
vectors and concatenate all the vectors into a K-row matrix,
which is the input of the sensor fusion layer.

Attention for Multi-modality Features Fusion
In this work, attention is used to capture the varying levels of
contribution from sensors at different modalities for classifi-
cation. For instance, the depression state can be more related
to the time of sleeping or battery rather than the Bluetooth
sensor; while the stress level should have strong correlations
with the activity that an individual is doing. In addition, vi-
sualizing the different contributions of features can explain
the result of the black-box deep learning model. Specifically,
the input can be represented as: [vt1, . . . ,vtk, . . . ,vtK ], where
vtk represents the feature vector of modality k in the mini-
window t. Then those feature vectors of all sensors are fused
by using their attention scores as weights to form a uniform
feature representation vector ct . The self-attention structure
can be formalized as follows:

µtk = tanh(W1vtk +b1)) (1)

αtk =
exp(µtk)

T w1

∑k exp(exp(µtk)T w1)
(2)

ct = ∑
k

αtkvtk (3)

In order the learn µtk, here we compute the representa-
tion of vtk through an MLP architecture {W1,b1,w1} are pa-
rameters of the attention, which are randomly initialized and
jointly learned during the training process. In this way, im-
portant modalities can be prioritized by the weights.

Global Attention for Temporal Feature Learning
We apply a Bi-LSTM network to learn the temporal depen-
dency of sensor readings. In our model, the outputs of fea-
ture fusion layer [x1,x2, . . . ,xN ] are fed into the Bi-LSTM net-
work. Specifically, this layer transforms the input into the
hidden layer output by multiple gate units worked as follows:

ft = sigm(Wx f xt +Wh f ht−1 +b f ) (4)

it = sigm(Wxixt +Whiht−1 +bi) (5)

Ct = ft ◦Ct−1 + it ◦ tanh(Wxcxt +Whcht−1 +bc) (6)

ot = sigm((Wxoxt +Whoht−1 +bo) (7)
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ht = ot ◦ tanh(Ct) (8)

where Ct and ht are the outputs of the temp unit, ft is the
probability of how much information from the previous cell
should be forgotten, it is the probability of how much infor-
mation in temp unit should be updated, ot is the output gate
that determines how to calculate the output. In the equation
above, W is a weight metric, representing the weights of the
input, Operator ◦ represents for element-wise multiplication,
{Wx f , Wh f , Wxi, Whi, Wxc, Whc, Wxo, Who, b f , bi, bc, bo} are
trainable variables, which will be updated in each training
step. We use the Bi-LSTM network to extract the forward
and backward features. The output of the bi-directional net-
work can be described as follows:

RNNoutt = {Fht ,Fct ,Bht ,Bct} (9)

where F and B refer to forward and backward directions.
Then the attention mechanism is used again to compute the
sum of all hidden states weighted by their attention weights
so that the temporal features can be fused considering the dif-
ferent contributions of different time windows.

Classification Layer
After the spatial and temporal feature extraction layers, the
output of the attention-based Bi-LSTM network is fed into a
classification layer. A fully connected layer and a softmax
function are used to transform the outputs of the Bi-LSTM
network to the probability of each mental health state, and
then infer the label by finding the mental health level with
maximum probability.

Data Collection
To evaluate the model’s effectiveness in real life, a large-scale
dataset involving multiple individuals is conducted with the
support of the SmartUNI project, which aims to study univer-
sity students’ lifestyles, mobility, and mental health. The data
collection process lasted two weeks at the university, from
November 25 to December 8, 2019. Specifically, the students
enrolled in the academic year 2019-2020 and 2018-2019 who
were interested in the pilot were invited to an introductory
presentation where they got the basic information about the
project and the pilot’s aims. Note that informed consent was
signed to inform the students of privacy and ethics. Overall,
60 students accepted to participate and were allowed to quit
at any time during the pilot. Finally, 54 students (23 males
and 31 females) contributed their data to the pilot.

The pilot relied on the i-Log app (Zeni, Zaihrayeu, &
Giunchiglia, 2014; Giunchiglia, Bignotti, & Zeni, 2017),
which provided sensor data collection and time diaries. All
the participants were required to install the app on their smart-
phones. The app recorded multiple sensors, both hardware
(e.g., GPS, accelerometer) and software (e.g., running appli-
cations). The app also generated time diaries every 30 min-
utes as silent notifications to track the participants’ personal
context. The time diary was composed of six questions on
activities(What are you doing?), locations(Where are you?),

Table 1: Dataset description.

Label Depression Stress Mood
1 (very positive) 10284 8853 1040
2 (positive) 5383 5369 1534
3 (moderate) 2314 4667 7904
4 (negative) 1455 1404 5538
5 (very negative) 1052 1195 4472

social relations(With whom are you?), mood, stress, and de-
pression. The mental-related questions use a 5-point Likert
scale. Every time diary could be answered within 150 min-
utes. It was possible to accumulate up to 5 notifications in the
phone, after which the oldest would expire and be set to null.

Evaluation
This section introduces the empirical experiments for evalu-
ating the proposed model. We will first describe the experi-
mental setup. Secondly, the numerical results of the compari-
son between the state-of-the-art approaches and our proposed
model are shown and discussed. Then, the impact of parame-
ters (e.g., time window size) on the performance is analyzed.

Experiment Settings
To construct the dataset of machine learning, we cleanse ex-
tract three 5-class fine-grained level annotations about mental
health (i.e., depression, stress, and mood) as truth labels of the
dataset and all of the rest data, including multiple sensors and
contextual information as the input of the model. Specifically,
the input data is composed of multiple 10-minute sequential
data, containing the 5-minute before and after answering the
question. The overall description is shown in Table 1. The
dataset is then divided into the training set, valid set, and test
set with a ratio of 8:1:1. We use the Pytorch framework and
train the model on a GPU Titan RTX to implement the pro-
posed model. Considering the dataset size is slightly limited,
the batch size of the training process is set to 32, and the
network is optimized using a learning rate of 0.0001, where
cross-entropy is adopted to compute the loss. The parameters
are initialized by the default setting, and the model has trained
1000 iterations for each aspect of mental health. The numeric
performance of the model is evaluated using accuracy.

Convergence Processes
Fig. 2 shows the loss and accuracy of different numbers of it-
erations using our model. It shows that the model’s accuracy
has been improved, and the losses are decreasing along with
the increase in the number of iterations. From Fig. 2, the ac-
curacy of depression detection is the highest among the three
aspects, which reaches 86.48%. The accuracy rates of stress
and mood can reach 77.42% and 81.20%, respectively.

Attention Weights for Explanation
To explain the output, we provide a visualization of the at-
tention weights, which can be used to evaluate the different
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Figure 2: Classification accuracy of different numbers of it-
erations

impacts of various sensor modalities and different duration.
Fig. 3 shows the distributions of spatial and temporal atten-
tion weights. The lighter the color, the greater the contri-
bution of this sensor to the prediction of this mental state.
Furthermore, we compute and visualize the attention weights
from the perspective of multiple sensors. Fig. 4 shows the dif-
ferent weights of multiple sensor inputs for detecting the three
aspects of mental health. For example, WiFi and context are
more important than other features in predicting moods.

Comparison with Other Methods
We compare our proposed model with the following algo-
rithms on our dataset collected in the wild:

1. Deepsense (Yao et al., 2017): This is the state-of-the-art
model on several types of time series classification tasks,
which uses a CNN network to extract features of each sen-
sor and another convolutional layer for sensor fusion, then
it used an LSTM network to learn temporal features.

2. CNN (LeCun, Bengio, & Hinton, 2015): A single CNN
model with three convolutional layers, and a classification
layer.

3. Random forest (Liaw, Wiener, et al., 2002): The random
forests are an ensemble classification model constructing
multiple decision trees.

4. SVM (Hearst, Dumais, Osuna, Platt, & Scholkopf,
1998): A simple support vector machine (SVM) with ra-
dial basis function (RBF) kernel.

Notice that we extract all time-domain features for the
shallow models (i.e., RF and SVM) following the method
in (Figo, Diniz, Ferreira, & Cardoso, 2010), including mean,

Table 2: Comparisons of accuracy between different models.

Depression Stress Mood
SVM 58.25% 43.23% 46.54%
Random Forest 58.29% 51.25% 53.92%
CNN 60.33% 53.83% 56.15%
Deepsense 68.25% 74.90% 78.02%
Proposed model 86.48% 78.02% 81.20%

std, etc. In addition, semantic features of locational informa-
tion are extracted manually by point-of-interest techniques.
The results of the model comparison are shown in Table 2.
Compared with the existing shallow and deep models, our
proposed model improves the performance of detecting all
three aspects of mental health, which is mainly attributed to
its capability to extract important temporal and sensory fea-
tures. From the table, besides, the accuracy obtained using
conventional ML classifiers is limited. Overall, the perfor-
mance obtained from the deep model is significantly higher
than the SVM and Random forest model.

Parameter Sensitivity
To study the influence of the parameter in our model, we eval-
uate the impact of the size of the sliding time window in the
proposed model. We compare four lengths of sliding time
windows, whose performances are shown in Fig. 5. It can be
found that the size 1s for depression detection is the best pa-
rameter. As for mood detection, the performance reaches the
peak at 1s. And 2s is the best size for detecting mood.

Discussion and Conclusion
The practical adoption of AI-based healthcare applications
in real-life scenarios suffers two main barriers: How to fuse
multi-model data to reduce the uncertainty in the complex en-
vironment and how to explain the outputs of the model. The
proposed model attempts to solve these challenges in the task
of mental health detection. First, it can improve the perfor-
mance of the mental health detection task compared to the
deep learning and conventional machine learning approaches.
Second, the explanation can be generated according to the
adaptive fusion of temporal and spatial features.

By visualizing the attention weights, we can clearly see
which sensors contribute more to the detection of different
emotions. The correlation between the contribution of these
sensors and emotions will have a more important impact on
the detection of emotions in the real world. In order to detect
human behavior and emotions more accurately, considering
the weights of different sensors for different detection objects
will be a feasible way to further improve detection accuracy
and efficiency. For example, the results of attention weights
remind us that in detecting mood, appropriately increasing
the weight of wifi and content may improve prediction per-
formance and accuracy. Our model explains how emotions
are detected, which can not only help to adjust the weights of
model inputs in the next step but also show users so that users
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Figure 3: Visualization of attention weights for depression, stress, and mood
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Artificial intelligence that can be understood and explained
put more trust and better promotes the application of artificial
intelligence in the field of health.

However, one limitation in the model is the heterogeneity
of the multiple modality sensory data in real life. Specifi-
cally, individuals have their behavioral patterns and person-
alities, and different individuals can have various behavior
features sensed by smartphones when they are in different
mental health states. Therefore, an adaptive machine learning
model is significantly needed to accurately detect the cross-
individual discrepancy. We intuitively argue that strategies
such as transfer learning can improve the model, which is
our next-step work. In addition, the use of unstructured data
to predict mental health indicators has certain limitations.
Specifically, it is necessary to take further measures in com-
bination with people’s overall conditions under the premise
of considering privacy and ethics.

This work is an initial study on the explainable mental
health detection model and its application. In the future, a
large-scale experiment on data collection will be conducted to
support further studies as follows:(a) Model Personalization.
The behavioral and biological differences across individuals
introduce the heterogeneous data for the machine learning
model, which is ill-suited to predicting outcomes. The inabil-
ity to account for individual discrepancies is necessary for
accurate models and personal applications. (b) Continue to
explore the explanation of the machine learning model deeply
and conduct more empirical experiments on the explanation,
such as correlation analysis. (c) More application functions
will be designed and implemented to improve the user expe-
rience in mental healthcare.

1881



Acknowledgments

This research is supported by the National Natural Science
Foundation of China (No. 62077027), the Ministry of Sci-
ence and Technology of the People’s Republic of China(No.
2018YFC2002500), the Jilin Province Development and Re-
form Commission, China (No. 2019C053-1), the Education
Department of Jilin Province, China (No. JJKH20200993K),
the Department of Science and Technology of Jilin Province,
China (No. 20200801002GH), and the European Union’s
Horizon 2020 FET Proactive project “WeNet-The Internet of
us”(No. 823783).

References
Adadi, A., & Berrada, M. (2020). Explainable ai for health-

care: from black box to interpretable models. In Embed-
ded systems and artificial intelligence: Proceedings of esai
2019, fez, morocco (pp. 327–337).

Ahmed, I., Jeon, G., & Piccialli, F. (2021). A deep learning-
based smart healthcare system for patient’s discomfort de-
tection at the edge of internet of things. IEEE Internet of
Things Journal, PP(99).

Almaslukh, B., AlMuhtadi, J., & Artoli, A. (2017). An ef-
fective deep autoencoder approach for online smartphone-
based human activity recognition. Int. J. Comput. Sci.
Netw. Secur, 17(4), 160–165.

Arrieta, A. B., Dı́az-Rodrı́guez, N., Del Ser, J., Bennetot, A.,
Tabik, S., Barbado, A., . . . others (2020). Explainable
artificial intelligence (xai): Concepts, taxonomies, oppor-
tunities and challenges toward responsible ai. Information
fusion, 58, 82–115.

Bishop, C. M. (2006). Pattern recognition. Machine learning,
128(9).

Bulling, A., Ward, J. A., & Gellersen, H. (2012, March).
Multimodal recognition of reading activity in transit using
body-worn sensors. ACM Trans. Appl. Percept., 9(1).

Canzian, L., & Musolesi, M. (2015). Trajectories of depres-
sion: unobtrusive monitoring of depressive states by means
of smartphone mobility traces analysis. In the 2015 acm
international joint conference.

Costa, A., Rincon, J. A., Carrascosa, C., Julian, V., & Novais,
P. (2019). Emotions detection on an ambient intelligent
system using wearable devices. Future Generation Com-
puter Systems, 92, 479–489.

Farhan, A. A., Yue, C., Morillo, R., Ware, S., Lu, J., Bi, J.,
. . . Wang, B. (2016). Behavior vs. introspection: refin-
ing prediction of clinical depression via smartphone sens-
ing data. In 2016 ieee wireless health (wh) (p. 1-8). doi:
10.1109/WH.2016.7764553

Figo, D., Diniz, P. C., Ferreira, D. R., & Cardoso, J. M.
(2010). Preprocessing techniques for context recognition
from accelerometer data. Personal and Ubiquitous Com-
puting, 14(7), 645–662.

Giunchiglia, F., Bignotti, E., & Zeni, M. (2017). Personal
context modelling and annotation. In 2017 ieee interna-

tional conference on pervasive computing and communi-
cations workshops (percom workshops) (pp. 117–122).

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y.
(2016). Deep learning (Vol. 1) (No. 2). MIT press Cam-
bridge.

Gravatt, A. E., Lindzey, G., & Aronson, F. (2013). The hand-
book of social psychology. Mental Health, 6(2), 86-86.

Hearst, M. A., Dumais, S. T., Osuna, E., Platt, J., &
Scholkopf, B. (1998). Support vector machines. IEEE
Intelligent Systems and their applications, 13(4), 18–28.

Hemminki, S., Nurmi, P., & Tarkoma, S. (2013).
Accelerometer-based transportation mode detection on
smartphones. In Proceedings of the 11th acm conference
on embedded networked sensor systems (pp. 1–14).

Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B.
(2017). What do we need to build explainable ai systems
for the medical domain? arXiv preprint arXiv:1712.09923.

Jaques, N., Taylor, S., Sano, A., Picard, R., et al. (2017).
Predicting tomorrow’s mood, health, and stress level using
personalized multitask learning and domain adaptation. In
Ijcai 2017 workshop on artificial intelligence in affective
computing (pp. 17–33).

Kapoor, A., & Picard, R. W. (2005). Multimodal affect recog-
nition in learning environments. In Proceedings of the 13th
annual acm international conference on multimedia (pp.
677–682).

Khedkar, S., Subramanian, V., Shinde, G., & Gandhi, P.
(2019). Explainable ai in healthcare. In Healthcare (april
8, 2019). 2nd international conference on advances in sci-
ence & technology (icast).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
nature, 521(7553), 436–444.

Li, B., & Sano, A. (2020). Extraction and interpretation of
deep autoencoder-based temporal features from wearables
for forecasting personalized mood, health, and stress. Pro-
ceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 4(2), 1–26.

Li, B., Yu, H., & Sano, A. (2019). Toward end-to-end predic-
tion of future wellbeing using deep sensor representation
learning. In 2019 8th international conference on affec-
tive computing and intelligent interaction workshops and
demos (aciiw) (pp. 253–257).

Liaw, A., Wiener, M., et al. (2002). Classification and regres-
sion by randomforest. R news, 2(3), 18–22.

Liu, W., Zheng, W.-L., & Lu, B.-L. (2016). Multimodal
emotion recognition using multimodal deep learning. arXiv
preprint arXiv:1602.08225.

Lu, J., Shang, C., Yue, C., Morillo, R., Ware, S., Kamath, J.,
. . . Bi, J. (2018). Joint modeling of heterogeneous sens-
ing data for depression assessment via multi-task learning.
Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2(1), 1–21.

Matthews, M., Abdullah, S., Gay, G., & Choudhury, T.
(2014). Tracking mental well-being: Balancing rich sens-
ing and patient needs. Computer, 47(4), 36-43.

1882



Min, S., Alquaddoomi, F., Hsieh, C. K., Rabbi, M., Yang, L.,
Pollak, J. P., . . . Choudhury, T. (2016). Leveraging multi-
modal sensing for mobile health: A case review in chronic
pain. IEEE Journal of Selected Topics in Signal Processing,
10(5), 962-974.

Mohr, D. C., Zhang, M., & Schueller, S. M. (2017). Personal
sensing: understanding mental health using ubiquitous sen-
sors and machine learning. Annual review of clinical psy-
chology, 13, 23–47.

Pawar, U., O’Shea, D., Rea, S., & O’Reilly, R. (2020). Ex-
plainable ai in healthcare. In 2020 international conference
on cyber situational awareness, data analytics and assess-
ment (cybersa) (pp. 1–2).

Radu, V., Tong, C., Bhattacharya, S., Lane, N. D., Mascolo,
C., Marina, M. K., & Kawsar, F. (2018). Multimodal deep
learning for activity and context recognition. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiqui-
tous Technologies, 1(4), 1–27.

Ramachandram, D., & Taylor, G. W. (2017). Deep multi-
modal learning: A survey on recent advances and trends.
IEEE Signal Processing Magazine, 34(6), 96–108.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). ” why
should i trust you?” explaining the predictions of any clas-
sifier. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp.
1135–1144).

Riccardo, G., Anna, M., Salvatore, R., Franco, T., Fosca, G.,
& Dino, P. (2018). A survey of methods for explaining
black box models. ACM Computing Surveys, 51(5), 1-42.

Saeed, A., Ozcelebi, T., Trajanovski, S., & Lukkien, J.
(2018). Learning behavioral context recognition with
multi-stream temporal convolutional networks. arXiv
preprint arXiv:1808.08766.

Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson,
S. (2014). Cnn features off-the-shelf: an astounding base-
line for recognition. In Proceedings of the ieee conference
on computer vision and pattern recognition workshops (pp.
806–813).

Suhara, Y., Xu, Y., & Pentland, A. (2017). Deepmood: Fore-
casting depressed mood based on self-reported histories via
recurrent neural networks. In Proceedings of the 26th in-
ternational conference on world wide web (pp. 715–724).
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