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Prediction and learning under unsignalled changing contexts.
Laura Wall 1, Quentin F. Gronau1, Gavin Cooper1, Guy Hawkins1, Scott D. Brown1, and Juanita Todd1

School of Psychological Science, University of Newcastle, Australia
Callaghan, NSW 2308 AUS1

Abstract

Predictive inference and error-driven learning are critical to op-
timal performance across many different contexts. However,
the specific context determines the informativeness of errors
in updating predictions. In this study, participants experienced
two changing, unsignalled contexts with opposite optimal re-
sponses to errors; the change-point context, where errors were
informative, and the oddball context, where they were not. The
changes to the context occurred under two task structures: 1)
a fixed task structure, with consecutive blocks of each context,
and 2) a random task structure, with the context randomly se-
lected for each new block. We modelled participants’ perfor-
mance using a Hierarchical Gaussian Filter (HGF) model. We
found that performance was greater in the oddball than change-
point context, with more accurate and precise estimates. The
estimates from the fixed task structure were also more precise
than those in the random task structure. We showed that con-
sistency in context can improve precision.
Keywords: predictive inference; learning; context; Hierarchi-
cal Gaussian Filter

Introduction
Predictive inference, the prediction of future observations
based on past observations, underpins much of everyday
learning and behaviour and is critical to optimal performance
across a variety of different contexts. Further, many systems
are set up under the assumption that past observations are
good predictors of future ones. For example, in criminal sen-
tencing, the judge predicts the likelihood of future criminal
activity by past criminal activity; in real estate, house prices
are set based on previous sale prices in the area. However,
all of these observations occur with a certain level of noise or
variability; e.g. some houses sell for more than expected and
some less. This variability introduces uncertainty into the es-
timation of the underlying “truth” – the actual probability that
the perpetrator will commit a future crime, or the real value
of a house in a given area.

However, sometimes, the uncertainty is amplified by out-
liers – one-off, extreme observations beyond the usual vari-
ability, that do not reflect the underlying truth. For example
the sale of a mansion or run-down shack amongst suburban
two bedroom homes. With enough samples and prediction
errors from the environment, outliers are detected for what
they are, the uncertainty is reduced, and the estimate of the
underlying truth is improved. However, in most contexts, this
underlying truth is not always stable and can change – a pre-
viously “good citizen’ gets in the with “wrong crowd” and
starts regularly committing crimes, or a noisy nightclub gets

1Corresponding author: please address any enquiries to
laura.wall@newcastle.edu.au

built in the area and house prices drop. These changes reflect
volatility. Optimal performance of predictive inference under
usual uncertainty, outliers, and volatility requires quick and
accurate determination of whether a particular observation,
e.g. a low house price, reflects the natural variability in ob-
servations, a surprising but uninformative outlier, or a change
in the underlying value.

There has been considerable theoretical, experimental and
computational development on this topic, improving the un-
derstanding of the mechanisms underpinning optimal learn-
ing and predictive inference under uncertainty and volatility
(Nassar, Wilson, Heasly, & Gold, 2010; Nassar, Waltz, Al-
brecht, Gold, & Frank, 2021; Bruckner, Heekeren, & Nas-
sar, 2022; Brown & Steyvers, 2009; d’Acremont & Bossaerts,
2016; Marković & Kiebel, 2016; Mathys et al., 2014). The
predictive inference tasks used across these papers share
many common features. Typically, participants are required
to predict the next item in a series of samples which are drawn
from a Gaussian distribution with a mean reflecting the under-
lying state and the standard deviation creating some estima-
tion uncertainty. In these tasks, under the standard context,
the mean is stable for most trials, but occasionally changes
(referred to as a change-point) at a probabilistic rate (referred
to as the hazard rate). Some studies also employ an odd-
ball context (Nassar, Bruckner, & Frank, 2019; Nassar et
al., 2021; d’Acremont & Bossaerts, 2016), where the mean
moves very slightly in accordance with a random walk on
each trial. Occasionally an outlier is sampled outside of the
distribution, at the same probabilistic rate as change-points.
In both contexts the change-points and outliers lead to sur-
prising events, with large prediction errors. In the chang-
ing context, these errors help the participants to register the
change and update their predictions accordingly. In the odd-
ball context, these large errors help participants to identify the
outliers and ignore them.

Optimal performance differs between the two contexts, and
thus to perform well participants are required to know what
context they are in, and how to respond to surprising events.
In previous studies, these contexts have occurred, and been
modelled, in distinct blocks where participants were made
aware of a context change through instruction. However, in
reality people are often required to infer what context they
are in, and if it has changed, by the behaviour of the sam-
ples. This requires longer-term learning where information
from multiple surprising and unsurprising observations is in-
tegrated into a hierarchical model which informs not only the
variability and mean of the current underlying distribution,
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but also the current context. Such longer-term learning has
only just begun to be examined in this field, despite clear
implications for interpreting learning deficits across different
groups (Wall, Cooper, Hawkins, Brown, & Todd, 2023).

If the explicit instruction separating these contexts were re-
moved, participants would only be able to apply a context-
appropriate response to surprising events if they had learnt
what context they were in. In this study we will include multi-
ple short blocks of each context, but without explicit informa-
tion about which context is occurring in each block, or when
a change in context will occur. This will provide an opportu-
nity to examine the extent to which participants learn over a
longer time-frame. However, this continued learning is likely
contingent on key aspects of the environment being consis-
tent across these longer time-frames. To further investigate
the conditions of longer-term learning, we will manipulate
the presentation of the multiple short blocks of each context
to create two task versions; one where all blocks of each con-
text are presented consecutively and one where the context
randomly changes from one block to the next. Theoretically,
participants in the consecutive contexts version should have
better estimates of the underlying distribution and context,
than those in the randomised version, as they have more op-
portunity to refine their model of the task environment and its
predictions before the context changes. If one were to analyse
performance in this task with a computational model, these
improved estimates of the underlying generative states should
translate into less variable and more accurate parameter esti-
mates of the mean.

Although a variety of computational models have been
used to understand learning in this style of predictive infer-
ence task, the two main theoretical models are Nassar et al’s.
(2010) normative model based on reduced Bayesian belief
updating and delta rule models, and the Hierarchical Gaus-
sian Filter model (HGF; Mathys et al., 2014). Both models
estimate aspects of uncertain and volatile environments, such
as the mean and variance of the generative distribution, and
the volatility of the changes in the mean. For a comparison
and description of the differences between these two main
models see Marković and Kiebel (2016) and Bruckner et al.
(2022).

In our previous work (Wall et al., 2023), (author et al,
2022)2, we utilised this multi-context experimental design
and implemented with a modified version of the normative
model developed by Nassar et al. (2010, 2021) to under-
stand participant learning over time and contexts. However,
there was no obvious differentiation in the parameter esti-
mates across the two task versions (consecutive and random).
Whilst we could continue to modify this model to better ac-
commodate longer-term context learning, we propose that im-
plementing the HGF, which is more flexible and task agnos-
tic, has the potential to provide better estimation in this multi-

2This study is an extension of our work on this paper - to ensure
blind reviewing but representative reporting, we have noted that this
previous work is our own but redacted our names. All references to
author et al, 2022 refer to the same previous paper

context design. Further, given that longer-term context learn-
ing would naturally lead to a hierarchical internal model of
the task environment for participants, the hierarchical struc-
ture of the HGF should better capture this process. Therefore,
in this paper, we will use the data from Wall et al. (2023) but
utilise the HGF model to determine if the estimates of the
mean of the distribution are less variable and more accurate
for participants in the fixed task version than those in the ran-
dom task version.

Methods
The detailed methods can be found in Wall et al.(2023), how-
ever, they are noted briefly below.

Participants
There were 101 (51 female) participants in total. All partici-
pants were recruited from an online marketplace, Prolific, in
two separate samples. The first were reimbursed at £8.16/hr
(approx 15 AUD/hr) while the second were reimbursed at
£7.52/hr (approx 14 AUD/hr) due to an update to the esti-
mated time to complete the task. The mean age of participants
was 25.54 (median= 22, SD= 7.9; range = 19 - 68). The sam-
ple was generally experienced with online studies and tasks
but there was substantial variability.

Design
This study was a 2 (context: change-point v oddball) x 2
(task version: fixed, consecutive contexts v randomised con-
texts) mixed subject design, with all participants receiving
both contexts, but the task version randomised across partici-
pants.

Task
The predictive inference task asked participants to catch bags
of money (for points) dropped from a helicopter, which was
hidden behind clouds. The bag locations were drawn from a
Gaussian distribution with the helicopter’s current location as
the mean. The goal was to guess the location of the next bag
drop and move a bucket to the predicted location, through key
presses. An example task sequence can be seen in Figure 1.

The task had two contexts which produced surprising loca-
tions of bag drops, as seen in Figures 1 and 2. In both contexts
these surprising drops (change-points and outliers) occurred
on 12.5% of trials, with a minimum of three trials between
each surprising drop. In the change-point context, change-
point trials were defined by a randomly selected change to
the mean (helicopter) position. In this context the mean was
stable for all non change-point trials. In the oddball context,
the mean drifted in accordance with a random walk of mean
0, SD 1, on each trial, but surprising outlier trials were oc-
casionally randomly drawn from a uniform distribution the
width of the screen. The outlier trials had no influence on the
random walk motion of the helicopter. These contexts were
explained to participants in the instructions as two different
levels of wind. In the oddball context, it is windy, so it is
hard to keep the helicopter stable (explaining the mean drift),
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Figure 1: An illustration of an example 3 trial sequence
for the oddball context (left panel) and change-point con-
text (right panel). NOTE: The background image, bucket,
non transparent bag and line at the bottom are all as seen by
the participant. The text, helicopter and transparent bags are
added for illustrative purposes.

it is dangerous to fly the helicopter (explaining the lack of
change-points) and occasionally a big gust of wind blows a
bag further away than expected (explaining the outlier). In
the change-point context, it is calmer, so the pilot can con-
trol the helicopter better and keep it stable (explaining the
lack of drift) and fly it to different locations (explaining the
change-point), and there are no big gusts of wind (explain-
ing no outlier drops). It was made clear to participants that
in both contexts a drop would occur that was unexpected, but
that it meant something different depending on the context:
if windy, ignore it, it’s an outlier; if calm, move your bucket,
it’s a change-point.

Procedure

The experimental session took approximately 20 minutes and
involved eight blocks of 50 trials each (four for each context),
as seen in Figure 2. The order of the blocks was manipulated
across subjects, such that approximately 50% of subjects (N
= 52) were allocated to a “consecutive context blocks” ver-
sion of the task, and the remainder allocated to the “random
context blocks” version. As seen in the top row of Figure 2
in the consecutive version, the task was essentially split into
two halves of four blocks each, with one context as the first
half and the other as the second. The presentation of these
‘halves’ was randomised across participants such that each
order occurred around 50% of the time. As seen in the bot-
tom row of Figure 2, in the random version of the task, the
context randomly changes from one block to the next. All
order combinations of the blocks were equally possible.

Modelling
We used the Hierarchical Gaussian Filter model (HGF;
Mathys et al., 2014) with two levels as described in Marković
and Kiebel (2016). The HGF specifies the following gener-
ative model for the observed bag location on trial t, denoted
by ot :3

x(2)t | x(2)t−1 ∼ N (x(2)t−1,η)

x(1)t | x(1)t−1,x
(2)
t ∼ N (x(1)t−1,exp{x(2)t })

ot | x(1)t ∼ N (x(1)t ,s).

(1)

The hidden state x(1)t corresponds to the true helicopter loca-
tion on trial t and the hidden state x(2)t to the volatility of the
helicopter location on trial t. Since participants do not know
the true states of the world, they need to invert this generative
model to obtain a perceptual model. Mathys et al. (2014) de-
scribed how this can be achieved using Bayesian Variational
Inference. This way, participants can obtain an estimate of
the posterior mean, µ(1)t , and posterior variance, σ

(1)
t , for the

hidden state x(1)t on each trial. Similarly, they can obtain an
estimate of the posterior mean, µ(2)t , and posterior variance,
σ
(2)
t , for the hidden state x(2)t on each trial. We assume that

participants’ bucket placement on trial t, denoted by yt , is
then generated as follows:4

yt ∼ N (µ(1)t ,σt). (2)

To capture both the accuracy (absolute discrepancy) and
certainty (precision) of participant’s estimates of the mean,
we calculated a new variable as an indicator of performance.
We denote this variable as π, but refer to it as the relative dis-
crepancy. To calculate this variable, for each trial, the mean
discrepancy – difference between the mean x(1)t (the actual
mean of the generative distribution) and µ(1)t (participants es-
timate of that mean) – was divided by the precision of that
estimate – 1/σ

(1)
t . This results in a variable where a smaller

value - a smaller relative discrepancy - is indicative of better
performance in both the absolute discrepancy (smaller mean
difference) and the certainty (more precise/smaller variabil-
ity). The formula penalises participants who are either very
certain but wrong, or very accurate but uncertain.

π =
|x(1)t −µ(1)t |

1/σ
(1)
t

(3)

The model was fit to the participant data. The model’s fit to
the data was assessed through visual inspection. The model
code, data, and plots of each participant’s actual (data) and

3Note that the HGF described in Marković and Kiebel (2016) is
a special case of the original HGF described in Mathys et al. (2014).
Specifically, they implicitly assume that the intercept in the term
describing the variance of x(1)t as a function of x(2)t is zero and the
corresponding slope is 1.

4This part is often referred to as the response model.
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Figure 2: An example block sequence for the consecutive task version (top row - participant 92) and the randomised task
version (bottom row - participant 93). The eight squares from left to right represents the experimental blocks 1-8, each of 50
trials, with the dots showing the position of the bags, and the lines showing the position of the helicopter, on the 0-300 unit
screen width.

predicted (model generated) bucket placements can be found
at https://osf.io/mf5ne/ One of these plots for an exam-
ple participant and block for each context is shown in Figure
3.

Figure 3: An example block of each context (block 6, change-
point and block 8, outlier) for an example participant (25).
The red lines indicate the true mean (x(1)t ), the blue lines in-
dicate the participant’s estimate of the mean (µ(1)t ) and the
shaded blue area is a 95% credible interval. The grey dots are
the participant’s bucket placements and the red dots are the
bag drops.

Results
Extensive model free analysis was reported in Wall et al.
(2023) and so in this paper, we will provide a brief summary
of those results for context, but only report on results from
our HGF analysis.

In summary, we found in Wall et al. (2023) that partic-
ipants generally responded to the task as expected, where
larger updates followed larger errors across trials, and big-
ger proportional updates (update / error) followed change-
point trials compared to standard trials, while smaller pro-
portional updates followed outlier trials. These differences,
between responses following change-points and outliers, in-
creased across trials within a block, and the mean of these
responses generally increased across blocks, but only for par-
ticipants in the fixed task version. We suggested that the re-
finement to one’s internal model across a longer period of
time was likely dependent on the broader environmental sta-
bility.

The means of our HGF model-estimated individual, trial
by trial, computed variables reflecting the absolute discrep-
ancy (x(1)t −µ(1)t ), precision (1/σ

(1)
t ) and relative discrepancy

(π) for those in the fixed and random task version are seen in
columns 2 & 3 and 4 & 5 of Table 1 respectively. These vari-
ables, summarised at the participant level across trials, can be
further seen in Figure 4.

As seen in Figure 4 and column 2 of Table 2, two sided
Bayesian t-tests found that there was decisive evidence of
differences in all variables between the two contexts, such
that there was a smaller difference in the estimated and ac-
tual mean location (absolute discrepancy), greater precision,
and also better overall performance due to smaller relative
discrepancy for the oddball than change-point context.

As seen in column 3 of Table 2, Bayesian one-sided t-tests
found no evidence of differences between the two task ver-
sions for absolute or relative discrepancy. However, despite
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the small size of the difference in precision, the Bayesian
t-tests showed decisive evidence of higher precision for the
fixed, consecutive task structure, than the randomised task
structure. Similarly, Bayesian ANOVAs of the effect of con-
text and task version on absolute and relative discrepancy
both found the model with the strongest evidence as the
one with an effect of context only (winning model BFAcc =
3.39 × 10123 and BFPer = 3.43 × 1064 respectively). How-
ever, the ANOVA on precision found the model with the
greatest evidence as the one which included context, task
version and the interaction between the two (winning model
BFPre = 2.47×1020).

Variable Fixed Random
CP OB CP OB

x(1)t −µ(1)t 16.978 13.244 16.744 13.339
Absolute discrepancy

1/σ
(1)
t 0.063 0.065 0.055 0.061

Precision

π 341.295 271.006 327.603 281.689
Relative discrepancy

Table 1: Means of the individual, trial-by-trial, computed
variables for the fixed (column 2 & 3) and random (column 4
& 5) task version, for both contexts (CP; change-point, and
OB; oddball). x(1)t − µ(1)t reflects participants’ accuracy in
terms of absolute discrepancy through the difference in their
estimated mean and the true helicopter mean, 1/σ

(1)
t reflects

participants’ certainty in terms of precision through the vari-
ability of their estimate of the mean; π reflects their perfor-
mance in terms of relative discrepancy, incorporating both the
absolute discrepancy and precision. NOTE: lower values of
absolute and relative discrepancy indicate better performance
as they represent a smaller difference between the estimated
mean and the actual mean.

Variable Bayes Factor Bayes Factor
CP v OB Fixed v Random

x(1)t −µ(1)t 6.58×10121 0.0170
Absolute discrepancy

1/σ
(1)
t 2.55×108 1.169×1035

Precision

π 5.84×1059 0.0165
Relative discrepancy

Table 2: BFs from a t-test of differences in the means between
the two conditions are provided in column 2 - these means
are for all trials in the change-point condition compared to
all trials in the oddball condition, regardless of task version.
BFs from a t-test of differences in the means between the two
task versions are provided in column 3 - these means are for
all trials in the fixed condition compared to all trials in the
random condition, regardless of context.

Discussion
Summary
We found that participants could perform well in the task,
with generally small differences between their estimate of the
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Figure 4: The trial-by-trial variables noted in Table 1 sum-
marised at the participant level, across contexts (Condition;
change-point = pink and left, oddball = blue and right) and
task versions (fixed = left column, random = right column).
Absolute discrepancy (x(1)t −µ(1)t ; top row) is summed across
trials, whilst Precision (1/σ

(1)
t ; middle row) and Relative dis-

crepancy (π; bottom row) are the means across trials. The
dots are quasi-random samples from the distribution of data;
black dots represent the mean, whilst the box plots represent
the median and inter-quartile range.

mean and the actual mean, regardless of which context they
were in or which task structure they were assigned to. Inter-
estingly, the oddball context resulted in better performance
(smaller relative discrepancy) than the change-point context,
both in terms of absolute discrepancy and precision. When
considering the experimental uncertainty present in the two
contexts, one might expect the change-point condition to be
easier, as the mean location remains stable and consistent
across multiple trials before changing, whilst the mean loca-
tion changes randomly on each trial for the oddball condition.
A mean that has longer periods of stability should be easier
to estimate, particularly towards the end of that period. How-
ever, this is under the assumption that the agent and process
of estimating the mean are aware of this stability and will
leverage it accordingly. If the model assumes that the mean
changes and thus must be updated each trial, then data which
are generated by such a changing mean are now more likely
to result in accurate and precise estimates, compared to data
generated by a different process. As seen in the example par-
ticipant’s data in Figure 3, the model generated µ follows a
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similar pattern over trials across the two contexts, despite the
experimentally generated mean having two distinctly differ-
ent patterns (one with steps between stable periods, one in
accordance with a random walk).

It is important to remember that whilst participants knew
there were periods where the helicopter remained stable for
a while, they did not know when those periods were. It is
possible, that they may have opted for one strategy for esti-
mating the helicopter across all contexts, with that strategy
more aligned with the oddball context. In our previous work
using this paradigm, we showed that participants were sen-
sitive to the context changes such that they were capable of
differentially responding to large errors based on the context
(Wall et al., 2023). However, participants could have utilised
one strategy for estimating the mean regardless of context,
and then used another strategy for determining what to do
with large errors. The inclusion of a mixture process in the
response portion of the model could help to investigate this
possibility in the future.

The main aim of this study was not to investigate differ-
ences in performance across contexts, but rather differences
in performance across task structures, to examine the pos-
sible influence of longer-term context learning. Our com-
puted measure of performance (relative discrepancy, π), did
not show any group differences, nor did the difference be-
tween the estimated and generative means. These results are
in line with our previous modelling (Wall et al., 2023), where
we did not find any group differences in the parameters of our
modified version of the normative model developed by Nassar
et al. (2010). The measure of precision, computed from the
HGF parameter σ, however, did find group differences, in the
direction we hypothesised, with greater precision for partici-
pants given the consecutive fixed task structure, than the ran-
domised structure. It is worth highlighting, that although the
Bayes Factors for the ANOVAs and t-tests were decisive (and
were supported by frequentist analysis), the effect size of the
group difference was very small, and difficult to observe vi-
sually. It is questionable then, how useful such a difference
might be when extrapolating the findings to more real-world
contexts.

Limitations and future directions
Whilst the HGF is a natural fit for the question posed in this
paper about higher-order learning, this analysis did not fully
utilise the hierarchical structure of the task environment by
only having two levels and by only examining the outputs
from the first level. In this study, we have established that
the participant’s estimate of their mean (µ1), and the vari-
ability (σ1 ) and precision (1/σ1) of that estimate are use-
ful indicators of differences in performance between different
experimental conditions and contexts. Whilst it was beyond
the scope of this paper, investigation of differences in partic-
ipants’ estimates of the volatility of the helicopter for each
trial, could potentially be more sensitive to differences be-
tween the two task versions. Further, the model could be ex-
tended to include a third level, which may help to estimate the

longer term volatility of the context. Future research could
compare the fit and outputs of a 2 vs 3 level HGF.

Whilst these are interesting avenues for future research,
this application of a simple two-level HGF to this data is still
a worthwhile contribution. Most applications of the HGF in-
volve much simpler data, often with binary stimuli and re-
sponses, and with more explicit conditions, which minimises
the uncertainty present for participants and produces cleaner
data. This study provided an important test that the HGF
could be applied to this task where participants were not ex-
plicitly told what context they were in, and therefore, had a
wide scope of possible strategies they could have employed to
complete the task under this additional uncertainty, resulting
in richer, but more difficult to model, data.

Also, although the HGF is a promising model for these
types of tasks, there are other models we could have chosen
to look at learning over time. We could have used a particle
filter model, as used in Brown and Steyvers (2009), where the
number of particles in the filter represents the fidelity of one’s
hypothesis space about parameters of the task environment.
We could similarly use a sampling-based approach to deter-
mine the influence of samples from past experiences, such
as used in Bornstein, Khaw, Shohamy, and Daw (2017). An
interesting avenue for future research would be to compare
these different models on different variants of tasks such as
this, to determine if different models better fit different as-
pects of learning and prediction under uncertainty.

Conclusions
In conclusion, we showed that the HGF is a suitable model for
examining learning across changing contexts and that whilst
consistency in context does not influence the accuracy of per-
formance, it can produce more precise estimates within that
context.
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